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The analysis of nuclear magnetic resonance (NMR) spectra to detect peaks and characterize their
parameters, often referred to as deconvolution, is a crucial step in the quantification, elucidation, and
verification of the structure of molecular systems. However, deconvolution of 1D NMR spectra is a chal-
lenge for both experts and machines. We propose a robust, expert-level quality deep learning-based
deconvolution algorithm for 1D experimental NMR spectra. The algorithm is based on a neural network
trained on synthetic spectra. Our customized pre-processing and labeling of the synthetic spectra enable
the estimation of critical peak parameters. Furthermore, the neural network model transfers well to the
experimental spectra and demonstrates low fitting errors and sparse peak lists in challenging scenarios
such as crowded, high dynamic range, shoulder peak regions as well as broad peaks. We demonstrate in
challenging spectra that the proposed algorithm is superior to expert results.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a powerful
and diverse tool for the quantitative analysis of molecules. Spectra
can vary from a few peaks to highly overlapping regions with hun-
dreds of peaks. The process of retrieving these peaks, i.e. signals,
information from a 1D NMR spectrum is called deconvolution.
Deconvolution is an essential step for the quantification, elucida-
tion of the structure and verification of the structure of small mole-
cules, and it facilitates workflows, for example, in drug discovery
and the study of molecules [1]. In detail, the deconvolution process
obtains a list of peaks and their parameters from a spectrum with-
out additional information on the molecular structure.

Creating a spectrum from a peak list, known as convolution, is a
straightforward and well-defined task if distortions are neglected.
On the other hand, inverting this operation, that is, determining a
peak list from a given spectrum, is an ill-posed inverse problem [2].
Hence, there is an infinite number of solutions to a deconvolution
problem. A solution with a small residual error (the difference
between the original and reconstructed spectrum) is not necessar-
ily practical since too many peaks could be picked to fit the noise,
distortions, or other influences. This notion is also known as over-
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fitting. To eliminate overfitting and decide which of all possible
solutions to a deconvolution problem to choose, one needs to
add information in the form of regularization or constraints. But
even the commonly used approaches of sparsity promoting regu-
larization meet their limits, depending on the regularization used
[3,4]. Forcing the solution to be sparse can still lead to ambiguous
results, see Fig. 1: In this example, experts usually prefer the spar-
ser three-peak solution, although the spectrum was created using
the five-peak annotation. Peaks are particularly challenging to be
resolved and an expert could not distinguish between one or two
peaks, especially if the chemical shift of two peaks is nearly iden-
tical, cf. Fig. 1 (bottom, center), or if the amplitudes are factors of
magnitude apart, cf. Fig. 1 (bottom, right). Increasing the number
of detected peaks, i.e. model order, and thus, the number of free
parameters for the fitting, will generally reduce the mean absolute
error (MAE), reflected by the lower residual error of the five-peak
fit. Furthermore, the intrinsic ambiguity of the measurement pro-
cess and inaccurate spectral processing steps contribute to further
unknown physical and experimental factors. Together, these result
in line shape distortions, spectral artifacts, and low signal-to-noise
ratio (SNR). All of these factors make deconvolution of NMR spectra
challenging for both experts and machines.

The deconvolution processes typically require significant man-
ual intervention, operator supervision, and expert knowledge to
achieve a good result. However, increasing the automatization of
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Fig. 1. Deconvolution is an ill-posed problem. The substantially different solution
will produce almost the same MAE of the shown region. For example, the spectrum
(black) can be reconstructed (red, dashed line) using three (grey, top) or five peaks
(grey, bottom).

the deconvolution process can enhance the accessibility of NMR
spectroscopy for non-experts, improve reproducibility, and reduce
labor costs. Thus, automatic extraction of various peak parameters
in NMR spectroscopy is essential to facilitate the NMR workflow.
Classical approaches focus on information based on simple sig-
nal properties such as integral, amplitude, SNR, or geometric fea-
tures [5,6]. One of the first steps in deconvolution methods
usually consists of determining the number of peaks and their cor-
responding positions. Various approaches such as wavelet [7],
matrix factorization [8], singular value decomposition [9], and
Bayesian methods [10] have been proposed for the peak picking
problem. Classical approaches that cover the complete deconvolu-
tion workflow often rely on the fitting of the free induction decay
(FID) or the spectrum in the frequency domain, combined with an
explicit criterion for determining the number of peaks, i.e., model
order selection. However, trading off fitting error against model
order can be pretty cumbersome [3,4]. The so-called CRAFT (Com-
plete Reduction to Amplitude-Frequency Table) algorithm is an
example of a classical FID-based fitting approach [11]. In contrast,
another whole family of approaches is based on the autoregression
properties of the FID, for example, Hankel matrix [12], filter diago-
nalization [13], and fast padé transform-based methods [14]. They
are based on the fact that the subsequent points in the FID signal
can be modeled as a linear combination of the preceding ones.
On the other hand, an approach for deconvolution in the frequency
domain is the Global Spectral Deconvolution (GSD) algorithm from
Cobas et al. [15], which relies on the spectrum and its first and sec-
ond derivatives for peak picking and fitting. Unfortunately, many
classical algorithms for deconvolution of 1D NMR spectra still need
some expert knowledge to set the hyperparameters of the method,
rely on simple and fixed patterns, such as the spectrum and its
derivatives, and exhibit difficulties in finding the correct number
of peaks, that is, in the selection of the model order [3]. Instead
of using simple and fixed patterns such as the signal and its deriva-
tives or simple geometrical features, machine learning techniques
can be utilized to learn more expressive, domain-specific features
for deconvolution, such as multiplet patterns. For example, triplets
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are a typical pattern in NMR spectra that can be recognized; see
Fig. 1.

Machine learning methods, particularly deep learning methods,
have proven their powerful capabilities to find and exploit patterns
in all types of data. They have become indispensable in many
domains, such as natural language processing or computer vision,
to extract expressive features from nonlinear, high-dimensional
signals. Deep neural networks (DNNs) are suitable for a wide range
of learning tasks, ranging from classification and regression to
unsupervised learning.

Neural networks have a long history in NMR spectroscopy, with
roots dating back to the 1980s [16]. Despite the early beginnings,
most practical deep learning algorithms in NMR have only
emerged in recent years due to improved algorithmic performance
and computational capabilities [17]. Deep learning methods have
been successfully applied in other areas of spectroscopy, for exam-
ple, in IR spectroscopy to identify functional groups [18] or to pro-
cess two-electron dipolar spectroscopy (DEER) data [19]. However,
NMR spectroscopy also seems well suited for applying deep learn-
ing techniques, primarily because of its richness of information,
quantitative nature, and high reproducibility. Chemical shift pre-
diction is one of the most prominent applications [20-24]. Espe-
cially in the field of 2D NMR spectroscopy, deep learning has
found various applications in recent years. The reconstruction of
2D spectra from nonuniformly sampled (i.e., undersampled) spec-
tra (NUS) [25-27], or the denoising of low-SNR spectra [28] has
been tackled. Deep learning-based peak picking in 2D-4D spectra
(ARTINA) was carried out by Klukowski et al. [29]. In terms of
learning-based deconvolution approaches, there are time and fre-
quency domain techniques. Huang et al. [30] propose a deep Han-
kel matrix algorithm for the deconvolution of FID data. Recently, Li
et al. [31] introduced a deconvolution method for 2D experimental
NMR spectra that handles strongly overlapping, relatively narrow
peaks called DEEP Picker. Generally, frequently recurring multiplet
patterns and the complexity of inverse problems in NMR spec-
troscopy are factors in favor of the strengths of deep learning. This
has led to the aforementioned promising applications of deep
learning in spectroscopy, particularly in 2D NMR spectroscopy.

However, applications in the more common high dynamic
range (HDR) 1D NMR spectroscopy and the demonstration of
robust transferability to experimental 1D NMR spectra for DNNs
trained on synthetic data are not fully solved [17]. Especially in
challenging regions with strongly overlapping, very broad peaks,
shoulder peaks, and HDR issues, many methods struggle to demon-
strate robust, expert-level performance [32].

Our method addresses these problems: We propose a deep
learning-based deconvolution algorithm for 1D NMR spectra with
expert-level performance in various experimental spectra. More
precisely, our contributions, which will be explained and discussed
later in detail, are the following:

e Creation of realistic synthetic 1D NMR data set that allows a
robust model transfer to experimental spectra

¢ An implicit regularization approach through efficient automatic
labeling of these synthetic spectra

e Custom data pre-processing for high dynamic range regions and
broad lines

¢ A neural network for the training with the synthetic spectra and
the application to the experimental spectra that handles broad
lines and their overlap with narrow lines, highly crowded
regions, and HDR spectra

o Altogether, a fully automated method that yields expert-level
quality sparse deconvolution results on experimental spectra

The paper is organized as follows: Section 2 describes the data
creation, pre-processing, and labeling, as well as the deep learning
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method. Section 3 presents the results of the deconvolution in syn-
thetic and experimental spectra and compares them with expert
annotations. Furthermore, different aspects of deep learning as a
tool for deconvolution are discussed. Finally, Section 4 concludes.
Various technical details of our setup are explained in the SI
Section.

2. Methods

We present a combined deconvolution algorithm that uses deep
learning and classical methods. The DNN is trained using a syn-
thetic data set that has been pre-processed and labeled with an
NMR data-specific approach; cf. Fig. 2 (top row). In a second step,
the trained model is applied to the pre-processed experimental
spectra, cf. Fig. 2 (bottom row), and yields, together with a subse-
quent automatic classical peak parameter fine-tuning, a peak list.

2.1. Data creation for robust model transfer from synthetic to
experimental spectra

Consistently labeled and high-quality experimental NMR data
are expensive and generally unavailable in the quantities needed
to train modern neural networks [1]. Thus, our method is based
on synthetic training data sets [17] that are freely available and
can be generated in large amounts. Distortion- and artifact-free
synthetic data can be generated from first principles, since NMR
is a well-understood physical phenomenon. However, creating per-
fectly realistic synthetic data, including distortions and artifacts, is
challenging, often leading to a slight discrepancy between syn-
thetic training data and experimental test data. The notion of hav-
ing different types of data sets for training and testing in
supervised learning is known as distribution shift [33] and dealing
with distinct distribution shifts is a common problem in machine
learning called transfer learning [34]. We approach this problem
from two sides.

Firstly, we make our training spectra as realistic as possible. For
data creation, we use synthetic multiplet structures consisting of
pseudo-Voigt lines [35]. Pseudo-Voigt lines correspond to an
experimental Gaussian line shape distortion to the theoretical Lor-
entzian resonance profiles. Distortions, such as inaccurate phase
and baseline corrections, are applied to the pure signal. We then
add a small linear frequency-dependent phase error to the spec-
trum for phase distortions. Incorrect baseline correction is emu-
lated with randomly sampled points connected through a spline
smoothing model. These procedures serve as NMR spectroscopy-
specific data augmentation, which helps to prevent overfitting
and promote transferability to experimental spectra [36]. Further-

Model creation
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more, Gaussian noise is added to the spectrum to produce a ran-
dom maximum SNR level in the range of [10?,10%], cf. SI 5.1 for
details and an illustration of the data creation process. An advan-
tage of creating a custom synthetic data set is that the data distri-
bution is malleable to cover the space of all possible experimental
spectra.

Secondly, we process the experimental spectra to match the
training spectra. Therefore, we correct the experimental spectra
with the automatic phase and baseline correction command
"apbk” from TopSpin [37]. The corrected experimental spectra
are then line-broadened with 0.3 Hz and resampled to match the
number of points per Hz in the training spectra. This steps ensure
that the peaks in the spectrum have approximately Voigt line-
shapes with the same width range with respect to the number of
points as in the training set. Altogether, the realistic data set cre-
ation and the experimental spectra adaption reduce transfer learn-
ing issues as much as possible.

2.2. Deep learning-specific data pre-processing

Peaks in 1D NMR spectra can have parameters that span orders
of magnitude. Some peaks in a spectrum have a very low SNR, e.g.,

below 10; others have a very high SNR, e.g., above 10*. Such a
broad range of signal intensities is referred to as a high dynamic
range (HDR). Signals being orders of magnitude apart makes it
numerically difficult for deep learning approaches to deconvolve
complex spectra. Therefore, scaling methods for HDR data in other
deep learning domains are common practice, for example, Mel fre-
quency cepstral coefficients (MFCC) in audio [38]. However, in 1D
NMR, analogous embeddings of HDR signals are missing.

We introduce two pre-processing methods to make large
parameter ranges better amenable to deep learning. The first pre-
processing algorithm is called dynamic scaling. The method
reduces the dynamic scale of the input spectrum and enhances
the local contrast. The approach is inspired by techniques from
computer vision for edge detection [39] and histogram equaliza-
tion techniques [40]. This dynamic scaling is accomplished by
applying a signal-dependent local contrast enhancement filter, cf.
Algorithm 1. Therefore, the local maximum filter K., and mini-
mum filter K, , of different kernel widths b, where b is in the
set of kernel widths B, are applied to the real part of the spectrum
S. To avoid large jumps due to discontinuous minimum and maxi-
mum filter mapping, the filtered spectra S,;;; and S,,.x are smoothed
with a normalized Gaussian kernel G(u = 0,0 = b). Then the local
minimum filtered spectrum Sy, ¢ is subtracted from the original
spectrum S and scaled by the local dynamic range, that is, the local
maximum filtered minus the local minimum filtered spectrum

Data set creation Preprocessing Labeling Training
250 k synthetic spectra Preprocessing of spectra Peak labeling Neural network training
(Section 2.1) (Section 2.2) (Section 2.3) (Section 2.4)

Model application

R
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Neural network run Deconvolution result
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Peak list
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Fig. 2. Workflow diagram of model training and model application to experimental data. The prediction step includes pre-processing, inference, post-processing, and fitting.
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Fig. 3. Dynamic scaling for pre-processing the original spectrum (top, black) with
three peaks (red). The procedure enhances the contrast by shifting the original
spectrum with the local minimum spectrum (top, blue, cf. line number 4 Algorithm
1) and and by scaling with the local contrast, i.e., its local maximum (top, orange, cf.
line number 5 Algorithm 1) minus its local minimum, making smaller peaks better
detectable (bottom, black, cf. line number 6 Algorithm 1).

Smax_g — Smin_g- In this way, the dynamic range of the spectrum S, is
transformed approximately into the range [0, 1], whereas minor
local changes in amplitudes are enhanced; see Fig. 3.

Algorithm 1. Dynamic Scaling

> iterate over set of kernel width
> apply minimum filter
> apply maximum filter
>smooth with Gaussian
>smooth with Gaussian
>shift and scale

1: for b € B do

2: Srin + Kmin,b(s)

3: Smax — Kmax_p(S)

4: Sming < Smin *G

5: S1'nax,g — Smax *G

6 Sout — (S - Smin_g)/
(Smaxg - sming)

7: end for

Another variable with values in a wide range is the width of the
peaks. On the one hand, there are peaks in 1D NMR spectra that
have a width in the sub-Hz regime. On the other hand, exchange-
ables can have a width on the order of dozens of Hz, leading to spa-
tial dependencies over dozens of Hz. Since we rely on the accuracy
of deep learning in terms of position, we cannot use frequency res-
olution downsampling in the DNN. Having filters in the neural net-
work that cover such a wide range adds more trainable parameters,
that is, network weights, and hence entails a higher computational
burden for training the network. Therefore, our method relies on
shifting the spectrum. Instead of one spectrum being used as input
to the network, several shifted versions of the same spectrum are
fed into the network. This pre-processing-based solution increases
the receptive field of the convolutional neural network (CNN)
[41,42] part of the network. The receptive field is the part of the
input spectrum to which a single output node is connected.
Increasing the receptive field enables detecting broad signals.
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2.3. Implicit regularization through labeling

Employing the peak parameters used to create the synthetic
spectra is not a sensible option. Due to the inconclusive ways in
which a spectrum can be reconstructed using different peak lists
(cf. Fig. 1), the labeling would be ambiguous and inconsistent,
making it difficult to train the neural network. Since synthetic
spectra are utilized for training, an automatic labeling procedure
is used for the data. Labeling the spectra in the case of machine
learning methods corresponds to explicit regularization in classical
fitting-based approaches. We use an automatic annotation for the
position and width of the peaks. However, the linear parameters of
the amplitude and combination between the Gaussian and Lorent-
zian lineshape are not learned but fitted afterwards. Therefore, we
rely on a custom labeling approach.

Our labeling of the position of the peaks distinguishes between
what should be detected and what not, or, in terms of performance,
what is feasible to detect given the uncertainty in the experimental
data. For this labeling technique, the width of lines of the original
spectrum is shrunk by a factor that depends on the SNR in the orig-
inal spectrum, cf. Fig. 4 (top and middle), and SI 5.4. The shrinking
factor has a trade-off, cf. SI 5.4 for an illustration of the effect of dif-
ferent shrinking factors. On the one hand, not shrinking the line-
widths leads to picking the local maxima as peak position labels,
which is oversimplified. On the other hand, maximal shrinking
results in restoring the original peak list, making the network
potentially oversensitive toward minor distortions in the line-
shapes. However, note that the recreation of the spectrum with
the shrunk lines for the labeling is done without noise for accuracy
reasons. The local maxima of the shrunk spectrum are then har-
nessed as labels for the original spectrum; see Fig. 4 (middle).
The peak position labeling can be viewed as a local maximum pick-
ing in an altered, i.e., shrunk with respect to linewidths, spectrum.
Similarly to the positions, we cannot use the widths from the syn-
thetic spectrum generation since overlapping peaks will result in
the same inconsistencies of the trained network. We also do not
want to use an expensive fitting algorithm on the full spectrum
to obtain reasonable estimates for the line widths. The present
approach reduces the problem to a system of equations with 2n
unknowns of amplitude and width and 2n equations at the n peak
positions. Using an iteration approach to solve the problem
reduces the equations even further to n block 2 x 2 systems that
can, in special cases, be solved analytically, cf. SI 5.5 for technical
details.

2.4. Translational-invariant convolutional and sequential deep
learning

We use deep learning to find peak positions and widths. More
precisely, we use one network for different but related tasks, also
known as multitask learning. The network output determines for
every point in the input spectrum whether the point represents a
peak position or not. There is one no-peak class called baseline
class and two peak classes. The peaks are divided into the two cat-
egories narrow peaks and broad peaks, i.e. exchangeables. At each
peak position, the network further regresses the width of the cor-
responding peak.

We use a CNN for the extraction of local features and a type of
recurrent neural network, a bidirectional long-short-term memory
(LSTM), [43,44] to relate local characteristics to each other, cf.
Fig. 5. 10 channels are fed into the network, that is, 2 dynamic scal-
ing channels (kernel width in points b € B = {128,2048}) and 8
shifting channels with a relative offset of 128 points, that is,
approximately 25 Hz. The CNN starts with an inception layer
[45] which is capable of extracting features of different bandwidths
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Fig. 4. Data Labeling Process: Synthetic Spectrum Creation (top panel): In the first
step, peaks (top, green) are sampled. Their profiles are given in dashed green lines,
while the position of the peaks is displayed in light red. All the lines together build
the original spectrum (black). Position labeling process on synthetic spectra (center
panel): The sampled peaks are shrunk relatively in width, by a SNR dependent
factor (here 0.4) for the displayed peaks (dark blue dashed), and summed to a line
shrunk spectrum (middle, light blue). In that line shrunk spectrum, the local
maxima (dark blue dots) yield the positions of the frequency labels (red bars).
Width labeling process (bottom panel): The original spectrum (black) is convolved
with a Lorentzian peak to an exponential line broadened spectrum (orange). The
two amplitudes (olive) of the original and the respective line broadened peak with
their maxima (red dots) and the difference between the latter maxima (red dotted
line) allow us to derive the width of the labeled peak through a system of equations.

simultaneously, cf. the detailed architecture and hyperparameter
settings in SI 5.6. The inception layer connects over time-
distributed dense layers to the bidirectional LSTM. The bidirec-
tional LSTM is responsible for relating the local features extracted
by the previous convolutional and dense layers and setting them
into a more global perspective. Thus, the network should be able
to relate and use information from peaks dozens of Hz apart, e.g.
from multiplets with high coupling constants. The output of the
LSTM connects over another sequence of time-distributed dense
layers to the 5 output channels. These 5 channels produce for each
point on the frequency axis three classes of baseline, narrow peaks,
and broad peaks, and their respective peak widths.

The whole network is designed in such a way that it is
translational-invariant [46]. This means that we are not restricted
to a particular spectral width, and the network is equivariant
towards the position of a peak in the input spectrum. Therefore,
the network applies the same mapping and thus gives the same
output for a specific region independent of the chemical shift of
the former region, e.g. whether the region is at 1 ppm or at
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Fig. 5. Data flow diagram for the neural network: This data flow diagram shows the
neural network architecture and its corresponding inputs and outputs. First, the
input spectrum (top panel) is pre-processed, leading to the multi-channel feature
encoding (green panel) of the input spectrum. The spectral features are then fed
into the translational-invariant neural network which yields three class outputs,
i.e., top three rows for baseline, narrow peak and broad peak categories
(black = true, white = false), and two regression outputs, i.e., bottom two rows for
narrow peak width and broad peak width (greyscale for width within class bounds).
The network output is post-processed and the parameters are fitted using the post-
processed neural network output as an initial guess. This results in a peak list
through which we can reconstruct the input spectrum (bottom panel).

5 ppm. A data set of 250’000 synthetic spectra with 8192 points
each was created and used for training. This allows the fitting of
broad features, such as broad peaks, into a training sample. Net-
work training is performed using the pre-processed spectrum as
input and our labeling as target. The width of the binary position
labels in discrete points is 3 for the narrow peak class and is pro-
portional to the width for the broad peak class. We use a binary
cross-entropy loss for the classification tasks (output channels 1-
3) and a mean squared error (MSE) loss for the regression (output
channels 4-5). Classification and regression losses are equally
weighted. Logarithmic scaling for the broad peak class is applied
to compactly represent the wide range of width values. All regres-
sion parameters are normalized to the same order of magnitude
and thus stabilize the training process numerically. Note that for
nonpeak positions, the regression loss is masked to avoid contam-
ination of the error. The purpose of deep learning is to obtain the
correct number of peaks, that is, the correct order of the model,
and a promising valley, i.e. proximity of a local minimum, for fur-
ther convex peak parameter fitting.

To apply a trained network to the experimental spectra, the
experimental spectra are phase and baseline corrected, line broad-
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ened and resampled, see Section 2.1. Afterward, the experimental
spectra are pre-processed with the dynamic scaling filter and the
shifting method in the same way as the training data, cf. Sec-
tion 2.2. These pre-processed versions of the spectrum are then
fed into the neural network. The output of the neural network is
post-processed with the help of the baseline class and non-
maximum suppression (NMS) [47] in order to obtain sparse peak
positions. The neural network predictions are then used for a sub-
sequent iterative classical fitting procedure, where the number of
peaks is fixed. The individual peak parameters are sequentially fit-
ted for each peak with a gradient-free optimization algorithm. The
quality of the predictions of the neural network is crucial as it
serves as an initial guess for the fitting.

3. Results and discussion

In this section, we demonstrate the deconvolution performance
of our method on synthetic and experimental spectra. Further-
more, we discuss the methodological advantages of our approach
compared to other techniques. The deconvolution result of the
same spectrum may vary from expert to expert, especially if they
cannot rely on additional structural information. Thus, we demon-
strate our results in awareness of a remaining ambiguity regarding
an optimal solution. The main application of our method is 1D
high-field 'H spectra. However, the algorithm is generally not
restricted to this use case, hence applications in other situations
may benefit from retraining or fine-tuning the network.

3.1. Statistical deconvolution results on synthetic data

The deconvolution performance statistics on synthetic data, cf.
details on synthetic testset supplementary information (SI) 5.2,

Table 1
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are presented in Table 1 and Fig. 6A. The statistics are divided into
three subcategories: Picking Accuracy Score M; € [0, 1], Overpick-
ing/Sparsity Score M, €[0,1] and Reconstruction Score
M; € [0,1]. These three criteria quantify what we consider to be a
good deconvolution result. Together, these three scores yield a
Total Score M, = M; - M, - M3 € [0,1] for each test region; cf. SI
5.8 for details on the metrics. The results on synthetic data are
excellent with high values in all three individual scores M;, M,
and Ms, and also in the total score M. Since the synthetic test
spectra possess minor phase and baseline distortions, line shape
distortions, that is, Voigt lines, and solvent peaks (cf. SI 5.2), we
conclude that we have achieved a certain robustness toward small
distortions. Furthermore, the over-picking score M, is worth high-
lighting, with a perfect score of M, =1 for all synthetic test
regions. This means that the network never predicts more peaks
than peaks that were annotated, and hence yields a sparse peak
list. Distortions and crowded regions, such as in the synthetic test-
set, generally make deconvolution more arduous and can lead to
performance degradation; cf. SI 5.10, 5.11, and 5.12. However,
overall, we observe high scores in all categories despite distortions
and overlapping signals.

3.2. Statistical deconvolution results on experimental data

The deconvolution performance statistics on experimental data,
cf. for details of the experimental test set in SI 5.3, are presented in
Table 2 and Fig. 6B. The median of the overall score M, on the
experimental data is only 8% lower than on the synthetic data
and therefore high at 82%. Due to the distribution shift between
the synthetic and experimental data, a minor performance degra-
dation on the experimental data is expected. However, in the peak
picking M; and reconstruction score M3, the median value on

Statistical key figures for the deconvolution results on synthetic data with respect to the metrics.

Metrics Deconvolution on Synthetic Data
Lower Quartile Q, Median [t Upper Quartile Q3 Score > 0.9
Picking Accuracy Score M; 0.82 0.92 1.00 54.8%
Overpicking/Sparsity Score M, 1.00 1.00 1.00 100%
Reconstruction Score M3 0.96 0.98 0.99 95.4%
Total Score Mo 0.80 0.90 0.98 49.5%
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Fig. 6. (A) Deconvolution scores on 1000 synthetic regions: The deconvolution performance statistics on synthetic test regions are represented in the first 4-panel column. (B)
Deconvolution scores on 53 experimental regions: In the second column of 4 panels, the performance statistics on experimental test regions are displayed.
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Table 2
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Statistical key figures for the deconvolution results on experimental data with respect to the metrics.

Metrics Deconvolution on Experimental Data
Lower Quartile Q; Median [t Upper Quartile Q3 Score > 0.9
Picking Accuracy Score M; 1.00 1.00 1.00 84.9%
Overpicking/Sparsity Score M, 0.50 0.88 1.00 49.1%
Reconstruction Score M3 0.96 0.97 0.98 90.6%
Total Score M, 0.49 0.82 0.96 41.5%

experimental regions is even better than on synthetic data. This
can be explained by the higher crowdedness and more substantial
distortions, i.e., deconvolution difficulty, of the synthetic spectra.
Sparser and less distorted synthetic data sets lead to superior
results for M; and M3 compared to the deconvolution of the exper-
imental test set, cf. SI 5.12. On the other hand, the median of the
sparsity score M, on experimental data is lower than on synthetic
data, cf. Tables 1 and 2. A factor for this discrepancy is the smaller
peaks, e.g. satellites, that were ignored by the experts but not by
the algorithm (cf. SI 5.9 for how to discard low SNR peaks). We con-
clude that the network trained on synthetic data can be well trans-
ferred to experimental data, since the differences in the scores are
minor and well-explainable.

3.3. Ambiguity and limitations of deconvolution: A comparison with
experts

Crowded regions are challenging to deconvolve, since peaks are
easier to distinguish if they do not overlap. Therefore, the stronger
aregion is crowded, the more diverse are the expert deconvolution
results. For three high-field 'H regions with different amounts of
overlapping peaks, we compare the results of our method, cf.
Fig. 7 and cf. Table 3, with the manual results of 10 experts, cf.
Table 3. The experts have tried to detect the lines and adjusted
the peak parameters (frequency, amplitude, width, and line shape)
to minimize the residual upon visual inspection. Note that these
experts did not have additional structural information. In terms

of the number of picked peaks, we gave the minimum, maximum,
and median numbers of the expert group. For the simplest region
A, the experts agree on the number of peaks, whereas for the most
challenging region C the expert annotations vary between 14 and
24 peaks. The result of our method in terms of the number of peaks
matches the median of the experts for two of three regions. In
terms of residual, we calculated the average and standard devia-
tion (Std) of the expert group’s MAE. The largest MAE and Std of
the MAE are observed for region C. The results of the expert decon-
volutions exhibit significant discrepancies for crowded regions
regarding peaks picked and reconstruction error.

The results of our method for these three regions lie within the
expert group’s range in picked peaks and yield a lower residual
than most experts, cf. Table 3. The mean absolute error MAE of
our method lies at least one Std lower than the average of the
experts for all three regions. Thus, we observe good transferability
to sparse and crowded regions in experimental data by the exam-
ple of three different regions and thus, can cover a wide range of
deconvolution problems. Note that the result of our method in
the most crowded region, cf. Fig. 7 C, is especially interesting, since
there might be significantly fewer local maxima than lines that
generate the region. The peak list of this crowded region is sparse,
but the solution is not oversimplified, e.g., two doublets between
0.33 — 0.35 ppm are found, despite observing only two local max-
ima. Altogether, these results suggest that our method can keep up
with and, in terms of MAE, even substantially outperform the man-
ual deconvolution results of experts.
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Fig. 7. This three deconvolution results display the performance of the method from sparse (A) to strongly crowded (C) regions of experimental 'H high-field spectra. The
black line indicates the input spectrum to the algorithm. The red dots indicate the predicted peak positions (frequencies) and amplitudes, whereas the corresponding lines are
displayed in grey. The dashed red line depicts the reconstructed spectrum and the green line the residual error, i.e., the difference between the input and reconstructed

spectrum.

Table 3

We compared the deconvolution results of our method with the expert results of three regions, A, B, and C, in Fig. 7.

Regions Experts Our Approach
Min # Peaks Max # Peaks Median # Peaks Average MAE Std MAE # Peaks MAE

A 7 7 7 0.0067 0.0028 7 0.0034
B 16 18 18 0.0067 0.0036 16 0.0029
C 14 24 17 0.0141 0.0116 17 0.0025
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Fig. 8. Deconvolution results of four experimental regions: (A) Narrow peaks on broad peaks: This deconvolution results from an experimental spectrum with a region where
broad lines, i.e., exchangeables, overlap with narrow peaks. (B) High dynamic range region: This deconvolution result of an experimental 'H spectrum region illustrates how
the algorithm copes with a high-dynamic range. A triplet (left) and one of its satellites (zoom, right) are shown. (C) Low SNR '3C region: The SNR 10 peak at 39.35 ppm is
reconstructed accurately. (D) Benchtop region: We get a sparse and accurate deconvolution despite low resolution and shoulder peaks in a spectrum acquired on a low-field

benchtop NMR system.

3.4. Detailed example regions

In this section, applications of our method are illustrated by
four different regions, cf. Fig. 8. In the example of the first region
with broad and narrow peaks that overlap, we observe excellent
results of our method in terms of low residual and sparsity of the
peak list, cf. high-field 'H region in Fig. 8A. By separating the pre-
diction of broad peaks from the prediction of narrow peaks in the
neural network, the algorithm can disentangle overlapping lines of
broad and narrow peaks that are orders of magnitude apart in
terms of their width.

Features orders of magnitude apart pose challenges to neural
networks since different scales of inputs cause different parameter
updates and optimizer steps towards the minimum of the loss
function. Our method enables good deconvolution results for
spectra of a very high dynamic range. Hence, the algorithm does
not miss low SNR peaks. The second showcase region illustrates
this ability, see high-field 'H region Fig. 8B. Although the magni-
tudes of the peaks are orders apart, the reconstruction is nearly
perfect and the residual small, also compared to the peak
intensities.

The third example shows a *C spectrum region. *C nuclei have
a lower natural abundance than 'H nuclei, usually resulting in
lower sensitivity. Although our method focuses on 'H high-field
spectra, we can detect and accurately fit low SNR peaks of 3C spec-
tra, cf. 13C region in Fig. 8C.

The last showcase displays a spectrum acquired on a low-field
(80 MHz) Benchtop NMR system, cf. 'H Benchtop region in
Fig. 8D. Benchtop spectra are challenging for deconvolution due
to their intrinsic lower resolution, i.e., the large ratio of line widths
to coupling constants, which often leads to overlapping peaks.

Furthermore, the ratio of the coupling constant to the difference
in frequency is much smaller in Benchtop spectra resulting in
highly asymmetric peaks through strong coupling.

3.5. Discussion on training with synthetic vs. experimental data

1D NMR data can have strongly divergent properties: Single
peaks can have various shapes, widths, and SNRs. Furthermore,
spectral regions can be sparse or crowded, and they can have a
low or a high dynamic range. This often leads to an underrepresen-
tation of specific spectral characteristics in experimental NMR data
sets. Hence, we think that relying on synthetic data, and therefore
being able to shape the data distribution, is a significant advantage.
Using experimental data sets, one must necessarily deal with
imbalanced data, which makes it difficult to solve rare but impor-
tant region types [17,48].

Spectra annotated by experts suffer from label noise. Label
noise refers to variations in quality and the lack of consistency in
the expert annotation of experimental spectra, cf. Section 3.3.
Hence, label noise can hamper the training convergence, since
the algorithm does not have a unique reference what it should
learn, e.g. two identical regions are labeled differently. This prob-
lem becomes especially obvious in regions with strongly overlap-
ping peaks, resulting in a respective performance drop.

Compared to other synthetic data-based machine learning
methods for peak picking and deconvolution in NMR, which ran-
domly sampled single peaks [31], we model signals through multi-
plet structures. This bears the benefit that peak parameters are
shared within the same multiplet, e.g., width, coupling constants,
and intensity ratios, and can be learned and exploited by the deep
learning model.
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3.6. Discussion on extracting HDR and broad features

Our pre-processing, namely the dynamic scaling and shifting
approach, essentially supports the neural network to get the data
needed to detect peaks in these challenging situations, see. SI
5.13 for a quantitative analysis on the benefits of the dynamic scal-
ing. Due to the augmented wide field of view and the bidirectional
LSTM, the network can capture more far-reaching dependencies,
which are needed e.g., to determine the width of broad peaks or
to extract shared information in multiplets with high coupling con-
stants. However, other deep learning algorithms for peak picking
or deconvolution in NMR rely solely on local CNN-based feature
extraction and a single peak class [31,49]. A narrow field of view
combined with a single peak class cannot handle broad features
and the overlap of broad and narrow peaks, for example, see
Fig. 8A.

3.7. Discussion on pattern recognition for Ill-posed deconvolution
problem

Classical fitting-based 1D deconvolution approaches already
exist and are frequently used; cf. Chapter 1. It is shown that it is
unnecessary to solve linear parts of the optimization problem, for
instance, for the amplitude and Lorentzian-to-Gaussian fraction
parameter of the pseudo-Voigt lines, with deep learning. These
cases can be solved with less computational cost and more accu-
rately with convex solvers [50]. However, particularly difficult
parts of the deconvolution problem greatly benefit from deep
learning. Therefore, our approach relies on deep learning for criti-
cal components of the inverse problem of deconvolution, namely
the integer optimization problem of finding the number of peaks
and the non-convex program for determining their corresponding
position and width. The reasons for this superiority of deep learn-
ing approaches for these tasks are manifold. On the one hand, to
get the proper model order with classical optimization algorithms,
one has to trade off the fitting error and the number of peaks
explicitly. This often does not work robustly in complex scenarios
[3]. On the other hand, circumventing an explicit regularization
criterion with labeling, and thus reducing it to a pattern recogni-
tion problem, has several advantages. Through labeling, one can
essentially teach the network what a peak is and what not. In par-
ticular, one can make use of regular patterns in NMR. The deconvo-
lution solution becomes tunable by adapting the line shrinking
parameter in the labeling; cf. SI 5.4. In contrast, in classical
fitting-based deconvolution methods, this would often mean opti-
mizing explicit regularization parameters whose implications on
the deconvolution result are difficult to assess. For example, we
compare a classical with a deep learning-based deconvolution
algorithm, cf. Fig. 9. The classical algorithm is oriented on
Mestre-GSD [15], but not an exact implementation of it. The deep
learning algorithm is our approach. We manually tuned the param-
eters of the classical algorithm to yield good results in two specific
regions. However, this also demonstrates a downside of many clas-
sical algorithms, i.e., the need for region- or spectrum-specific tun-
ing of parameters. Furthermore, we observed superior results of
our approach, especially on shoulder and broad peaks, which is
demonstrated in Fig. 9. In the upper panel of Fig. 9, a rather
crowded region is shown. Our method finds shoulder peaks more
reliably, e.g., zoom at 5.12 ppm and 4.89 ppm, and does not
over-pick in contrast to the classical picker, e.g., zoom at around
5.05 ppm for a false picked peak. In the second panel of Fig. 9, a
broad peak is exhibited. We observe that the classical algorithm
has problems with the broad peak and picks several peaks close
to the maximum of the broad peak. In contrast our method yields
a sparse single peak solution for this region. Additionally, having a
reasonable estimate of the nonlinear parameters and model order
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Fig. 9. Comparison between a classical and our deep learning-based deconvolution
algorithm. The spectra in the two displayed regions (top panel and bottom panel)
are drawn in black, whereas the picked peaks are indicated with arrows pointing
down in green for our approach and arrows pointing up in red for the compared
classical algorithm.

through the prediction of the neural network reduces the rest of
the optimization problem often to a locally convex fine-tuning,
which can be solved efficiently. The deconvolution of a reasonably
crowded spectrum, i.e. more than 500 peaks, is completed in a few
seconds.

For efficient training and good deconvolution performance, con-
sistent labeling is essential. In contrast to labeling methods based
on line refitting of peaks, cf. Li et al. [31], our labeling approach
is fast and, therefore, can be computed on the fly. Compared to
labeling based on local maxima, the present methods can detect
multiple peaks even if there is just a single local maximum within
the region.

4. Conclusion

We introduce a robust, expert-level quality deep learning-based
deconvolution algorithm for 1D experimental NMR spectra. Our
custom network, labeling, and pre-processing enable excellent per-
formance in challenging scenarios such as crowded, high dynamic
range and shoulder peak regions, as well as in cases of overlap of
narrow with broad peaks. On experimental high-field 'H spectra,
our algorithm yields low residual errors between the reconstructed
spectrum and the original spectrum and sparse peak lists. The
number of peaks proposed by our algorithm and the residual error
lie within the uncertainty range of expert annotations. Further-
more, the algorithm copes well with Gaussian line-shape distor-
tions, i.e. Voigt lines, and small baseline and phase distortions,
reflected by good test results with respect to the number of peaks
picked and residual on distorted synthetic spectra. Thus, the pre-
sented algorithm is at least comparable, if not superior, to human
experts and robust toward small distortions. Although developed
for high-field proton spectroscopy, we find that our method can
process different nuclei, base frequencies, resolutions, and sensitiv-
ities. Altogether, by proving its usefulness in challenging situa-
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tions, our approach is an attractive 1D NMR deconvolution
algorithm.

Further testing robustness against substantial distortions, quan-
tifying the uncertainty of predictions, and interpreting the neural
network model could be interesting future research directions.
Moreover, we are planning to extend our research towards the
extraction of multiplet information, which assists structure eluci-
dation and verification.
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