Despite airborne microorganisms representing a relevant fraction of atmospheric suspended particles, only a small amount of information is currently available on their abundance and diversity and very few studies have investigated the environmental factors influencing the structure of airborne bacterial communities. In this work, we used quantitative PCR and Illumina technology to provide a thorough description of airborne bacterial communities in the urban area of Milan (Italy). Forty samples were collected in 10-day sampling sessions, with one sessionper season.Themeanbacterialabundancewasabout104 ribosomal operons perm3 of air andwas lower inwinter than in the other seasons. Communitieswere dominated by Actinobacteridae, Clostridiales, Sphingobacteriales and fewproteobacterial orders (Burkholderiales, Rhizobiales, Sphingomonadales andPseudomonadales).Chloroplastswere abundant in all samples. Ahigher abundanceof Actinobacteridae,which are typical soil-inhabiting bacteria, and a lower abundance of chloroplasts in samples collected on cold days were observed. The variation in community composition observed within seasons was comparable to that observed between seasons, thus suggesting that airborne bacterial communities showlarge temporal variability, even between consecutive days. The structure of airborne bacterial communities therefore suggests that soil and plants are the sources which contribute most to the airborne communities of Milan atmosphere, but the structure of the bacterial community seems to depend mainly on the source of bacteria that predominates in a given period of time.

Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy

INNOCENTE, ELENA;RAMPAZZO, Giancarlo;
2013-01-01

Abstract

Despite airborne microorganisms representing a relevant fraction of atmospheric suspended particles, only a small amount of information is currently available on their abundance and diversity and very few studies have investigated the environmental factors influencing the structure of airborne bacterial communities. In this work, we used quantitative PCR and Illumina technology to provide a thorough description of airborne bacterial communities in the urban area of Milan (Italy). Forty samples were collected in 10-day sampling sessions, with one sessionper season.Themeanbacterialabundancewasabout104 ribosomal operons perm3 of air andwas lower inwinter than in the other seasons. Communitieswere dominated by Actinobacteridae, Clostridiales, Sphingobacteriales and fewproteobacterial orders (Burkholderiales, Rhizobiales, Sphingomonadales andPseudomonadales).Chloroplastswere abundant in all samples. Ahigher abundanceof Actinobacteridae,which are typical soil-inhabiting bacteria, and a lower abundance of chloroplasts in samples collected on cold days were observed. The variation in community composition observed within seasons was comparable to that observed between seasons, thus suggesting that airborne bacterial communities showlarge temporal variability, even between consecutive days. The structure of airborne bacterial communities therefore suggests that soil and plants are the sources which contribute most to the airborne communities of Milan atmosphere, but the structure of the bacterial community seems to depend mainly on the source of bacteria that predominates in a given period of time.
File in questo prodotto:
File Dimensione Formato  
Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 693.45 kB
Formato Adobe PDF
693.45 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/34929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 162
  • ???jsp.display-item.citation.isi??? 149
social impact