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A B S T R A C T   

Amyl salicylate (AS) is a fragrance massively used as a personal care product and following the discharged in 
wastewaters may end up in the aquatic environment representing a potential threat for the ecosystem and living 
organisms. AS was recently detected in water of the Venice Lagoon, a vulnerable area continuously subjected to 
the income of anthropogenic chemicals. The lagoon is a relevant area for mollusc farming, including the Med-
iterranean mussels (Mytilus galloprovincialis) having an important economic and ecological role. Despite high 
levels of AS occurred in water of the Lagoon of Venice, no studies investigated the possible consequences of AS 
exposures on species inhabiting this ecosystem to date. For the first time, we applied a multidisciplinary 
approach to investigate the potential effects of the fragrance AS on Mediterranean mussels. To reach such a goal, 
bioaccumulation, cellular, biochemical, and molecular analyses (RNA-seq and microbiota characterization) were 
measured in mussels treated for 7 and 14 days with different AS Venice lagoon environmental levels (0.1 and 0.5 
μg L− 1). Despite chemical investigations suggested low AS bioaccumulation capability, cellular and molecular 
analyses highlighted the disruption of several key cellular processes after the prolonged exposures to the high AS 
concentration. Among them, potential immunotoxicity and changes in transcriptional regulation of pathways 
involved in energy metabolism, stress response, apoptosis and cell death regulations have been observed. 
Conversely, exposure to the low AS concentration demonstrated weak transcriptional changes and transient 
increased representation of opportunistic pathogens, as Arcobacter genus and Vibrio aestuarianus. Summarizing, 
this study provides the first overview on the effects of AS on one of the most widely farmed mollusk species.   

1. Introduction 

The Mediterranean mussel (Mytilus galloprovincialis) is an ecological 
and economic important edible bivalve species widely distributed in the 
Mediterranean Sea and in lagoon waters, in natural beds and farming 
areas. Among European countries, Italy represents one of the main 
leader countries in mussel production, second only to Spain (64,000 
tonnes/year) (European Market Observatory for Fisheries and Aqua-
culture Products, 2019), with the Lagoon of Venice representing one of 
the most important farming areas. This productive area is widely 

affected by both urban and industrial pollution mainly due to the do-
mestic sewage from Venice, the agricultural drainage from inland and 
the activities performed in Porto Marghera industrial area. Accordingly, 
the Venice lagoon is under constant surveillance to identify and char-
acterize environmental criticalities representing potential threats to the 
ecosystem and human health. Among the most important ongoing 
research activities, the characterization of emerging contaminants in the 
water column and sediments led to the detection of high concentrations 
of fragrances including salicylates (Vecchiato et al., 2016). 

Fragrances are “chemical mixtures obtained by natural aromatic raw 
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and/or synthetic materials that smell of characteristic odor” as defined 
by the International Fragrance Association (IFRA). They are ingredients 
in several daily life Personal Care Products (PCPs), as perfumes, cos-
metics and toiletries (Bauer et al., 1997). Fragrances, and PCPs more in 
general, are widely produced all over the world (Liu and Wong, 2013) 
and following their extensive application, they (and their metabolic 
conjugates) are discharged in wastewaters (Patel et al., 2009). Going 
through sewage treatment plants (STPs) they may end up into seawater 
(Díaz-Cruz et al., 2009), assuming the role of potential threat for aquatic 
species mainly due to their persistence and/or their incessant inputs 
(Casatta et al., 2015; Chase et al., 2012). While this class of pollutants is 
not currently included in EU routine monitoring programs (Patel et al., 
2009), the scientific community has classified fragrances as Contami-
nants of Emerging Concern (CECs) (Tang et al., 2017), implying the need 
of further studies to fill the critical ecotoxicological knowledge gap on 
their potential environmental impacts (Chase et al., 2012). Among 
others, recent studies highlighted disfunction in larval development in 
the copepod Acartia tonsa by Salycilates (Picone et al., 2021) and effects 
in larval development of M. galloprovincialis and Paracentrus lividus 
following exposure to Galoxolide and Tonalide (Ehiguese et al., 2021). 
In earthworms, the same chemicals led to physiological responses and 
transcriptional changes in antioxidant genes (Chen et al., 2011), 
whereas it caused oxidative and genetic damage in the freshwater 
mussel Dreissena polymorpha (Parolini et al., 2015). In addition, effects of 
musks in reproduction and early life-stage survival in zebrafish (Carls-
son et al., 2000; Carlsson and Norrgren, 2004) and in the freshwater 
mussel Lampsilis cardium (Gooding et al., 2006) were also observed. 
However, studies on the marine ecotoxicity are still scarce, underlining 
thus the lack of an effective assessment of the risk of these substances 
(Ehiguese et al., 2020). 

Amyl salicylate (AS), (C12H16O3, IUPAC name: pentyl 2-hydroxyben-
zoate) (CAS No, 2050-08-0) is a chemical compound belonging to the 
salicylate family that is largely used in perfumery and in other personal 
care products because of its organoleptic properties and the low cost 
(under $5/kg) (Gaudin, 2014). Its global use has increased over the last 
two decades, amounting around 100–1000 metric tons per annum 
(Belsito et al., 2007; Lapczynski et al., 2007). Because of the extensive 
usage, the fate of this compound might reflect the fate of other fra-
grances and PCPs. Vecchiato and colleagues described AS as one of the 
most widespread fragrances, from the open sea areas of the Mediterra-
nean offshore waters (detected concentrations between 0.007 and 0.06 
μg L− 1) to the innermost canals of Venice where it reaches levels up to 6 
μg L− 1 (Vecchiato et al., 2016, 2018) and the Antarctic Sea (Vecchiato 
et al., 2017). Moreover, an ice core from Elbrus, Caucasus, showed that 
during the 20th century the industrial production let to a 20-fold in-
crease of its deposition fluxes (Vecchiato et al., 2020). Despite AS has 
been recently classified as very toxic to aquatic life by ECHA in REACH 
registrations (ECHA, 2020), few studies have explored the potential 
accumulation and effects of this compound for aquatic fauna to date 
(Picone et al., 2021; Fabrello et al., 2021). 

In the present study, we investigated the effects of AS on the Medi-
terranean mussel Mytilus galloprovincialis following exposure of bivalves 
to two concentrations of AS commonly found in seawater of the Lagoon 
of Venice. A multidisciplinary approach based on chemical (bio-
accumulation), cellular, biochemical, and molecular analyses (micro-
biota and transcriptional profiling) was adopted to assess the effects of 
this compound on one of the most widely farmed mollusk species. 

2. Material and methods 

2.1. Experimental design 

Previous research programs performed in 2019–2020 identified AS 
(CAS no.: 2050-08-0) as one of the most represented fragrance in-
gredients in the water column of the Venice lagoon. In our study, a total 
of 270 adults of M. galloprovincialis (average length 53.8 ± 5.1 mm) were 

sampled in June, during the resting phase of mussels (Da Ros et al., 
1985) from a clean farming area located in the south of the Venice 
Lagoon (median AS concentrations = 0.0075 μg L− 1; unpublished data). 
Mussels were left to acclimate with aerated seawater (salinity of 35 ± 1, 
temperature of 18 ± 0.5 ◦C) for one week and fed with Isochrysis galbana. 
Then, mussels were divided in 6 glass aquaria (30 L, 30 animals in each 
tank) and exposed to 0 μg L− 1 (control group; CTRL; 2 tanks), 0.10 μg 
L− 1 Amyl salicylate (low concentration; AS_L; 2 tanks) and 0.50 μg L− 1 

Amyl salicylate (high concentration; AS_H; 2 tanks) and sampled after 7 
and 14 days. AS was purchased from Sigma-Aldrich (Milano, Italy; code 
44,041, purity ≥98%). The levels chosen for the exposure experiments 
correspond to median concentrations detected in most impacted Venice 
lagoon areas (unpublished data). Natural seawater transported to the 
laboratory for the experimental manipulation was renewed every two 
days during the experiment. 

2.2. Chemical analysis 

AS concentrations were measured in AS_L and AS_H water 15 min 
and 24 h after AS addition. n-hexane, dichloromethane, and ultrapure 
water (10 mL each) were employed to condition the Oasis HLB car-
tridges 6 cc (200 mg), Waters, Milford, MA, (USA), using then phen-
anthrene 13C as internal standard and then utilized to extract water 
samples (0.05 L). The elution of samples was performed using toluene (1 
mL), followed by dichloromethane (15 mL) and n-hexane (10 mL). 
Na2SO4 was used for eluates drying that were then concentrated to 100 
μL under a gentle nitrogen flow at 23 ◦C (Turbovap II®, Caliper Life 
Science, Hopkinton, MA, USA). 

Bioaccumulation of AS was also determined in pools of mussels (each 
composed by 5 individuals) from each experimental group at day 7 and 
14 of exposure. The pools of the total mussel tissues were homogenized 
using Ultra-Turrax (IKA) extracted by means of a QuEChERS method. 
About 3.7 g of wet sample were weighted into a centrifuge tube and 
spiked using phenanthrene 13C, together with 7 mL of UPW and 10 mL of 
acetonitrile. After 1 min of vortex, magnesium sulfate (6 g), sodium 
chloride (1.5 g), sodium citrate dibasic sesquihydrate (0.75 g) and so-
dium citrate tribasic dihydrate (1.5 g) were added for phase-separation 
adjustment. Following the vortex performed for 1 min, samples were 
centrifuged for 5 min at 3000 RPM. Supernatants were transferred to 
another centrifuge tube contaning 825 mg of Supelclean™ PSA (Pri-
mary-Secondary Amine), 2.5 g of magnesium sulfate, 1 g of Na2SO4 and 
825 mg of Discovery® DSC-18, vortexed for 1 min and centrifuged for 5 
min at 3000 RPM. Samples were concentrated to 100 μL, with solvent 
exchange with dichloromethane. Instrumental analyses were performed 
by GC-MS/MS (Trace 1310 - TSQ 9000 Thermo Fisher) as described in 
Picone et al., (2021). Procedural blanks resulted at 0.31 ± 0.07 ng L− 1 

(Method Detection Limit, MDL = 0.21 ng L− 1) for water and 0.18 ± 0.06 
ng g− 1 (MDL = 0.19 ng g− 1) for biota. Trueness and Relative Standard 
Deviation of the methods were respectively − 9 ± 3% for water and − 7 
± 9% for biota analyses. 

Furthermore, the Bioaccumulation Factors of AS was calculated to 
evaluate the uptake in mussels’ body as the ratio of tissue and water 
concentrations (BAF = μg kg− 1

wet weight/μg L− 1
water) following Streets et al., 

(2006). 

2.3. Haemocyte, gill and digestive gland biomarkers 

Haemolymph (500 μL per animal at least) was sampled from the 
anterior adductor muscle by means of a 1 mL-plastic syringe and kept in 
Eppendorf tubes at 4 ◦C. For each experimental groups, 5 pools of 
haemolymph from 4 mussels each were prepared. An aliquot of freshly 
collected haemolymph was used for measurement of total haemocyte 
count (THC), haemocyte diameter and volume, lactate dehydrogenase 
(LDH) activity and haemocyte proliferation (see below for detailed 
methods). In this regards, pellets (=haemocytes) from centrifuged hae-
molymph samples (780×g for 10 min) were added with an equal volume 
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of distilled water, vortexed for 30 s and centrifuged at 780×g for 10 min 
at room temperature to obtain haemocyte lysate (HL) samples, whereas 
supernatants (=cell-free haemolymph, CFH) were collected. Both HL 
and CFH samples were frozen and stored at − 80 ◦C. 

After haemolymph collection, 5 pools of gills and digestive gland 
from 4 mussels were prepared per each experimental condition and 
divided in aliquots, which were frozen in liquid nitrogen and stored at 
− 80 ◦C until analyses. 

THC, expressed as the number of haemocytes (107)/mL of haemo-
lymph, as well as haemocyte diameter (μm) and volume (picolitres, pL), 
were determined using a Scepter™ 2.0 Automated Cell Counter (Milli-
pore, FL, USA). The Cell proliferation Kit II (Roche) was used to measure 
haemocyte proliferation: 200 μL of the mixture available in the kit was 
added to 400 μL of haemolymph and incubated for 4 h in a dark hu-
midified chamber. Absorbance values were determined at 450 nm 
(Beckman 730 spectrophotometer) and results were normalised to THC 
values of each experimental groups and expressed as optical density 
(OD450). 

The Cytotoxicity Detection Kit (Roche) was used to measure CFH 
lactate dehydrogenase activity (LDH) and the results were expressed as 
optical density (OD) at 490 nm. 

Lysozyme activity was determined mixing 50 μL of HL with 950 μL of 
a suspension of Micrococcus lysodeikticus (0.15% in 66 mM phosphate 
buffer, pH 6.2). Reduction in absorbance was monitored at 450 nm for 3 
min at room temperature, and the results were expressed as μg lyso-
zyme/mg of protein. The method of Bradford (1976) was used to mea-
sure total protein concentrations in HL samples. 

Gills and digestive gland samples were homogenized at 4 ◦C with a 
TissuLyser LT (QIAGEN) in 4 vol of Tris-HCl buffer 10 mM, pH 7.5, 
containing 0.15 M, 0.5 M and mM of KCl, sucrose, EDTA respectively 
and protease inhibitor cocktail (Merck). Tissue samples were centri-
fuged at 12,000 g for 30 min at 4 ◦C and supernatants (SN) were 
collected for analyses. 

Total superoxide dismutase (SOD) activity was measured in both 
gills and digestive gland in triplicate using the xanthine oxidase/cyto-
chrome c mixture (Crapo et al., 1978). Results are expressed as U/mg 
protein, one unit of SOD being defined as the amount of SN causing 50% 
inhibition of cytochrome reduction. Catalase (CAT) activity (U/mg 
protein, one unit of CAT being defined as the amount of enzyme that 
causes the dismutation of 1 μmol of H2O2/min) was measured at 240 nm 
in tissue SN samples in triplicate according to Aebi (1984). Glutathione 
reductase (GR) activity (U/mg protein) was measured following the 
method of Smith et al. (1988), by measuring the (5-thio (2-nitrobenzoic 
acid)) TNB production at 412 nm. Glutathione S-transferase (GST) ac-
tivity (nmol/min/mg protein) in the supernatant of digestive gland was 
evaluated using the procedure described in Habig et al. (1974) with 
1-chloro-2,4-dinitrobenzene (CDNB) and reduced glutathione (GSH) as 
substrates. Acetylcholinesterase and butyrylcholinesterase (AChE and 
BChE, respectively) activities were evaluated in gill SN according to the 
procedure of Ellman et al. (1961), using acetylthiocholine or butyr-
ylthiocholine and dithiobisnitrobenzoate as reagents. The results were 
expressed as nmol/min/mg of protein. 

In all assays, total protein concentration of tissue homogenates was 
measured using the method of Bradford (1976). 

2.4. Statistical analysis 

As for biomarker results, the normal distribution of data and the 
homogeneity of the variances were evaluated by the Shapiro-Wilk’s test 
and the Bartlett’s test, respectively. The effects of the factors “treat-
ment”, “time” and “treatment-time interaction” were assessed by means 
of a two-way ANOVA (with treatment and time as predictors), whereas 
pairwise comparisons were performed by Tukey’s HSD post-hoc test. All 
results are expressed as means ± standard error (n = 5). 

2.5. Gene expression profiling 

RNA was extracted from aliquots of digestive gland from 4 in-
dividuals of mussels pooled together, for a total of 5 pools for each 
experimental group using RNeasy Mini Kit (Qiagen). Further DNAse 
(Qiagen) treatment was performed. Qubit Fluorometer (Invitrogen) and 
Bioanalyzer 2100 (Agilent Technologies) were then used to verify the 
RNA concentration and integrity. Extracted RNA from each pool was 
then used for both microbiota (16S; described below) and gene 
expression (RNA-Seq) analyses. 

For gene expression analyses, libraries were constructed using 3′

QuantSeq kit (Lexogen) and then sequenced (75 bp SE) on NextSeq 500 
Illumina (CRIBI; University of Padova) (BioProject PRJNA793756). 
Bioinformatics analyses performed the quality of the Illumina raw reads 
by means the FastQC (v0.11.6) tool (http://www.bioinformatics.ba 
braham.ac.uk/projects/fastqc/). Regions discovered being of low qual-
ity and adapters were then subjected to the trimming using Trimmo-
matic (v0.365) (Bolger et al., 2014). The mapping of RNA-seq reads was 
performed using the M. galloprovincialis genome (GeneBank acc. 
GCA_900618805.1) by means of Rsubread v 2.4.2 software (Liao et al., 
2019) using default parameters. Read counts, carried out at gene level, 
were sorted by featureCounts function in Rsubread. Homology relation-
ship between M. galloprovincialis and Crassostrea gigas was reconstructed 
with the software OrthoFinder (Emms and Kelly, 2015) that employs the 
BLAST tool (Altschul et al., 1990) and the MCL algorithm of clusteri-
zation (Enright, 2002) to define the orthology groups (OGs). To reach 
such a goal, the protein dataset referred to C. gigas was downloaded from 
Ensembl public database (Ensembl GCA_000297895.1). For each sam-
ple, R v.3.5.3 was used to calculate the sum of raw read counts of all 
genes belonging to the same OG. OGs with a miscount <3 in more than 
the 50% of samples of each group were not included in the following 
analyses. The normalization of remaining OGs (n = 16.358) was per-
formed with RUVs (“k” = 7) within the package RUVSeq/v1.18 (Risso 
et al., 2014). EdgeR (Robinson et al., 2010) was then employed for the 
identification of differentially expressed genes (DEGs; FDR ≤0.05). Gene 
expression was studied through the Principal Component Analysis (PCA) 
and pairwise comparisons between the CTRL and treated groups (AS_L, 
AS_H) after both 7 and 14 days of exposure. Furthermore, as follow, in 
order to study coordinated alterations in the expression of all genes 
obtained from the pairwise comparison, the Gene Set Enrichment 
Analysis (GSEA) was performed using the clusterProfiler/v3.12.0 R 
package (Yu et al., 2012) by means the custom gene sets included in htt 
ps://www.gsea-msigdb.org/gsea/index.jsp (Subramanian et al., 2005). 
KEGG pathways and biological processes significantly disrupted 
following chemical exposures in our previous studies were considered 
(e.g., Milan et al., 2013; Milan et al. 2015; Milan et al. 2016; Milan et al. 
2018; Iori et al., 2020) and FDR <0.25 was set as threshold for gene sets 
significance. The full list of investigated GO_BP and KP is reported in 
Supplementary Table 3 and the reference list of pathways in Supple-
mentary File 3. 

2.6. Microbiota characterization 

Retro-transcription of extracted RNA from pools of digestive gland 
was carried out using the Superscript IV kit (Invitrogen). Specific reverse 
and forward primers (V3–V4 gene region of 16 S rRNA) were used for 
the preparation of libraries, as well as the sequencing of 16S by BMR 
Genomics (Padua, Italy) as described in Milan et al. (2018) obtaining a 
total of 4,582,624 reads (BioProject PRJNA793756). The open-source 
bioinformatics pipeline QIIME2 (Bolyen et al., 2019) was used to 
perform microbiome analysis from raw sequencing data. The trimming, 
filtering and merging were conducted with cutadapt and DADA2. Fea-
tures alignment was carried out with MAFFT (Katoh and Standley, 
2013). The output of sequences merging resulted in a total of 1,519,962 
reads. Python library scikit-learn and a pre-trained SILVA-database 
(Yilmaz et al., 2014) were employed for the classification of merged 
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reads and for taxa assignment. The outputs, including the feature table 
and taxonomy, were used to perform the Principal Coordinates Analysis 
(PCoA) and the pairwise comparison analyses between the CTRL and the 
treated groups (AS_L, AS_H) carried out by means the one-way ANOVA 
at species and genus levels (p-adj<0.05) by CALYPSO online software 
(v.8.84). In addition, species richness and equitability were determined 
by Evenness and Simpson’s index. 

3. Results 

3.1. Chemical analyses 

Results of chemical analyses are reported in Supplementary File 1. 
During lab exposure, AS concentrations detected in AS_L and AS_H tanks 
after 15 min from AS application were 49–85 10− 3 μg L− 1 and 276–565 
10− 3 μg L− 1, respectively. However, 24 h after AS addiction, concen-
trations dropped to levels comparable to control tanks (Supplementary 
file 1). Concerning bioaccumulation, AS concentrations in CTRL mussels 
ranged between 2.2 μg kg− 1 and 2.3 μg kg− 1, indicating previous ex-
posures to AS in Venice lagoon. Mussels exposed to 0.1 μg L− 1, showed 
AS concentrations of 2.9 μg kg− 1 and 3.2 μg kg− 1 at day 7 and 14, 
respectively. As expected, the highest bioaccumulation was detected in 
individuals exposed to 0.5 μg L− 1, resulting in 6.9 μg kg− 1 at day 7 and 
5.9 μg kg− 1 at the last sampling time. The BAF values obtained were 29 
(day 7) and 32 (day 14) in AS_L exposed mussels, while following AS_H 
exposures BAF were 14 and 12 at day 7 and day 14, respectively. 

3.2. Haemocyte, gill and digestive gland biomarkers 

Two-way ANOVA analysis revealed a significant (F2,24 = 704.77; p <
0.001) effect of treatment and treatment-time interaction (F2,24 = 22.60; 
p < 0.001) on THC values of mussels, with a significant (p < 0.001) 

decrease in THC after 7 days of exposure to AS_H (Fig. 1A). Exposure of 
mussels to AS significantly affected the volume (F2,24 = 4.46; p < 0.05) 
and diameter (F2,24 = 6.33; p < 0.01) of haemocytes (p < 0.05), with a 
significant (p < 0.01) increase after 7 days in AS_H-exposed mussels 
(Fig. 1B and C). 

Exposure time (F1,24 = 7.05; p < 0.05), treatment (F2,24 = 13.26; p <
0.001) and the interaction between time and treatment (F2,24 = 10.15; p 
< 0.001) significantly influenced haemocyte proliferation. In details, 
pairwise comparisons highlighted a significant increase in cell prolif-
eration in mussels treated for 7 days with AS_H (p < 0.001; Fig. 1D). 
Conversely, none of the experimental factors affected LDH activity (data 
not shown). The factors time (F1,24 = 9.51; p < 0.01), treatment (F2,24 =

7.22; p < 0.01) and time-treatment interaction (F2,24 = 3.85; p < 0.05) 
also influenced HL lysozyme activity, that increased in mussels exposed 
for 14 days at AS_H (Fig. 1E). 

Exposure to AS did not significantly (F2,24 = 1.27; p > 0.05) influence 
gill SOD activity, while only exposure time influenced enzymatic ac-
tivity in digestive gland (F1,24 = 25.96; p < 0.001) (Fig. 2A and B). 
Exposure time (F1,24 = 10.22; p < 0.01), treatment (F2,24 = 4.04; p <
0.05) and time-treatment interaction (F2,24 = 5.14; p < 0.05) affected 
CAT activity of digestive gland. Pairwise comparisons revealed that at 
day 7 digestive gland CAT activity significantly increased in AS_L and 
decreased in AS_H, with respect to controls (Fig. 2C and D). Exposure 
time (F1,24 = 7.49; p < 0.05) and time-treatment interaction (F2,24 =

4.98; p < 0.05) significantly influenced gill CAT activity, with a signif-
icant reduction in bivalves treated for 14 days with both AS concen-
trations (p < 0.05 and p < 0.01, respectively). None of the experimental 
factors (time: F1,24 = 2.082, p > 0.05; treatment: F2,24 = 1.23, p > 0.05; 
time-treatment interaction: F2,24 = 1.09, p > 0.05) significantly influ-
enced GST activity, while only exposure time significantly affected both 
AChE (F1,24 = 22.17, p < 0.001) and BChE (F1,24 = 39.80, p < 0.001) in 
gills (data not shown). 

Fig. 1. A) Total haemocyte count (THC), B) haemocyte volume, C) haemocyte diameter, D) cellular proliferation and E) lysozyme activity. In all graphs, asterisks 
indicating statistically significant variations between treated groups and the related controls at day 7 and 14 were showed in case of significant effects of the factors 
“treatment” and/or “treatment-time interaction” (*p < 0.05, **p < 0.01, ***p < 0.001). 
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3.3. Microbiota characterization 

PCoA analysis highlighted the separation along the y-axis between 
mussels collected at the two sampling points (PC2 = 17%) (Fig. 3A), 
while a weak separation of AS_H from other treatments has been high-
lighted along the y-axis after 14 days of AS exposure (PC2 = 23%) 
(Fig. 3B and C). No significant changes in microbial diversity (i.e., 
Simpson’s Index) and Evenness have been observed in exposed mussels 
compared to controls (Fig. 3D and E). 

Pairwise comparisons between CTRL and exposed mussels allowed 
the identification of differentially represented taxa in exposed mussels 
compared to controls (p-adj value < 0.05; Table 1). Both treatments 
showed few significant changes in microbial composition, mostly at day 
7. Among them, over-representation of Vibrio aestuarianus and Arco-
bacter genus was observed in mussels of AS_L treatment. Conversely, all 
significant taxa identified in AS_H exposed mussels were down- 
represented compared to controls at day 7, while, no modifications in 
microbiota composition were observed at the last sampling time. 

3.4. Gene expression profiling 

Like microbiota analyses, PCA revealed a clear separation between 
mussels collected at day 7 and 14 along the X-axis (PC1 = 9.9%; Fig. 4A). 
While at day 7 weak separations among treatments were highlighted 
(Fig. 4B), at day 14 AS_H exposed mussels were clearly separated from 
other groups along X- and Y-axis (PC1 = 9.9%; PC2 = 6.7%) (Fig. 4C). 
The number of DEGs obtained by pairwise comparisons between 
exposed and control groups reflects the results obtained by PCA, with 
the highest number of DEGs found in AS_H exposed mussels at day 14 
(68 DEGs; Table 2). Conversely, AS_L exposed mussels showed a total of 
23 and 14 DEGs at day 7 and 14, respectively. At day 7, the highest 
number of DEGs was down-regulated in AS exposed mussels (68% and 
78% in AS_H and AS_L, respectively). None of the DEGs in response to 
AS_L were maintained differentially expressed at day 7 and 14, while a 
unique transcript coding for Protocadherin-15 was down-regulated at 
both sampling points in AS_H. The full lists of DEGs obtained by pairwise 
comparisons at each sampling time are reported in Supplementary File 
2. 

Focusing on the transcriptional response at day 7, mussels exposed to 
AS_L showed the down-regulation of genes coding for N66 matrix protein 
(N66), Gigasin-6, Heme-binding protein 2 (HEBP2), Serpin B3 (SERPB3) 
and Mytilin-3 (MYT3), while a down-regulation of Heme-binding protein 1 

(HEBP1) was observed in AS_H. At day 14, AS_L showed the up- 
regulation of several extracellular matrix structural constituents play-
ing a role in modulation of cell adhesion, as Collagen alpha-5(VI) chain 
(COL6A5), Collagen alpha-2(XI) chain (COL11A2) and transforming 
growth factor-beta-induced protein (TGFBI). In addition, up-regulation of 
Cyclic AMP-dependent transcription factor (ATF-3) and Mucin-12 
(MUC12), a protein forming protective mucous barriers on epithelial 
surfaces, has been also observed. Noteworthy, after 14 days Heat shock 
70 kDa protein 12B (HSPA12B) and Tripartite motif-containing protein 45 
(TRIM45) were differentially expressed in both treatments. In addition, 
mussels exposed to AS_H showed the up-regulation of Histone deacetylase 
6 (HD6) and Histone-lysine N-methyltransferase (SETD8) and the down- 
regulation of TLR4 interactor with leucine rich repeats (TRIL), Toll-like 
receptor 13 (TLR13), Poly [ADP-ribose] polymerase 14 (PARP14), 
Apoptosis inhibitor 5 (API5) and Solute carrier family 6 member (SLC6). 

As expected, GSEA showed the highest number of altered pathways 
in AS_H treatment at both sampling times (FDR<0.25; Table 3). At day 
7, just two KEGG pathways representing “apoptosis” and “NOD-like 
receptor signaling pathway” were significantly enriched in AS_L exposed 
mussels, while AS_H exposed mussels showed the up-regulation of 
“autophagic cell death” (FDR<0.1) and several pathways involved in 
energy metabolism, xenobiotic metabolism, and stress response 
including “lysosome”, “proteasome” and “PPAR signaling pathway”. 

At day 14, GSEA indicated an increased number of significantly 
enriched pathways in AS_L mussels, including the up-regulation of 
“lysosome”, “proteolysis” and “drug metabolism cytochrome p450” 
among others. At the same sampling time, in addition to pathways 
related to energy metabolism, xenobiotic metabolism, “autophagic cell 
death” and “PPAR signaling pathways” already detected at day 7, AS_H 
exposed mussels showed the up-regulation of the KEGG pathway 
“pathways in cancer” (FDR≤ 0.15), and of the GO terms “cellular 
response to external stimulus” and “glutamatergic synapse”. To 
conclude, following AS_H exposures, the up-regulation of the immune 
terms “toll-like receptor signaling pathways”, “response to virus” and 
“immune system process” was also observed. Results of GSEA analyses 
are reported in Supplementary File 3 and summarized in Table 3. 

4. Discussion 

4.1. Amyl salicylate bioaccumulation capability 

While Amyl Salicylate has been widely detected in different aquatic 

Fig. 2. A) SOD activity in gills, B) SOD activity in digestive gland, C) CAT activity in gill, D) CAT activity in digestive gland. In all graphs, asterisks indicate sig-
nificant variations between treated groups and the related controls at day 7 and 14 (*p < 0.05, **p < 0.01). 
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environments worldwide, data about its bioaccumulation are still 
scarce. Here, AS bioaccumulation was investigated for the first time in a 
mussel species following exposures to concentrations that resemble the 
environmental levels found in farming areas of the Venice lagoon. First, 
it should be highlighted that chemical analyses showed a fast reduction 
of AS concentrations in seawater used during controlled exposures that 
dropped to levels comparable to the control after 24 h. This result sug-
gests a relatively fast kinetics of adsorption/removal of AS in aqueous 
solution. Concerning bioaccumulation, while mussels exposed to the 
lower AS concentrations showed a weak increase of AS in tissues, con-
centrations three times higher than the control group was observed in 
AS_H mussels. Noteworthy, despite mussels were maintained for 14 days 
in laboratory conditions, AS was also detected in mussels from the 
control group, confirming the spread of this fragrance in the Venice 
lagoon and indicating its bioaccumulation also in the natural environ-
ment. However, being chemicals considered to be bioaccumulative for 
aquatic organisms with BAFs exceeding 5000, AS showed only a mild 
tendency to bioaccumulation for M. galloprovincialis. 

4.2. Cellular, biochemical and molecular analyses revealed potential AS 
immunotoxicity 

Cellular and biochemical analyses here performed indicate that 
mussels exposed to higher AS concentrations showed significant and 
rapid alterations in THC and haemocytes diameter, volume and prolif-
eration. Similar results were recently reported in other studies assessing 
the effects of PCPs. For example, it has been demonstrated that the 
fragrance Galaxolide can affect THC and haemocyte proliferation in the 
clam Ruditapes philippinarum (Rilievo et al., 2021). In addition, 
decreased THC and haemocytes alterations were observed in mussels 
treated with a mixture of contaminants, including herbicide, synthetic 
estrogen and Amyl salicylate (Fabrello et al., 2021), as well as in clams 
exposed to Triclosan (Matozzo et al., 2012a), an antibacterial agent 
included in the PCPs list. 

Overall, the alteration of the number, diameter, volume and prolif-
eration of haemocytes, being the defense line against different stressors 
(Mayrand et al., 2005; Zannella et al., 2017), suggests potential ability of 
AS to trigger disorders in the mussel’s immune system. Interestingly, in 

Fig. 3. Principal Coordinates Analysis (PCoA) of 
mussel digestive gland microbiota. A) PCoA of mus-
sels’ digestive gland collected at 7 and 14 days of 
exposure; different colours indicate the two sampling 
time (Day 7 and Day 14); B) PCoA of mussels diges-
tive gland collected after 7 days of exposure; different 
colours indicate different treatment at each sampling 
time. C) PCoA of mussel’s digestive gland collected 
after 14 days of exposure; different colours indicate 
different treatment at each sampling time. D) Even-
ness index for each treatment after 7 days of expo-
sure. E) Evenness index for each treatment after 14 
days of exposure. F) Richness diversity index (Simp-
son’s Index) for each group at day 7 of exposure. G) 
Richness diversity index (Simpson’s Index) for each 
group at day 14 of exposure. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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this study increased haemocyte proliferation was observed in mussels 
treated for 7 days with AS_L, while THC decreased dramatically in the 
same animals. Probably, those mussels underwent an increase in cell 
proliferation to balance, at least in part, the marked decreases in the 
number of circulating cells. Similarly, an inverse relationship between 
THC and haemocyte proliferation was found in R. philippinarum exposed 
to galaxolide (Rilievo et al., 2021) and ibuprofen (Matozzo et al., 
2012b). 

Potential disruption in the regulation of the immune system has also 
been suggested by gene expression profiling. In particular, mussels 
exposed to AS_H showed the up-regulation of the immune terms “toll- 
like receptor signaling pathways”, “defense response to virus” and 
“immune system process” as well as the down-regulation of TRIL and 
TLR13, both involved in inflammatory/immune responses. Similarly, 
mussels exposed to AS_L showed the down-regulation at day 7 of 
SERPB3 belonging to a large protein family known to regulate innate 
immunity pathways, and Mytilin-3 (MYT3), a well-known anti-microbial 
peptide in mussel species (Mitta et al., 2000). 

As already observed in previous studies, immune system alterations 
may also lead to reduced ability to face modifications in microbiota 
community and opportunistic pathogens spread following environ-
mental stress (Burgos-Aceves and Faggio, 2017; Zannella et al., 2017; 
Iori et al., 2020). Accordingly, microbiota characterization assumes a 
key role to establish possible host-microbiota interactions and to 
investigate chemicals indirect effects on mussel health related to 
changes in their microbial composition. 

As for antioxidant enzymes, this study demonstrated that AS affected 
only CAT activity in both gills and digestive gland. However, a different 
response between such tissues was recorded. Indeed, CAT activity 

reduced in gills of mussels treated for 14 days to both AS concentrations 
tested, whereas enzyme activity increased in digestive gland of bivalves 
exposed for 7 days to AS_L, but decreased in mussels treated with AS_H. 
The non-linear pattern of variation of SOD and CAT in the two tissues 
was also recorded in clams exposed to galaxolide (Rilievo et al., 2021). 
Summarizing, results of the present study suggest that AS is not an 
oxidative stress promoter, at least under the investigated experimental 
conditions and in the mussel species tested. However, other studies are 
needed to fully understand the mechanism of action of AS on antioxidant 
enzymes, including those not measured in this study. 

4.3. Microbiota analyses showed transient spread of opportunistic 
pathogens at low AS concentrations 

The study of microbiota community in marine benthic filter-feeder 
organisms is acquiring increasing importance due to its beneficial role 
in the protection against pathogens and environmental stressors (e.g., 
Lokmer and Wegner, 2015; Meisterhans et al., 2016; Milan et al., 2018). 
On the other hand, following the exposure to environmental stress, 
opportunistic taxa may take advantage of the compromised host phys-
iological status, playing a key role in shellfish mortality events and 
stocks reductions (Milan et al., 2019; Destoumieux-Garzón et al., 2020; 
Iori et al., 2020; Bernardini et al., 2021; Mathai et al., 2021; Richard 
et al., 2021). 

Our study indicates that exposure to AS lead to weak and transient 
changes in the microbiota of the digestive gland. Unexpectedly, the most 
important microbial changes have been observed in mussels exposed to 
AS_L at day 7, with the increased representation of the opportunistic 
pathogens Arcobacter and Vibrio aestuarianus, two Gram-negative 

Table 1 
Lists of significant genera and species obtained comparing control and exposed mussels AS_L and AS_H after 7 and 14 days of exposure 
(Adjusted p-value < 0.05). Down- and up-represented genera/species in exposed mussels are reported in green and red respectively. 
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bacteria widely described in marine environment and in bivalves 
exposed to stressful environmental conditions (Beaz-Hidalgo et al., 
2010; Vezzulli et al., 2010; Bernardini et al., 2021; Iori et al., 2020; 
Milan et al., 2018). Arcobacter was frequently reported as one of the 
dominant taxa in unhealthy or moribund marine animals, (Tanaka et al., 
2004; Fan et al., 2013; Olson et al., 2014; Lokmer and Wegner, 2015). 
Similarly, Vibrio aestuarianus is a well-known shellfish pathogen (Tison 
and Seidler, 1983) able to impair haemocytes functional response in 
Crassostrea gigas (Labreuche et al., 2006, 2010) and associated to mus-
sels and oyster mortality events (Saulnier et al., 2009; Romero et al., 
2014). However, the over-representation of these pathogens in exposed 
mussels occurs just in the early exposure phase, while at day 14 none of 
these taxa were over-represented in AS exposed mussels. Overall, our 
results indicated that AS lead to weak changes in digestive gland 
microbiota and that mussels can rapidly restore the “normal” microbial 
communities, as suggested also by the lack of differentially represented 
taxa in mussels exposed to AS_H at day 14. To our knowledge, this study 
represents the first attempt to describe microbial changes occurring in 
marine species following the exposure to fragrance compounds. 

4.4. Early transcriptional changes following amyl salicylate exposures 

After 7 days of AS exposures both experimental groups showed the 

down-regulation of the majority of DEGs. A possible explanation of this 
result is a process called “Stress-Induced Transcriptional Attenuation 
(SITA)”, consisting in rapid transcriptional down-regulation to protect 
cells from damage following environmental stress (Aprile-Garcia et al., 
2019). However, it should be also noted that GSEA highlighted the 
up-regulation in AS_H exposed mussels of several molecular pathways 
involved in drug metabolism and stress response. Among them, the 
up-regulation of the molecular pathways “Drug metabolism cytochrome 
P450”, and “xenobiotic metabolism” indicates the rapid activation of 
detoxification processes. In addition, the up-regulation of molecular 
pathways such as “ion transmembrane transport”, “golgi apparatus”, 
“lysosome”, “PPAR signaling pathway” (maintained also at day 14), 
“proteasome” and “arachichidonic acid metabolism” suggests that 
exposure to AS_H lead to the rapid activation of molecular pathways 
involved in stress response to face possible dysfunctions at cellular level. 
Conversely, GSEA suggested weak transcriptional changes in mussels 
exposed to the low AS concentration, showing just the up-regulation of 
“apoptosis” and “NOD-like receptor signaling pathway”. These molec-
ular pathways, involved in the regulation host innate immune response 
(Carneiro et al., 2004; Zhang et al., 2015; Jiang et al., 2020), have been 
already found up-regulated in bivalve species following Vibrio spp. in-
fections. (Ren et al., 2017, 2020; Wang et al., 2019; Zuo et al., 2020) 
suggesting potential links with the spread of Vibrio spp. and Arcobacter 
here described in the same individuals. 

At the early stage of AS exposures, transcriptional changes in Heme- 
binding proteins HEBP1 and HEBP2 have been also observed following 
exposures to both AS concentrations. Disruptions in transcriptional 
regulation of heme binding genes were described in invertebrate species 
exposed to arsenic and copper (Moreira et al., 2018; Ki et al., 2009), as 
well as in Ostreid herpesvirus-1 infected oysters (He et al., 2015). While 
their specific role in bivalve species still needs to be elucidated, possible 
biological functions of these proteins in oxidative stress response, 
apoptosis and immune response have been recently proposed (Fortunato 
et al., 2016). 

To conclude, exposure to AS_L concentration led also to the down- 

Fig. 4. PCA applied to gene expression profiles of mussels exposed to different Amyl salicylate concentrations (AS_L = 0.1 μg L− 1; AS_H = 0.5 μg L− 1). A) PCA 
performed considering all samples. Different colours indicate sampling times. B) and C) showed PCA performed at day 7 and 14, respectively. Treatments are 
indicated with different colours. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Number of total, down- (↓) and up- (↑) differentially expressed genes (DEGs) 
(FDR ≤0.05) for each pairwise comparison after 7 and 14 days of AS exposure.   

AS_L AS_H 

N◦ total 
DEGs 

N◦ N◦ N◦ total 
DEGs 

N◦ N◦

Day 7 23 5 18 16 5 11 
Day 

14 
14 2 12 68 31 37  
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regulation of genes involved in shell calcification, as N66 matrix protein 
(represented by two contigs) and Gigasin-6 (Rivera-Perez et al., 2019; 
Santos et al., 2021). The former is a functional shell matrix protein with 
a key role in biomineralization, widely described in Pinctada fucata and 
in a variety of other diverse mollusk taxa (Kono et al., 2000; Smith--
Keune and Jerry, 2009). Over the decades, several studies testified 
possible effects of a variety of contaminants on shell calcification 
including the down-regulation of genes involved in shell formation in 
M. galloprovincialis embryos (Alzieu, 2000; Miglioli et al., 2021). Despite 
further experiments are required, our study provided preliminary in-
dications about potential alterations in biomineralization following 
exposure to environmental AS concentrations. 

4.5. Gene expression analyses suggest detrimental effects following 
prolonged exposures to amyl salicylate 

At the last sampling time, transcriptional changes of HSPA12B and 
TRIM45 have been observed in both AS exposed group. The former is a 
member of HSP70 protein family widely described in bivalve species for 
their role in the response to different stressors (e.g. Cruz-Rodríguez and 
Chu, 2002; Izagirre et al., 2014; Mezzelani et al., 2021; Song et al., 
2006), while the latter belongs to the TRIM family proteins involved in 
several biological processes, such as cell differentiation and apoptosis 
(Ozato et al., 2008). TRIM45 may assume the role of transcriptional 
repressor of the mitogen-activated protein kinase (MAPK) signaling 
pathway (Wang et al., 2004). Additional evidence of changes in genes 
involved in transcriptional regulation have been suggested by the 

Table 3 
Gene Set Enrichment Analysis: list of molecular pathways significantly down- (in green) and up- (in red) regulated in each treatment/ 
sampling time (FDR<0.25). Full list of investigated pathways is reported in Supplementary File 3. 
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up-regulation Histone deacetylase 6, SETD8 and ATF-3. SETD8 is a lysine 
methyltransferase playing primary roles in the regulation of chromatin 
structure and gene transcription as well as in cellular signal transduction 
pathways (Greer and Shi, 2012; Black et al., 2012; Biggar and Li, 2015). 
This protein was found to be conserved in fish and mammals and 
recently a potential role in the balance maintaining between the internal 
and external environments has been proposed in Crassostrea gigas 
(Thompson, 2011; Zhao et al., 2016). ATF-3, up-regulated in AS_L 
exposed mussels, is part of ATF/cyclic AMP response element-binding 
(ATF/CREB), a family of transcription factors involved in apoptosis 
and cell cycle regulation. Low trascriptional levels are reported in 
quiescent cells while it is modulated by a variety of signals as cytokines, 
genotoxic agents, or physiological stresses (Hai et al., 1999; Hall et al., 
2020; Thompson et al., 2009). In particular, a relevant role in cellular 
response to oxidative stress has been proposed and up-regulation has 
been already described in mussel gills following copper exposures (Hai 
et al., 1999; Hall et al., 2020). 

However, the most important effects at molecular level were 
observed in mussels treated with the high AS concentration. In partic-
ular, changes in transcriptional regulation of PARP14 and API5 and the 
up-regulation of “regulation of cell death” and “autophagic cell death” 
pathways suggest the disruption of apoptosis and cell death regulations 
(Soldani et al., 2001; Morris et al., 2006). API5 acts as an endogenous 
inhibitor of Caspase-2 and as suppressor of the transcription factor 
E2F1-induced apoptosis and other nuclear factors involved in apoptotic 
DNA fragmentation (Morris et al., 2006; Rigou et al., 2009; Imre et al., 
2017). PARP14 belong to PARP protein family coding for an 
anti-apoptotic protein involved also in cell stress responses (Vyas et al., 
2014) recently found to be responsive in mussels exposed to glyphosate 
and AMPA (Iori et al., 2020). 

Detrimental effects following prolonged exposure to high AS con-
centration are also suggested by the down-regulation of “p53 signaling 
pathway” and the up-regulation of “pathways in cancer” in AS_H 
exposed mussels. Conversely, the low number of DEGs and the up- 
regulation of few pathways involved in detoxification and stress 
response (i.e. “drug metabolism CYP450”, “Lysosome”, “focal adhesion” 
and “proteolysis”) suggest that chronic exposure to low AS concentra-
tions led to mild conditions of cellular stress. 

To conclude, high AS concentrations led also to transcriptional 
changes in “glutamatergic synapse pathway” and in SLC6 acting as 
specific transporters for neurotransmitters, amino acids and oligopep-
tides. This result is in contrast with results obtained by Rilievo et al. 
(2021) in Manila clam exposed to the musk fragrance Galaxolide in 
which no neurotoxic effect has been described. Nevertheless, neuro-
toxicity of PCPs and fragrances has not been well studied yet, and a more 
in-depth analysis is required in order to investigate potential 
neuro-consequences of fragrances on marine organisms. 

5. Conclusion 

The Mediterranean mussel M. galloprovincialis is among the most 
important economic bivalve species in Italy widely farmed within the 
Venice lagoon, a representative case of an ecosystem severely impacted 
by chemicals including emerging contaminants due to urban centres and 
industrial and agricultural activities. Being a sessile organism, mussels 
can be subject to chronic or acute exposures to anthropogenic com-
pounds. In our study, we applied a multidisciplinary approach to 
investigate for the first time the potential effects of Amyl salicylate, one 
of the most represented emerging contaminants detected in the Venice 
lagoon. 

Chemical analyses suggested mild/low tendency for bio-
accumulation of this fragrance in M. galloprovincialis. However, the 
occurrence in the unexposed individuals (control group) indicates po-
tential AS bioaccumulation also in mussels inhabiting clean farming 
areas, while future studies are needed to investigate bioaccumulation in 
species/populations inhabiting more impacted Venice lagoon areas, 

where concentrations up to 6 μg/L-1 were recently detected (unpub-
lished data). 

Molecular and cellular analyses suggest that realistic AS concentra-
tions of the Venice lagoon may exert important effects after prolonged 
exposure periods. While mussels exposed to low AS concentrations 
showed weak transcriptional changes and transient changes in microbial 
communities, the exposure to the high AS concentration led to detri-
mental effects at molecular and cellular levels, including possible 
changes in immune response, apoptosis and cell death regulations. 

To our knowledge, the present study represents the first investigation 
about the possible ecotoxicity of AS on edible marine filter-feeder bi-
valves. The multidisciplinary approach here applied allowed to depict 
the health status and the responses of this marine species, suggesting its 
application in future studies aiming to define the risk of emerging con-
taminants on non-target edible species. 
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