We study structural and thermophysical properties of a one-dimensional classical fluid made of penetrable spheres interacting via an attractive square-well potential. Penetrability of the spheres is enforced by reducing from infinite to finite the repulsive energy barrier in the pair potentials As a consequence, an exact analytical solution is lacking even in one dimension. Building upon previous exact analytical work in the low-density limit [Santos \textit{et al.}, Phys.\ Rev.\ E \text{77}, 051206 (2008)], we propose an approximate theory valid at any density and in the low-penetrable regime. By comparison with specialized Monte Carlo simulations and integral equation theories, we assess the regime of validity of the theory. We investigate the degree of inconsistency among the various routes to thermodynamics and explore the possibility of a fluid-fluid transition. Finally we locate the dependence of the Fisher-Widom line on the degree of penetrability. Our results constitute the first systematic study of penetrable spheres with attractions as a prototype model for soft systems.

Penetrable-square-well-fluids: Analytical study and Monte Carlo simulations

GIACOMETTI, Achille;
2009-01-01

Abstract

We study structural and thermophysical properties of a one-dimensional classical fluid made of penetrable spheres interacting via an attractive square-well potential. Penetrability of the spheres is enforced by reducing from infinite to finite the repulsive energy barrier in the pair potentials As a consequence, an exact analytical solution is lacking even in one dimension. Building upon previous exact analytical work in the low-density limit [Santos \textit{et al.}, Phys.\ Rev.\ E \text{77}, 051206 (2008)], we propose an approximate theory valid at any density and in the low-penetrable regime. By comparison with specialized Monte Carlo simulations and integral equation theories, we assess the regime of validity of the theory. We investigate the degree of inconsistency among the various routes to thermodynamics and explore the possibility of a fluid-fluid transition. Finally we locate the dependence of the Fisher-Widom line on the degree of penetrability. Our results constitute the first systematic study of penetrable spheres with attractions as a prototype model for soft systems.
2009
131
File in questo prodotto:
File Dimensione Formato  
Fantoni_JCP_09.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 378.34 kB
Formato Adobe PDF
378.34 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/31687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact