We study a pure fluid of heteronuclear sticky Janus dumbbells, considered to be the result of complete chemical association between unlike species in an initially equimolar mixture of hard spheres (species A) and sticky hard spheres (species B) with different diameters. The B spheres are particles whose attractive surface layer is infinitely thin. Wertheim's two-density integral equations are employed to describe the mixture of AB dumbbells together with unbound A and B monomers. After Baxter factorization, these equations are solved analytically within the associative Percus-Yevick approximation. The limit of complete association is taken at the end. The present paper extends to the more general, heteronuclear case of A and B species with size asymmetry a previous study by Wu and Chiew [J. Chem. Phys. 115, 6641 (2001)], which was restricted to dumbbells with equal monomer diameters. Furthermore, the solution for the Baxter factor correlation functions q i j α β (r) is determined here in a fully analytic way, since we have been able to find explicit analytic expressions for all the intervening parameters.

We study a pure fluid of heteronuclear sticky Janus dumbbells, considered to be the result of complete chemical association between unlike species in an initially equimolar mixture of hard spheres (species A) and sticky hard spheres (species B) with different diameters. The B spheres are particles whose attractive surface layer is infinitely thin. Wertheim’s two-density integral equations are employed to describe the mixture of AB dumbbells together with unbound A and B monomers. After Baxter factorization, these equations are solved analytically within the associative Percus-Yevick approximation. The limit of complete association is taken at the end. The present paper extends to the more general, heteronuclear case of A and B species with size asymmetry a previous study by Wu and Chiew [J. Chem. Phys. 115, 6641 (2001)], which was restricted to dumbbells with equal monomer diameters. Furthermore, the solution for the Baxter factor correlation functions qαβi j(r) is determined here in a fully analytic way, since we have been able to find explicit analytic expressions for all the intervening parameters.

Analytic solution of two-density integral equations for sticky Janus dumbbells with arbitrary monomer diameters

GAZZILLO, Domenico;
2016-01-01

Abstract

We study a pure fluid of heteronuclear sticky Janus dumbbells, considered to be the result of complete chemical association between unlike species in an initially equimolar mixture of hard spheres (species A) and sticky hard spheres (species B) with different diameters. The B spheres are particles whose attractive surface layer is infinitely thin. Wertheim’s two-density integral equations are employed to describe the mixture of AB dumbbells together with unbound A and B monomers. After Baxter factorization, these equations are solved analytically within the associative Percus-Yevick approximation. The limit of complete association is taken at the end. The present paper extends to the more general, heteronuclear case of A and B species with size asymmetry a previous study by Wu and Chiew [J. Chem. Phys. 115, 6641 (2001)], which was restricted to dumbbells with equal monomer diameters. Furthermore, the solution for the Baxter factor correlation functions qαβi j(r) is determined here in a fully analytic way, since we have been able to find explicit analytic expressions for all the intervening parameters.
2016
144
File in questo prodotto:
File Dimensione Formato  
Gazzillo_JCP2016.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3674376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact