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Abstract: In this survey, we present some results on the behavior of effective properties
in presence of perturbations of the geometric and physical parameters. We first consider
the case of a Newtonian fluid flowing at low Reynolds numbers around a periodic array
of cylinders. We show the results of [43], where it is proven that the average longitudinal
flow depends real analytically upon perturbations of the periodicity structure and the
cross section of the cylinders. Next, we turn to the effective conductivity of a periodic
two-phase composite with ideal contact at the interface. The composite is obtained by
introducing a periodic set of inclusions into an infinite homogeneous matrix made of
a different material. We show a result of [41] on the real analytic dependence of the
effective conductivity upon perturbations of the shape of the inclusions, the periodicity
structure, and the conductivity of each material. In the last part of the paper, we extend
the result of [41] to the case of a periodic two-phase composite with imperfect contact
at the interface.
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1 Introduction

In this paper, we review some of our recent results on the dependence of effective proper-
ties upon perturbations of the geometry and physical parameters. We first consider the
case of a Newtonian fluid that flows at low Reynolds numbers around a periodic array
of cylinders. By the results of [42, 43], we can see that the average of the longitudinal
component of the flow velocity depends real analytically on perturbations of the period-
icity structure and the cross section of the cylinders. Then we turn our attention to the
thermal properties of two-phase composites that are obtained by introducing a periodic
set of inclusions in an infinite homogeneous matrix made of a different material. Our
aim is to prove that the effective conductivity depends real analytically on perturbations
of the shape of the inclusions, the periodicity structure, and the conductivity of each
material. First, we present a result of [41] on the case where we have an ideal contact
at the interface. Then we show that the result of [41] can be extended to the case of
imperfect contact conditions.

The average longitudinal flow and the effective conductivity are defined as specific
functionals of the solutions of underlying periodic boundary value problems. In our
work on domain perturbations, these problems are set in domains whose shape depends
on certain perturbation parameters. Then we adopt a method based on a periodic
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version of the standard potential theory to transform the boundary value problems into
systems of integral equations, which will be defined on the boundary of parameter-
dependent domains. Next, with a suitable change of the functional variables, we obtain
new systems of integral equations that depend on the geometry and the parameters
under consideration but are defined on the boundary of fixed sets. These last systems
can be studied by means of the implicit function theorem for analytic maps in Banach
spaces. In particular, we can derive analytic dependence results for the solutions, which
eventually yield the desired results for the effective properties. We note that here and
throughout the paper the word ‘analytic’ always means ‘real analytic’. For the definition
and properties of analytic operators, we refer to Deimling [17, §15].

It is also worth noting that many existing methods in the literature are applied
to periodic structures with specific shapes, e.g. two/three-dimensional periodic arrays
of circles/spheres or ellipses/ellipsoids (see the references in the next sections). Our
method, instead, can be used with arbitrary shapes, provided that they satisfy some
reasonable regularity assumption. Moreover, the real analyticity results that we obtain
surely imply the differentiability with respect to the parameters. Then one may want
to compute the corresponding differentials, with the final goal of characterizing critical
configurations. Since our approach is based on periodic potential theory, a preliminary
step would be to compute the differentials of the periodic layer potentials. The com-
putation of such differentials can be performed by following the lines of those of classic
layer potentials as it is done in [37, Proposition 3.14].

The paper is organized as follows. In Section 2 we introduce the geometric setting
of the considered periodic structures. Section 3 contains the result on the average
longitudinal flow along a periodic array of cylinders. In Section 4 we present the result on
the effective conductivity of a two-phase periodic composite with ideal contact condition.
In Section 5 we state a new result on the effective conductivity of a composite with
nonideal contact condition. Finally, in Section 6 we prove the result of Section 5.

2 The geometric setting

Throughout the paper
n ∈ {2, 3}

plays the role of the space dimension. If q11, . . . , qnn ∈ ]0,+∞[, we use the following
notation:

q =

(
q11 0
0 q22

)
if n = 2, q =

q11 0 0
0 q22 0
0 0 q33

 if n = 3, (1)

and

Q ≡
n∏
j=1

]0, qjj [ ⊆ Rn. (2)

The set Q is the periodicity cell, while q is a diagonal matrix incorporating the infor-
mation on the periodicity. Clearly, |Q|n ≡

∏n
j=1 qjj is the measure of the cell Q and

qZn ≡ {qz : z ∈ Zn} is the set of vertices of a periodic subdivision of Rn corresponding
to the cell Q. We denote by q−1 the inverse matrix of q. We denote by Dn(R) the space
of n× n diagonal matrices with real entries and by D+

n (R) the set of elements of Dn(R)
with diagonal entries in ]0,+∞[. Moreover, we find convenient to set

Q̃ ≡ ]0, 1[n .

If ΩQ is a subset of Rn such that ΩQ ⊆ Q, we define the following two periodic domains:

Sq[ΩQ] ≡
⋃
z∈Zn

(qz + ΩQ), Sq[ΩQ]− ≡ Rn \ Sq[ΩQ].

The symbol ‘·’ denotes the closure of a set. If u is a real valued function defined on
Sq[ΩQ] or Sq[ΩQ]−, we say that u is q-periodic provided that u(x + qz) = u(x) for all
z ∈ Zn and for all x in the domain of definition of u. If k ∈ N, we set

Ckb (Sq[ΩQ]−) ≡
{
u ∈ Ck(Sq[ΩQ]−) : Dγu is bounded ∀γ ∈ Nn s. t. |γ| ≤ k

}
.
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On Ckb (Sq[ΩQ]−) we consider the usual norm

‖u‖
Ckb (Sq [ΩQ]−)

≡
∑
|γ|≤k

sup
x∈Sq [ΩQ]−

|Dγu(x)| ∀u ∈ Ckb (Sq[ΩQ]−) ,

where |γ| ≡
∑n
i=1 γi denotes the length of the multi-index γ ≡ (γ1, . . . , γn) ∈ Nn.

Moreover, if β ∈ ]0, 1], then we set

Ck,βb (Sq[ΩQ]−) ≡
{
u ∈ Ck,β(Sq[ΩQ]−) : Dγu is bounded ∀γ ∈ Nn s. t. |γ| ≤ k

}
and on Ck,βb (Sq[ΩQ]−) we consider the usual norm

‖u‖
Ck,βb (Sq [ΩQ]−)

≡
∑
|γ|≤k

sup
x∈Sq [ΩQ]−

|Dγu(x)|+
∑
|γ|=k

|Dγu : Sq[ΩQ]−|β

∀u ∈ Ck,βb (Sq[ΩQ]−) ,

where |Dγu : Sq[ΩQ]−|β denotes the β-Hölder constant of Dγu (see, e.g., Gilbarg and
Trudinger [24] for the definition of sets and functions of the Schauder class Ck,β). Then
Ckq (Sq[ΩQ]−) denotes the Banach subspace of Ckb (Sq[ΩQ]−) defined by

Ckq (Sq[ΩQ]−) ≡
{
u ∈ Ckb (Sq[ΩQ]−) : u is q-periodic

}
and Ck,βq (Sq[ΩQ]−) denotes the Banach subspace of Ck,βb (Sq[ΩQ]−) defined by

Ck,βq (Sq[ΩQ]−) ≡
{
u ∈ Ck,βb (Sq[ΩQ]−) : u is q-periodic

}
.

The spaces Ckb (Sq[ΩQ]), Ck,βb (Sq[ΩQ]), Ckq (Sq[ΩQ]), and Ck,βq (Sq[ΩQ]) can be defined in
a similar way.

We denote by νΩQ the outward unit normal to ∂ΩQ and by dσ the area element on
∂ΩQ. We retain the standard notation for the Lebesgue space L1(∂ΩQ) of Lebesgue
integrable functions. We denote by |∂ΩQ|n−1 the (n− 1)-dimensional measure of ∂ΩQ.
To shorten our notation, we denote by

ffl
∂ΩQ

f dσ the integral mean 1
|∂ΩQ|n−1

´
∂ΩQ

f dσ

for all f ∈ L1(∂ΩQ). Also, if X is a vector subspace of L1(∂ΩQ) then we set X0 ≡{
f ∈ X :

´
∂ΩQ

f dσ = 0
}
.

We now introduce the shape perturbations. In order to consider variable domains,
we fix a set and consider a class of diffeomorphisms acting on its boundary. Then a
perturbation of the diffeomorphism can be seen as a perturbation of the domain. To
this aim, we fix

α ∈ ]0, 1[ and a bounded open connected subset Ω of Rn of class C1,α

such that Rn \ Ω is connected.
(3)

We denote by A∂Ω the set of functions of class C1(∂Ω,Rn) which are injective and
whose differential is injective at all points of ∂Ω. One can verify that A∂Ω is open in
C1(∂Ω,Rn) (see, e.g., Lanza de Cristoforis and Rossi [38, Lem. 2.2, p. 197] and [37,
Lem. 2.5, p. 143]). Then we find it convenient to set

AQ̃∂Ω ≡ {φ ∈ A∂Ω : φ(∂Ω) ⊆ Q̃},

that is the set of diffeomorphisms in A∂Ω whose image is contained in Q̃ (see Figure 1). If

φ ∈ AQ̃∂Ω, the Jordan-Leray separation theorem ensures that Rn \φ(∂Ω) has exactly two
open connected components and we denote by I[φ] the bounded one (see, e.g, Deimling
[17, Thm. 5.2, p. 26]). Clearly, the set qI[φ] = {qx : x ∈ I[φ]} is contained in the
periodicity cell Q (see Figure 2). Then

Sq[qI[φ]] and Sq[qI[φ]]−

are two unbounded and periodic (q, φ)-dependent sets which model the periodic structure
of the objects considered in this paper (see Figure 3). If we modify the entries of q, this
will result in a modification of the periodicity of the sets. Instead, perturbing φ causes
a change in the shape of the periodic inclusions.
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Figure 1: A diffeomorphism φ ∈ AQ̃∂Ω in R2.

Figure 2: The transformation induced by q in R2.

3 The average longitudinal flow along a periodic ar-
ray of cylinders

This section is devoted to the longitudinal flow of a Newtonian fluid flowing at low
Reynolds numbers along a periodic array of cylinders. We study the effect of pertur-
bations of the periodicity structure and the shape of the cross section of the cylinders.
Since the cylinder’s cross section is two-dimensional, in this section we set

n = 2 .

As introduced in the previous section, the shape of the cross section of the cylinders
is determined by the image of a fixed domain through a diffeomorphism φ and the
periodicity cell is a rectangle of sides of length q11 and q22, associated with the matrix

q =

(
q11 0
0 q22

)
∈ D+

2 (R) .

We assume that the pressure gradient is parallel to the cylinders. Under these assump-
tions, the velocity field has only one non-zero component which, by the Stokes equations,
satisfies the Poisson equation (see problem (4)). Then, by integrating the longitudinal
component of the velocity field over the fundamental cell, for each pair (q, φ), we define
the average of the longitudinal component of the flow velocity Σ[q, φ] (see (5)). We note
that Σ[q, φ] is a measure of the quantity of fluid flowing through the single periodicity
cell and is sometimes referred as the longitudinal permeability of the array of cylinders
(or its opposite, see, e.g., Mityushev and Adler [46, 47]). Here, we are interested in the
dependence of Σ[q, φ] upon the pair (q, φ).
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Figure 3: The sets Sq[qI[φ]]−, Sq[qI[φ]], and qφ(∂Ω) in R2.

The mathematical aspects of fluids in periodic structures have been studied by sev-
eral authors and with a variety of different methods. With no expectation of being
exhaustive, we mention some contributions. Hasimoto [29] has investigated the viscous
flow past a cubic array of spheres and he has applied his results to the two-dimensional
flow past a square array of circular cylinders. His techniques are based on the construc-
tion of a spatially periodic fundamental solution for the Stokes’ system and are applied
to specific shapes (circular/spherical obstacles and square/cubic arrays). Schmid [59]
has investigated the longitudinal laminar flow in an infinite square array of circular
cylinders. Sangani and Yao [57, 58] have studied the permeability of random arrays of
infinitely long cylinders. Mityushev and Adler [46, 47] have considered the longitudinal
permeability of periodic rectangular arrays of circular cylinders. Finally, the paper [53]
with Mityushev deals with the asymptotic behavior of the longitudinal permeability of
thin cylinders of arbitrary shape.

Here, instead, we are interested in the dependence of the (average) longitudinal
velocity upon the length of the sides of the rectangular array and the shape of the cross
section of the cylinders without restricting ourselves to particular shapes, as circles or
ellipses.

If q ∈ D+
2 (R) and φ ∈ AQ̃∂Ω, the set Sq[qI[φ]] × R represents an infinite array of

parallel cylinders. Instead, the set Sq[qI[φ]]− ×R is the region where a Newtonian fluid
is flowing at low Reynolds numbers. We assume that the driving pressure gradient
is constant and parallel to the cylinders. As a consequence, by a standard argument
based on the particular geometry of the problem (cf., e.g., Adler [1, Ch. 4], Sangani and
Yao [58], and Mityushev and Adler [46, 47]), we can transform the Stokes system into
a Poisson equation for the non-zero component of the velocity field. Without loss of
generality, we may assume that the viscosity of the fluid and the non-zero component of

the pressure gradient are both set equal to one. Accordingly, if q ∈ D+
2 (R) and φ ∈ AQ̃∂Ω,

the problem is reduced to the following Dirichlet problem for the Poisson equation:
∆u = 1 in Sq[qI[φ]]− ,

u(x+ qei) = u(x) ∀x ∈ Sq[qI[φ]]− ,∀i ∈ {1, 2} ,
u(x) = 0 ∀x ∈ ∂Sq[qI[φ]]− .

(4)

Here {e1, e2} is the canonical basis of R2. We can show that problem (4) has a unique
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solution in the space C1,α
q (Sq[qI[φ]]−) of C1,α q-periodic functions on Sq[qI[φ]]−, and we

denote it by u[q, φ]. From the physical point of view, the function u[q, φ] represents the
non-zero component of the velocity field (see Mityushev and Adler [46, §2]). Then we
can define Σ[q, φ] as the integral of the flow velocity u[q, φ] over the periodicity cell (see
Adler [1], Mityushev and Adler [46, §3]), i.e.,

Σ[q, φ] ≡ 1

|Q|2

ˆ
Q\qI[φ]

u[q, φ](x) dx ∀(q, φ) ∈ D+
2 (R)×

(
C1,α(∂Ω,R2) ∩ AQ̃∂Ω

)
. (5)

In [42, 43] we have studied the regularity properties of Σ[q, φ] as a function of (q, φ).
Among other results, we have proven that the map (q, φ) 7→ Σ[q, φ] is real analytic, as
we state in the following theorem.

Theorem 3.1. Let α, Ω be as in (3). Then the map from

D+
2 (R)×

(
C1,α(∂Ω,R2) ∩ AQ̃∂Ω

)
to R that takes a pair (q, φ) to Σ[q, φ] is real analytic.

4 The effective conductivity of a two-phase periodic
composite with ideal contact condition

In this section, we recall the results of [41] about the effective conductivity of an n-
dimensional periodic two-phase composite (n ∈ {2, 3}) with ideal contact at the interface.
The composite is obtained by introducing into a homogeneous matrix a periodic set of
inclusions of sufficiently smooth shapes. Both the matrix and the set of inclusions
are filled with two different homogeneous and isotropic heat conductive materials of
conductivity λ− and λ+, respectively, with

(λ+, λ−) ∈ [0,+∞[2∗ ≡ [0,+∞[2 \ {(0, 0)}.

The limit case of a material with zero conductivity corresponds to a thermal insulator.
So here we are assuming that the two materials are not both insulators. On the other
hand, if the conductivity tends to +∞, the material is a perfect conductor. Similarly to
what we have done in the previous section, the inclusions’ shape is determined by the
image of a fixed domain through a diffeomorphism φ, and the periodicity cell is a ‘cuboid’
of edges of lengths q11, . . . , qnn. As it is known, it is possible to define the composite’s
effective conductivity matrix λeff,id by means of the solution of a transmission problem
for the Laplace equation (see Definition 4.1, cf. Mityushev, Obnosov, Pesetskaya, and
Rogosin [49, §5]). The effective conductivity can be thought as the conductivity of
a homogeneous material whose global behavior as a conductor is ‘equivalent’ to the
composite. Then we may want to understand the dependence of λeff,id upon the ‘triple’
((q11, . . . , qnn), φ, (λ+, λ−)), i.e., upon perturbations of the periodicity structure of the
composite, the inclusions’ shape, and the conductivity parameters of each material.

The mathematical literature on the properties of composite materials is too vast to
attempt a complete list of references. We confine ourselves to mention some contributions
that are more focused on perturbation analysis of the effective properties. For exam-
ple, in Ammari, Kang, and Touibi [5] the authors have exploited a potential theoretic
approach in order to investigate the asymptotic behavior of the effective properties of a
periodic dilute composite. Then Ammari, Kang, and Kim [3] and Ammari, Kang, and
Lim [4] have studied anisotropic composite materials and elastic composites, respectively.
The method of Functional Equations, first proposed in Mityushev [45], has been used to
study the dependence on the radius of the inclusions for a wide class of 2D composites.
For ideal composites, we mention here, for example, the works of Mityushev, Obnosov,
Pesetskaya, and Rogosin [49], Gryshchuk and Rogosin [28], Kapanadze, Mishuris, and
Pesetskaya [30]. Berlyand, Golovaty, Movchan, and Phillips [8] have analyzed the trans-
port properties of fluid/solid and solid/solid composites and have investigated how the
curvature of the inclusions affects such properties. Berlyand and Mityushev [9] have
studied the dependence of the effective conductivity of two-phase composites upon the
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polydispersity parameter. Gorb and Berlyand [26] considered the asymptotic behavior
of the effective properties of composites with close inclusions of optimal shape. For
two-dimensional composites, the recent work by Mityushev, Nawalaniec, Nosov, and
Pesetskaya [48] studies the effective conductivity of two-phase random composites with
non-overlapping inclusions whose boundaries are C1,α curves. In Lee and Lee [39], the
authors have studied how the effective elasticity of dilute periodic elastic composites is
affected by its periodic structure. In connection with doubly periodic problems for com-
posite materials, we mention the monograph of Grigolyuk and Fil’shtinskij [27], where
the authors have proposed a method of integral equations for planar periodic problems
in the frame of elasticity (see also Fil’shtinskij [22] and the more recent work Filshtinsky
and Mityushev [23]). Finally, in [55] the fourth named author has explicitly computed
the effective conductivity of a periodic dilute composite with perfect contact as a power
series in the size of the inclusions (see also [54]).

With the aim of introducing the definition of the effective conductivity, we first have
to introduce a family of boundary value problems for the Laplace equation. If q ∈ D+

n (R),

φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω, and (λ+, λ−) ∈ [0,+∞[2∗, for each j ∈ {1, . . . , n} we consider

the following transmission problem for a pair of functions (u+
j , u

−
j ) ∈ C1,α

loc (Sq[qI[φ]]) ×
C1,α

loc (Sq[qI[φ]]−):

∆u+
j = 0 in Sq[qI[φ]] ,

∆u−j = 0 in Sq[qI[φ]]− ,

u+
j (x+ qeh) = u+

j (x) + δhjqjj ∀x ∈ Sq[qI[φ]] , ∀h ∈ {1, . . . , n} ,
u−j (x+ qeh) = u−j (x) + δhjqjj ∀x ∈ Sq[qI[φ]]− , ∀h ∈ {1, . . . , n} ,
λ+ ∂

∂νqI[φ]
u+
j − λ− ∂

∂νqI[φ]
u−j = 0 on ∂qI[φ] ,

u+
j − u

−
j = 0 on ∂qI[φ] ,

´
∂qI[φ]

u+
j dσ = 0,

(6)

where νqI[φ] is the outward unit normal to ∂qI[φ] and {e1, . . . , en} is the canonical basis
of Rn. We recall that here above for (h, j) ∈ {1, . . . , n}2 the symbol δhj denotes the
Kronecker delta symbol, so that δhj = 1 for h = j and δhj = 0 otherwise. Problem (6)

admits a unique solution (u+
j , u

−
j ) in C1,α

loc (Sq[qI[φ]])×C1,α
loc (Sq[qI[φ]]−), which we denote

by (u+
j [q, φ, (λ+, λ−)], u−j [q, φ, (λ+, λ−)]). This solution is used to define the effective

conductivity as follows (cf., e.g., Mityushev, Obnosov, Pesetskaya, and Rogosin [49,
§5]).

Definition 4.1. Let q ∈ D+
n (R), φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω, and (λ+, λ−) ∈ [0,+∞[2∗.

Then the effective conductivity

λeff,id[q, φ, (λ+, λ−)] ≡ (λeff,id
ij [q, φ, (λ+, λ−)])i,j=1,...,n

is the n× n matrix with (i, j)-entry defined by

λeff,id
ij [q, φ, (λ+, λ−)] ≡ 1

|Q|n

{
λ+

ˆ
qI[φ]

∂

∂xi
u+
j [q, φ, (λ+, λ−)](x) dx

+ λ−
ˆ
Q\qI[φ]

∂

∂xi
u−j [q, φ, (λ+, λ−)](x) dx

}
∀i, j ∈ {1, . . . , n}.

As for the average longitudinal flow in Section 3, we are interested in the function

(q, φ, (λ+, λ−)) 7→ λeff,id
ij [q, φ, (λ+, λ−)] .

The following result of [41, Thm. 5.1] describes the regularity of the effective conductivity
matrix λeff,id[q, φ, (λ+, λ−)] of the ideal composite upon the triple ‘periodicity-shape-

conductivity’. More in details, it shows that the (i, j)-entry λeff,id
ij [q, φ, (λ+, λ−)] can be

expressed in terms of the conductivity λ− of the matrix, the conductivity λ+ of the
inclusions, and an analytic map of the periodicity q, of the inclusions’ shape φ, and the

ratio λ+−λ−

λ++λ− , which is sometimes referred to as the contrast parameter.
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Theorem 4.2. Let α, Ω be as in (3). Let i, j ∈ {1, . . . , n}. Then there exist an

open neighborhood U of D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× [−1, 1] in the space D+

n (R)×(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× R and a real analytic map Λij from U to R such that

λeff,id
ij [q, φ, (λ+, λ−)] ≡ δijλ− + (λ+ + λ−)Λij

[
q, φ,

λ+ − λ−

λ+ + λ−

]
for all (q, φ, (λ+, λ−)) ∈ D+

n (R)×
(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× [0,+∞[2∗.

5 The effective conductivity of a two-phase periodic
composite with nonideal contact condition

We now turn our attention to the study of the effective conductivity of an n-dimensional
periodic two-phase composite (n ∈ {2, 3}) with imperfect (or nonideal) contact at the
interface.

As in the previous section, the composite consists of a matrix and a periodic set
of inclusions. The matrix and the inclusions are filled with two (possibly different)
homogeneous and isotropic heat conductive materials. The normal component of the
heat flux is assumed to be continuous at the two-phase interface, while we impose that
the temperature field displays a jump proportional to the normal heat flux by means of a
parameter r. In physics, the appearance of such a discontinuity in the temperature field
is a well-known phenomenon and has been largely investigated since 1941, when Kapitza
carried out the first systematic study of thermal interface behavior in liquid helium (see,
e.g., Swartz and Pohl [61], Lipton [40] and references therein). As in the ideal case,
our aim is to study the behavior of the effective conductivity of the nonideal composite
upon perturbation of the geometry and the parameters of the problem. The expression
defining the effective conductivity of a composite with imperfect contact conditions
was introduced by Benveniste and Miloh in [7] by generalizing the dual theory of the
effective behavior of composites with perfect contact (see also Benveniste [6] and for a
review Drygaś and Mityushev [20]). By the argument of Benveniste and Miloh, in order
to evaluate the effective conductivity, one has to study the thermal distribution of the
composite when so-called ‘homogeneous conditions’ are prescribed.

We first introduce the parameters of the problem. Both the matrix and the set
of inclusions are filled with two different homogeneous and isotropic heat conductive
materials of conductivity λ− and λ+, respectively, with

(λ+, λ−) ∈ ]0,+∞[2.

The normal component of the heat flux is assumed to be continuous at the two-phase
interface, while we impose that the temperature field displays a jump proportional to
the normal heat flux by means of a parameter

r ∈ [0,+∞[ .

We find it convenient to set

P ≡ ]0,+∞[2 × [0,+∞[.

As in the ideal case, the set Sq[qI[φ]]− represents the homogeneous matrix made

of a material with conductivity λ− where the periodic set of inclusions Sq[qI[φ]] with
conductivity λ+ is inserted. The two-phase composite consists of the union of the matrix
and the inclusions.

Let q ∈ D+
n (R), φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω, (λ+, λ−, r) ∈ P. To define the effective
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conductivity in the nonideal case we introduce the following boundary value problem:

∆u+
j = 0 in Sq[qI[φ]] ,

∆u−j = 0 in Sq[qI[φ]]− ,

u+
j (x+ qeh) = u+

j (x) + δhjqjj ∀x ∈ Sq[qI[φ]] , ∀h ∈ {1, . . . , n} ,
u−j (x+ qeh) = u−j (x) + δhjqjj ∀x ∈ Sq[qI[φ]]− , ∀h ∈ {1, . . . , n} ,
λ+ ∂

∂νqI[φ]
u+
j − λ− ∂

∂νqI[φ]
u−j = 0 on ∂qI[φ] ,

λ+ ∂
∂νqI[φ]

u+
j + r

(
u+
j − u

−
j

)
= 0 on ∂qI[φ] ,

´
∂qI[φ]

u+
j dσ = 0 ,

(7)

with j ∈ {1, . . . , n}. As we will see, problem (7) admits a unique solution (u+
j , u

−
j ) in

C1,α
loc (Sq[qI[φ]])× C1,α

loc (Sq[qI[φ]]−), which we denote by

(u+
j [q, φ, λ+, λ−, r], u−j [q, φ, λ+, λ−, r]) .

Then, with this family of solutions, we can define the effective conductivity as follows.
(The reader might note the similarity with Definition 4.1 given in the case of an ideal
contact.)

Definition 5.1. Let q ∈ D+
n (R), φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω, and (λ+, λ−, r) ∈ P. Then

the effective conductivity

λeff,nonid[q, φ, λ+, λ−, r] ≡ (λeff
ij [q, φ, λ+, λ−, r])i,j=1,...,n

is the n× n matrix with (i, j)-entry defined by

λeff,nonid
ij [q, φ, λ+, λ−, r] ≡ 1

|Q|n

{
λ+

ˆ
qI[φ]

∂

∂xi
u+
j [q, φ, λ+, λ−, r](x) dx

+ λ−
ˆ
Q\qI[φ]

∂

∂xi
u−j [q, φ, λ+, λ−, r](x) dx

}
∀i, j ∈ {1, . . . , n}.

Before describing the main result of this section, we mention that composites with
contact conditions different from the ideal ones are studied, for example, in Drygaś
and Mityushev [20], in Castro, Kapanadze, and Pesetskaya [10, 11] (about non-ideal
composites), and in Castro and Pesetskaya [12] (about composites with inextensible-
membrane-type interface). We also mention that the asymptotic behavior of the effec-
tive conductivity of a periodic dilute composite with imperfect contact has been studied
in [15, 16]. In addition, we note that effective properties of heat conductors with inter-
facial contact resistance have been studied via homogenization theory (cf. Donato and
Monsurrò [18], Faella, Monsurrò, and Perugia [21], Monsurrò [51, 52]).

The main goal of the rest of our paper is to study the regularity of the map

(q, φ, λ+, λ−, r) 7→ λeff,nonid[q, φ, λ+, λ−, r] .

We will prove the following theorem.

Theorem 5.2. Let α, Ω be as in (3). Let i, j ∈ {1, . . . , n}. Then there exist an

open neighborhood V of D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× P in the space D+

n (R) ×(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× R3 and a real analytic map Λij from V to R such that

λeff,nonid
ij [q, φ, λ+, λ−, r] ≡ δijλ− + Λij

[
q, φ, λ+, λ−, r

]
for all (q, φ, λ+, λ−, r) ∈ D+

n (R)×
(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× P.

9



The approach that we use to prove Theorem 5.2 was introduced by Lanza de Cristo-
foris in [33] and then extended to a large variety of singular and regular perturbation
problems (cf., e.g., Lanza de Cristoforis [34], Lanza de Cristoforis and the first named
author [14], and [13]).

In particular, in the present paper, we follow the strategy of [43] where we have
studied the behavior of the longitudinal flow along a periodic array of cylinders upon
perturbations of the shape of the cross section of the cylinders and the periodicity
structure (see also Section 3), and of [41] where we have considered the effective con-
ductivity of an ideal composite (see also Section 4). More precisely, we transform the
problem into a set of integral equations defined on a fixed domain and depending on
the set of variables (q, φ, λ+, λ−, r). We study the dependence of the solution of the
integral equations upon (q, φ, λ+, λ−, r) and then we deduce the result on the behavior

of λeff,nonid
ij [q, φ, λ+, λ−, r]. In this paper, the integral equations are derived by a po-

tential theoretic approach. However, integral equations could also be deduced by the
generalized alternating method of Schwarz (cf. Gluzman, Mityushev, and Nawalaniec
[25] and Drygaś, Gluzman, Mityushev, and Nawalaniec [19]).

Incidentally, we observe that there are several contributions concerning the optimiza-
tion of effective parameters from many different points of view. For example, one can
look for optimal lattices without confining to rectangular distributions. In this direc-
tion, Kozlov [31] and Mityushev and Rylko [50] have discussed extremal properties of
hexagonal lattices of disks. In Rylko [56], the author has studied the influence of pertur-
bations of the shape of the circular inclusion on the macroscopic conductivity properties
of 2D dilute composites. For an experimental work concerning the analysis of particle
reinforced composites we mention Kurtyka and Rylko [32].

Finally, we note that we do not consider the case where r → +∞. The asymptotic
analysis of such case in a (non-periodic) transmission problem can be found in Schmidt
and Hiptmair [60].

6 Proof of Theorem 5.2

6.1 Preliminaries

Our method is based on a periodic version of the classical potential theory. Periodic
layer potentials are constructed by replacing the fundamental solution of the Laplace
operator with a q-periodic tempered distribution Sq,n such that

∆Sq,n =
∑
z∈Zn

δqz −
1

|Q|n
,

where δqz denotes the Dirac measure with mass at the point qz ∈ Rn (see, e.g., Lanza de
Cristoforis and the third named author [36, p. 84]). The distribution Sq,n is determined
up to an additive constant, and we have

Sq,n(x) = −
∑

z∈Zn\{0}

1

|Q|n4π2|q−1z|2
e2πi(q−1z)·x ,

where the generalized sum is defined in the sense of distributions in Rn (see, e.g., Ammari
and Kang [2, p. 53], Lanza de Cristoforis and the third named author [36, §3]). It is
known that Sq,n is real analytic in Rn \qZn and locally integrable in Rn (see, e.g., Lanza
de Cristoforis and the third named author [36, §3]).

We now introduce periodic layer potentials. Let ΩQ be a bounded open subset of Rn
of class C1,α for some α ∈ ]0, 1[ such that ΩQ ⊆ Q. We set

vq[∂ΩQ, µ](x) ≡
ˆ
∂ΩQ

Sq,n(x− y)µ(y) dσy ∀x ∈ Rn ,

wq,∗[∂ΩQ, µ](x) ≡
ˆ
∂ΩQ

νΩQ(x) ·DSq,n(x− y)µ(y) dσy ∀x ∈ ∂ΩQ ,

for all µ ∈ C0(∂ΩQ). Here above, DSq,n(ξ) denotes the gradient of Sq,n computed at
the point ξ ∈ Rn \ qZn. The function vq[∂ΩQ, µ] is called the q-periodic single layer
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potential, and wq,∗[∂ΩQ, µ] is a function related to the normal derivative of the single
layer potential. As is well known, if µ ∈ C0(∂ΩQ), then vq[∂ΩQ, µ] is continuous in Rn
and q-periodic. We set

v+
q [∂ΩQ, µ] ≡ vq[∂ΩQ, µ]|Sq [ΩQ]

and v−q [∂ΩQ, µ] ≡ vq[∂ΩQ, µ]|Sq [ΩQ]−
.

In the following theorem, we collect some properties of v±q [∂ΩQ, ·] and wq,∗[∂ΩQ, ·]
that are the periodic analog of classical regularity results and jump formulas for the
single layer potential. For a proof of statements (i)–(iii) we refer to Lanza de Cristoforis
and the third named author [36, Thm. 3.7] and to [15, Lem. 4.2]. For a proof of
statement (iv) we refer to [15, Lem. 4.2 (i), (iii)].

Theorem 6.1. Let q,Q be as in (1) and (2). Let α ∈ ]0, 1[. Let ΩQ be a bounded open
subset of Rn of class C1,α such that ΩQ ⊆ Q. Then the following statements hold.

(i) The map from C0,α(∂ΩQ) to C1,α
q (Sq[ΩQ]) that takes µ to v+

q [∂ΩQ, µ] is linear and

continuous. The map from C0,α(∂ΩQ) to C1,α
q (Sq[ΩQ]−) that takes µ to v−q [∂ΩQ, µ]

is linear and continuous.

(ii) Let µ ∈ C0,α(∂ΩQ). Then

∂

∂νΩQ

v±q [∂ΩQ, µ] = ∓1

2
µ+ wq,∗[∂ΩQ, µ] on ∂ΩQ.

Moreover, ˆ
∂ΩQ

wq,∗[∂ΩQ, µ] dσ =

(
1

2
− |ΩQ|n
|Q|n

)ˆ
∂ΩQ

µdσ .

(iii) Let µ ∈ C0,α(∂ΩQ)0. Then

∆vq[∂ΩQ, µ] = 0 in Rn \ ∂Sq[ΩQ].

(iv) The operator wq,∗[∂ΩQ, ·] is compact in C0,α(∂ΩQ) and in C0,α(∂ΩQ)0.

Next we turn to problem (7). By means of the following proposition, whose proof is
of immediate verification, we can transform problem (7) into a q-periodic transmission
problem for the Laplace equation.

Proposition 6.2. Let q be as in (1), Q be as in (2), and α, Ω be as in (3). Let

(λ+, λ−, r) ∈ P. Let φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω. Let j ∈ {1, . . . , n}. A pair

(u+
j , u

−
j ) ∈ C1,α

loc (Sq[qI[φ]])× C1,α
loc (Sq[qI[φ]]−)

solves problem (7) if and only if the pair

(ũ+
j , ũ

−
j ) ∈ C1,α

q (Sq[qI[φ]])× C1,α
q (Sq[qI[φ]]−)

defined by

ũ+
j (x) ≡ u+

j (x)− xj ∀x ∈ Sq[qI[φ]],

ũ−j (x) ≡ u−j (x)− xj ∀x ∈ Sq[qI[φ]]−,

solves

∆ũ+
j = 0 in Sq[qI[φ]] ,

∆ũ−j = 0 in Sq[qI[φ]]− ,

ũ+
j (x+ qeh) = ũ+

j (x) ∀x ∈ Sq[qI[φ]], ∀h ∈ {1, . . . , n} ,
ũ−j (x+ qeh) = ũ−j (x) ∀x ∈ Sq[qI[φ]]−, ∀h ∈ {1, . . . , n} ,
λ+ ∂

∂νqI[φ]
ũ+
j − λ− ∂

∂νqI[φ]
ũ−j = (λ− − λ+)(νqI[φ])j on ∂qI[φ] ,

λ+ ∂
∂νqI[φ]

ũ+
j + r

(
ũ+
j − ũ

−
j

)
= −λ+(νqI[φ])j on ∂qI[φ] ,

´
∂qI[φ]

ũ+
j dσ = −

´
∂qI[φ]

yj dσy.

(8)
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By [15, Prop. 5.1, Thm. 5.3], we deduce the validity of the following proposition,
stating that (the equivalent) problems (7) and (8) have unique solution.

Proposition 6.3. Let q be as in (1), Q be as in (2), and α, Ω be as in (3). Let

(λ+, λ−, r) ∈ P. Let φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω. Let j ∈ {1, . . . , n}. Then the following
statements hold.

(i) Problem (7) has a unique solution (u+
j , u

−
j ) in C1,α

loc (Sq[qI[φ]])× C1,α
loc (Sq[qI[φ]]−).

(ii) Problem (8) has a unique solution (ũ+
j , ũ

−
j ) in C1,α

q (Sq[qI[φ]])× C1,α
q (Sq[qI[φ]]−).

6.2 An integral equation formulation of problem (7)

In this section, we convert problem (7) into a system of integral equations. As done in
[43] for the longitudinal flow and in [41] for the ideal contact, we do so by representing
the solution in terms of single layer potentials with densities that solve certain integral
equations. We first start with the following proposition on the invertibility of an integral
operator that will appear in the integral formulation of problem (7).

Proposition 6.4. Let q be as in (1), Q be as in (2), and α, Ω be as in (3). Let

(φ, λ+, λ−, r) ∈ (C1,α(∂Ω,Rn) ∩ AQ̃∂Ω) × P. Let J ≡ (J1, J2) be the operator from
(C0,α(∂qI[φ]))2 to (C0,α(∂qI[φ]))2 defined by

J1[µ+, µ−] ≡λ+
(
−1

2
µ+ + wq,∗[∂qI[φ], µ+]

)
− λ−

(1

2
µ− + wq,∗[∂qI[φ], µ−]

)
,

J2[µ+, µ−] ≡λ+
(
−1

2
µ+ + wq,∗[∂qI[φ], µ+]

)
+ r
(
v+
q [∂qI[φ], µ+]|∂qI[φ] −

1

|∂qI[φ]|n−1

ˆ
∂qI[φ]

v+
q [∂qI[φ], µ+] dσ

− v−q [∂qI[φ], µ−]|∂qI[φ] +
1

|∂qI[φ]|n−1

ˆ
∂qI[φ]

v−q [∂qI[φ], µ−] dσ
)
,

for all (µ+, µ−) ∈ (C0,α(∂qI[φ]))2, where |∂qI[φ]|n−1 denotes the (n − 1)-dimensional
measure of ∂qI[φ]. Then the following statements hold.

(i) The operator J restricts to a homeomorphism from (C0,α(∂qI[φ])0)2 to (C0,α(∂qI[φ])0)2.

(ii) The operator J is a homeomorphism from (C0,α(∂qI[φ]))2 to (C0,α(∂qI[φ]))2.

Proof. We first notice that the validity of statement (i) follows by [15, Prop. 5.2]. We
now consider statement (ii) and we follow the lines of the proof of [15, Prop. 5.2]. Let
Ĵ ≡ (Ĵ1, Ĵ2) be the linear operator from (C0,α(∂qI[φ]))2 to (C0,α(∂qI[φ]))2 defined by

Ĵ1[µ+, µ−] ≡ −(λ−/2)µ− − (λ+/2)µ+ , Ĵ2[µ+, µ−] ≡ −(λ+/2)µ+

for all (µ+, µ−) ∈ (C0,α(∂qI[φ]))2. Clearly, Ĵ is a linear homeomorphism from (C0,α(∂qI[φ]))2

to (C0,α(∂qI[φ]))2. Then let
J̃ ≡ (J̃1, J̃2)

be the operator from (C0,α(∂qI[φ]))2 to (C0,α(∂qI[φ]))2 defined by

J̃1[µ+, µ−] ≡λ+wq,∗[∂qI[φ], µ+]− λ−wq,∗[∂qI[φ], µ−] ,

J̃2[µ+, µ−] ≡λ+wq,∗[∂qI[φ], µ+]

+ r
(
v+
q [∂qI[φ], µ+]|∂qI[φ] −

1

|∂qI[φ]|n−1

ˆ
∂qI[φ]

v+
q [∂qI[φ], µ+] dσ

− v−q [∂qI[φ], µ−]|∂qI[φ] +
1

|∂qI[φ]|n−1

ˆ
∂qI[φ]

v−q [∂qI[φ], µ−] dσ
)

for all (µ+, µ−) ∈ (C0,α(∂qI[φ]))2. Then, by Theorem 6.1 (i), the operator from
C0,α(∂qI[φ]) to C1,α(∂qI[φ]) that takes µ to

vq[∂qI[φ], µ]|∂qI[φ] −
1

|∂qI[φ]|n−1

ˆ
∂qI[φ]

vq[∂qI[φ], µ] dσ ,
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is bounded and by Theorem 6.1 (iv) the map wq,∗[∂qI[φ], ·] is compact. Then the com-

pactness of the imbedding of C1,α(∂qI[φ]) into C0,α(∂qI[φ]) implies that J̃ is a compact
operator. Now, since J = Ĵ + J̃ and since compact perturbations of isomorphisms are
Fredholm operators of index 0, we deduce that J is a Fredholm operator of index 0.
Thus, to show that J is a linear homeomorphism, it suffices to show that it is injective.
So, let (µ+, µ−) ∈ (C0,α(∂qI[φ]))2 be such that

J [µ+, µ−] = (0, 0) . (9)

Clearly,

ˆ
∂qI[φ]

r
(
v+
q [∂qI[φ], µ+]|∂qI[φ] −

1

|∂qI[φ]|n−1

ˆ
∂qI[φ]

v+
q [∂qI[φ], µ+] dσ

− v−q [∂qI[φ], µ−]|∂qI[φ] +
1

|∂qI[φ]|n−1

ˆ
∂qI[φ]

v−q [∂qI[φ], µ−] dσ
)
dσ = 0 .

Then Theorem 6.1 (ii) and the second component of equality (9) imply that

ˆ
∂qI[φ]

µ+ dσ = 0 ,

i.e., µ+ ∈ C0,α(∂qI[φ])0. Then again Theorem 6.1 (ii) and the first component of equality
(9) imply that ˆ

∂qI[φ]

µ− dσ = 0 ,

i.e., µ− ∈ C0,α(∂qI[φ])0. In other words, we have shown that if (µ+, µ−) ∈ (C0,α(∂qI[φ]))2

is such that J [µ+, µ−] = (0, 0), then we have (µ+, µ−) ∈ (C0,α(∂qI[φ])0)2. As a con-
sequence, statement (i) implies that (µ+, µ−) = (0, 0), and, therefore, the validity of
statement (ii).

We are now ready to show that problem (7) can be reformulated in terms of a system
of integral equations which admits a unique solution.

Theorem 6.5. Let q be as in (1), Q be as in (2), and α, Ω be as in (3). Let (λ+, λ−, r) ∈
P. Let φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω. Let j ∈ {1, . . . , n}. Then the unique solution

(u+
j [q, φ, λ+, λ−, r], u−j [q, φ, λ+, λ−, r]) ∈ C1,α

loc (Sq[qI[φ]])× C1,α
loc (Sq[qI[φ]]−)

of problem (7) is delivered by

u+
j [q, φ, λ+, λ−, r](x) = v+

q [∂qI[φ], µ+
j ](x)−

 
∂qI[φ]

v+
q [∂qI[φ], µ+

j ](y) dσy (10)

−
 
∂qI[φ]

yj dσy + xj ∀x ∈ Sq[qI[φ]],

u−j [q, φ, λ+, λ−, r](x) = v−q [∂qI[φ], µ−j ](x)−
 
∂qI[φ]

v−q [∂qI[φ], µ−j ](y) dσy

−
 
∂qI[φ]

yj dσy + xj ∀x ∈ Sq[qI[φ]]−,

where (µ+
j , µ

−
j ) is the unique solution in (C0,α(∂qI[φ]))2 of the system of integral equa-

tions
J [µ+

j , µ
−
j ] =

(
(λ− − λ+)(νqI[φ])j ,−λ+(νqI[φ])j

)
, (11)

where J is as in Proposition 6.4.

Proof. Proposition 6.3 (i) implies that problem (7) has a unique solution in C1,α
loc (Sq[qI[φ]])×

C1,α
loc (Sq[qI[φ]]−). Accordingly, we only need to prove that the pair of functions defined

by (10) solves problem (7). Since

(νqI[φ])j ∈ C0,α(∂qI[φ])0,
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Proposition 6.4 (i) implies that there exists a unique pair (µ+
j , µ

−
j ) ∈ (C0,α(∂qI[φ])0)2

that solves the integral equation (11). Accordingly, a straightforward computation based
on the properties of the single layer potential (see Theorem 6.1) together with Proposi-
tion 6.2 implies that the pair of functions defined by (10) solves problem (7).

Remark 6.6. The previous theorem provides an integral equation formulation of problem
(7) and a representation formula for its solution. Plugging this representation formula
into Definition 5.1, we can rewrite the effective conductivity in terms of the densities
µ+
j and µ−j solving equation (11). Let the assumptions of Theorem 6.5 hold and let

u+
j [q, φ, λ+, λ−, r], u−j [q, φ, λ+, λ−, r], and µ+

j , µ
−
j be as in Theorem 6.5. Then the di-

vergence theorem implies that
ˆ
qI[φ]

∂

∂xi
u+
j [q, φ, λ+, λ−, r](x) dx

=

ˆ
∂qI[φ]

u+
j [q, φ, λ+, λ−, r](y)(νqI[φ](y))i dσy

=

ˆ
∂qI[φ]

(
v+
q [∂qI[φ], µ+

j ](y)−
 
∂qI[φ]

v+
q [∂qI[φ], µ+

j ](z) dσz

−
 
∂qI[φ]

zj dσz + yj

)
(νqI[φ](y))i dσy

=

ˆ
∂qI[φ]

v+
q [∂qI[φ], µ+

j ](y)(νqI[φ](y))i dσy

−
ˆ
∂qI[φ]

(νqI[φ](y))i dσy

 
∂qI[φ]

v+
q [∂qI[φ], µ+

j ](z) dσz

−
ˆ
∂qI[φ]

(νqI[φ](y))i dσy

 
∂qI[φ]

zj dσz + δij |qI[φ]|n.

In the same way,
ˆ
Q\qI[φ]

∂

∂xi
u−j [q, φ, λ+, λ−, r](x) dx

=

ˆ
∂Q

u−j [q, φ, λ+, λ−, r](y)(νQ(y))i dσy

−
ˆ
∂qI[φ]

u−j [q, φ, λ+, λ−, r](y)(νqI[φ](y))i dσy

= δij |Q|n −
ˆ
∂qI[φ]

v−q [∂qI[φ], µ−j ](y)(νqI[φ](y))i dσy

+

ˆ
∂qI[φ]

(νqI[φ](y))i dσy

 
∂qI[φ]

v−q [∂qI[φ], µ−j ](z) dσz

+

ˆ
∂qI[φ]

(νqI[φ](y))i dσy

 
∂qI[φ]

zj dσz − δij |qI[φ]|n.

Indeed,

ˆ
∂Q

(
v−q [∂qI[φ], µ−j ](y)−

 
∂qI[φ]

v−q [∂qI[φ], µ−j ](z) dσz

−
 
∂qI[φ]

zj dσz + yj

)
(νQ(y))i dσy

=

ˆ
∂Q

yj(νQ(y))i dσy = δij |Q|n.

Also, by the divergence theorem, we have
ˆ
∂qI[φ]

(νqI[φ](y))i dσy = 0 ∀i ∈ {1, . . . , n} .
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Accordingly, by a straightforward computation we have

λeff,nonid
ij [q, φ, λ+, λ−, r] (12)

=
1

|Q|n

{
λ+

ˆ
qI[φ]

∂

∂xi
u+
j [q, φ, λ+, λ−, r](x) dx+ λ−

ˆ
Q\qI[φ]

∂

∂xi
u−j [q, φ, λ+, λ−, r](x) dx

}

=
1

|Q|n

{
δijλ

−|Q|n + (λ+ − λ−)δij |qI[φ]|n + λ+

ˆ
∂qI[φ]

vq[∂qI[φ], µ+
j ](y)(νqI[φ](y))i dσy

− λ−
ˆ
∂qI[φ]

vq[∂qI[φ], µ−j ](y)(νqI[φ](y))i dσy

}
.

6.3 Analyticity of the solution of the integral equation

Equality (12) suggests that the next step in order to study the dependence of the effective

conductivity λeff,nonid
ij [q, φ, λ+, λ−, r] upon the quintuple (q, φ, λ+, λ−, r) is to analyze

the dependence of the solutions µ+
j , µ

−
j of equation (11). Before starting with this plan,

we note that equation (11) is defined on the (q, φ)-dependent domain ∂qI[φ], while a
formulation on a fixed domain would be easier to analyze. Thus, we first provide a
reformulation on a fixed domain.

Lemma 6.7. Let q be as in (1), Q be as in (2), and α, Ω be as in (3). Let (λ+, λ−, r) ∈
P. Let φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω. Let j ∈ {1, . . . , n}. Then the pair (θ+

j , θ
−
j ) ∈

(C0,α(∂Ω))2 solves the system of equations

λ+
(
− 1

2
θ+
j (t) +

ˆ
qφ(∂Ω)

DSq,n(qφ(t)− s) · νqI[φ](qφ(t))(θ+
j ◦ φ

(−1))(q−1s)dσs

)
(13)

− λ−
(1

2
θ−j (t) +

ˆ
qφ(∂Ω)

DSq,n(qφ(t)− s) · νqI[φ](qφ(t))(θ−j ◦ φ
(−1))(q−1s)dσs

)
= (λ− − λ+)(νqI[φ](qφ(t)))j ∀t ∈ ∂Ω,

λ+
(
− 1

2
θ+
j (t) +

ˆ
qφ(∂Ω)

DSq,n(qφ(t)− s) · νqI[φ](qφ(t))(θ+
j ◦ φ

(−1))(q−1s)dσs

)
(14)

+ r
(ˆ

qφ(∂Ω)

Sq,n(qφ(t)− s)
(
θ+
j ◦ φ

(−1)
)

(q−1s)dσs

− 1

|∂qI[φ]|n−1

ˆ
qφ(∂Ω)

ˆ
qφ(∂Ω)

Sq,n(y − s)
(
θ+
j ◦ φ

(−1)
)

(q−1s)dσs dσy

−
ˆ
qφ(∂Ω)

Sq,n(qφ(t)− s)
(
θ−j ◦ φ

(−1)
)

(q−1s)dσs

+
1

|∂qI[φ]|n−1

ˆ
qφ(∂Ω)

ˆ
qφ(∂Ω)

Sq,n(y − s)
(
θ−j ◦ φ

(−1)
)

(q−1s)dσs dσy

)
= −λ+(νqI[φ](qφ(t)))j ∀t ∈ ∂Ω,

if and only if the pair (µ+
j , µ

−
j ) ∈ (C0,α(∂qI[φ]))2 defined by

µ±j (x) ≡ (θ±j ◦ φ
(−1))(q−1x) ∀x ∈ ∂qI[φ] (15)

solves (11). Moreover, system (13)–(14) has a unique solution in (C0,α(∂Ω))2.

Proof. The equivalence of equations (13)–(14) in the unknown (θ+
j , θ

−
j ) and equation

(11) in the unknown (µ+
j , µ

−
j ), with (µ+

j , µ
−
j ) delivered by (15), is a straightforward

consequence of a change of variables. Then the existence and uniqueness of a solution of
equations (13)–(14) in (C0,α(∂Ω))2 follows from Theorem 6.5 and from the equivalence
of equations (11) and (13)–(14).

Inspired by Lemma 6.7, for all j ∈ {1, . . . , n} we introduce the map

Mj ≡ (Mj,1,Mj,2) : D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×R3× (C0,α(∂Ω))2 → (C0,α(∂Ω))2
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by setting

Mj,1[q, φ, λ+, λ−, r, θ+, θ−](t)

≡ λ+
(
− 1

2
θ+(t) +

ˆ
qφ(∂Ω)

DSq,n(qφ(t)− s) · νqI[φ](qφ(t))(θ+ ◦ φ(−1))(q−1s)dσs

)
− λ−

(1

2
θ−(t) +

ˆ
qφ(∂Ω)

DSq,n(qφ(t)− s) · νqI[φ](qφ(t))(θ− ◦ φ(−1))(q−1s)dσs

)
− (λ− − λ+)(νqI[φ](qφ(t)))j ∀t ∈ ∂Ω,

Mj,2[q, φ, λ+, λ−, r, θ+, θ−](t)

≡ λ+
(
− 1

2
θ+(t) +

ˆ
qφ(∂Ω)

DSq,n(qφ(t)− s) · νqI[φ](qφ(t))(θ+ ◦ φ(−1))(q−1s)dσs

)
+ r
(ˆ

qφ(∂Ω)

Sq,n(qφ(t)− s)
(
θ+ ◦ φ(−1)

)
(q−1s)dσs

− 1

|∂qI[φ]|n−1

ˆ
qφ(∂Ω)

ˆ
qφ(∂Ω)

Sq,n(y − s)
(
θ+ ◦ φ(−1)

)
(q−1s)dσs dσy

−
ˆ
qφ(∂Ω)

Sq,n(qφ(t)− s)
(
θ− ◦ φ(−1)

)
(q−1s)dσs

+
1

|∂qI[φ]|n−1

ˆ
qφ(∂Ω)

ˆ
qφ(∂Ω)

Sq,n(y − s)
(
θ− ◦ φ(−1)

)
(q−1s)dσs dσy

)
+ λ+(νqI[φ](qφ(t)))j ∀t ∈ ∂Ω,

for all (q, φ, λ+, λ−, r, θ+, θ−) ∈ D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×R3× (C0,α(∂Ω))2. As

one can readily verify, under the assumptions of Lemma 6.7, the system (13)-(14) can
be rewritten as

Mj

[
q, φ, λ+, λ−, r, θ+, θ−

]
= 0. (16)

Our aim is to describe the dependence of the pair (θ+, θ−) that solves equation (16)
on the periodicity matrix q, the inclusions’ shape φ, and the parameters λ+, λ−, r. To
do so, we plan to apply the implicit function theorem for real analytic maps in Banach
spaces to equation (16). So, as a first step we need to prove that Mj is real analytic.
We start with some technical results on the analyticity of certain operators involved in
the definition of Mj . The first one concerns integral operators associated with the single
layer potential and its normal derivative and shows their analytical dependence upon
the periodicity matrix q and the shape φ. For a proof we refer to [44].

Lemma 6.8. Let α, Ω be as in (3). Then the following statements hold.

(i) The map from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×C0,α(∂Ω) to C1,α(∂Ω) that takes

a triple (q, φ, θ) to the function V [q, φ, θ] defined by

V [q, φ, θ](t) ≡
ˆ
qφ(∂Ω)

Sq,n(qφ(t)− s)
(
θ ◦ φ(−1)

)
(q−1s)dσs ∀t ∈ ∂Ω,

is real analytic.

(ii) The map from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×C0,α(∂Ω) to C0,α(∂Ω) that takes

a triple (q, φ, θ) to the function W∗[q, φ, θ] defined by

W∗[q, φ, θ](t) ≡
ˆ
qφ(∂Ω)

DSq,n(qφ(t)− s) · νqI[φ](qφ(t))
(
θ ◦ φ(−1)

)
(q−1s)dσs

∀t ∈ ∂Ω,

is real analytic.

Next, we need the following lemma about the real analytic dependence of certain
maps related to the change of variables in integrals and to the pullback of the outer
normal field. For a proof we refer to Lanza de Cristoforis and Rossi [37, p. 166] and to
Lanza de Cristoforis [35, Prop. 1].
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Lemma 6.9. Let α, Ω be as in (3). Then the following statements hold.

(i) For each ψ ∈ C1,α(∂Ω,Rn)∩A∂Ω, there exists a unique σ̃[ψ] ∈ C0,α(∂Ω) such that
σ̃[ψ] > 0 and

ˆ
ψ(∂Ω)

w(s) dσs =

ˆ
∂Ω

w ◦ ψ(y)σ̃[ψ](y) dσy, ∀w ∈ L1(ψ(∂Ω)).

Moreover, the map σ̃[·] from C1,α(∂Ω,Rn) ∩ A∂Ω to C0,α(∂Ω) is real analytic.

(ii) The map from C1,α(∂Ω,Rn)∩A∂Ω to C0,α(∂Ω,Rn) that takes ψ to νI[ψ] ◦ψ is real
analytic.

The last technical result that we need is about the analyticity of certain maps related
to the measure of sets.

Lemma 6.10. Let α, Ω be as in (3). Then the following statements hold.

(i) The map from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
to R that takes (q, φ) to |qI[φ]|n is

real analytic.

(ii) The map from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
to R that takes (q, φ) to |∂qI[φ]|n−1

is real analytic.

Proof. The validity of statement (i) follows by the proof of [41, Thm. 5.1]. In order to
prove statement (ii) we notice that

|∂qI[φ]|n−1 =

ˆ
qφ(∂Ω)

dσ =

ˆ
∂Ω

σ̃[qφ]dσ ,

for all (q, φ) ∈ D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
. By the analyticity of the map from

D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
to
(
C1,α(∂Ω,Rn) ∩ A∂Ω

)
that takes the pair (q, φ) to

qφ and by Lemma 6.9 (i), we deduce that
ˆ
qφ(∂Ω)

dσ =

ˆ
∂Ω

σ̃[qφ]dσ

depends real analytically on (q, φ) ∈ D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
. As a consequence,

the validity of statement (ii) follows.

By Lemmas 6.8, 6.9, 6.10 and by standard calculus in Banach spaces, we immediately
deduce the validity of the following.

Proposition 6.11. Let α, Ω be as in (3). Let j ∈ {1, . . . , n}. The map Mj is real

analytic from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× R3 × (C0,α(∂Ω))2 to (C0,α(∂Ω))2.

We are now ready to prove that the solution of (16) depends real analytically upon
the quintuple (q, φ, λ+, λ−, r).

Proposition 6.12. Let α, Ω be as in (3). Let j ∈ {1, . . . , n}. Then the following
statements hold.

(i) There exists an open neighborhood V of D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× P in

D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× R3 such that for each (q, φ, λ+, λ−, r) ∈ V the

operator
Mj [q, φ, λ

+, λ−, r, ·, ·]

is a linear homeomorphism from (C0,α(∂Ω))2 onto (C0,α(∂Ω))2. In particular, for
each (q, φ, λ+, λ−, r) ∈ V there exists a unique pair (θ+

j , θ
−
j ) in (C0,α(∂Ω))2 such

that
Mj [q, φ, λ

+, λ−, r, θ+
j , θ

−
j ] = 0.

We denote this pair by (θ+
j [q, φ, λ+, λ−, r], θ−j [q, φ, λ+, λ−, r]).
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(ii) The map from V to (C0,α(∂Ω))2 that takes (q, φ, λ+, λ−, r) to the pair

(θ+
j [q, φ, λ+, λ−, r], θ−j [q, φ, λ+, λ−, r])

is real analytic

Proof. Statement (i) follows by arguing as in the proof of Lemma 6.7 and by the fact that
the set of linear homeomorphisms is open in the set of linear and continuous operators.
To prove statement (ii) we first note that, by Proposition 6.11, Mj is a real analytic map

from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×R3× (C0,α(∂Ω))2 to (C0,α(∂Ω))2. Moreover, for

all (q, φ, λ+, λ−, r) ∈ V, the partial differential

∂(θ+,θ−)Mj

[
q, φ, λ+, λ−, r, θ+[q, φ, λ+, λ−, r], θ−[q, φ, λ+, λ−, r]

]
of Mj at the point

(q, φ, λ+, λ−, r, θ+[q, φ, λ+, λ−, r], θ−[q, φ, λ+, λ−, r])

with respect to the variable (θ+, θ−) is given by

∂(θ+,θ−)Mj

[
q, φ, λ+, λ−, r, θ+[q, φ, λ+, λ−, r], θ−[q, φ,λ+, λ−, r]

]
(ψ+, ψ−)

= Mj

[
q, φ, λ+, λ−, r, ψ+, ψ−

]
,

for all (ψ+, ψ−) ∈ (C0,α(∂Ω))2. Accordingly, by statement (i) and by the implicit
function theorem for real analytic maps in Banach spaces (see, e.g., Deimling [17, Thm.
15.3]), we deduce the analyticity of the map

(q, φ, λ+, λ−, r) 7→ (θ+
j [q, φ, λ+, λ−, r], θ−j [q, φ, λ+, λ−, r])

as in the statement.

6.4 Analyticity of the effective conductivity

We are now ready to prove our main Theorem 5.2 for the effective conductivity in the
case of nonideal contact conditions. To this aim, we exploit formula (12) for λeff,nonid

and the analyticity result of Proposition 6.12.

Proof of Theorem 5.2. Let (θ+
j , θ

−
j ) and V be as in Proposition 6.12. Then, we set Λij

to be the map from the V to R defined by

Λij [q,φ, λ
+, λ−, r]

≡ 1

|Q|n

{
λ+

ˆ
∂qI[φ]

vq[∂qI[φ], (θ+
j [q, φ, λ+, λ−, r] ◦ φ(−1))(q−1·)](y)(νqI[φ](y))i dσy

− λ−
ˆ
∂qI[φ]

vq[∂qI[φ], (θ−j [q, φ, λ+, λ−, r] ◦ φ(−1))(q−1·)](y)(νqI[φ](y))i dσy

+ (λ+ − λ−)δij |qI[φ]|n

}

for all (q, φ, λ+, λ−, r) ∈ V. By formula (12) for the effective conductivity, by Proposition
6.12, by Lemma 6.7 and by Theorem 6.5, the only thing that remains in order to complete
the proof is to show that the map Λij is real analytic. Lemma 6.9 implies that

Λij [q, φ, λ
+, λ−, r] =

1

|Q|n

{
λ+

ˆ
∂Ω

V [q, φ, θ+
j [q, φ, λ+, λ−, r]](y)(νqI[φ](qφ(y)))iσ̃[qφ](y) dσy

− λ−
ˆ
∂Ω

V [q, φ, θ−j [q, φ, λ+, λ−, r]](y)(νqI[φ](qφ(y)))iσ̃[qφ](y) dσy

+ (λ+ − λ−)δij |qI[φ]|n

}
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for all (q, φ, λ+, λ−, r) ∈ V. Since

|Q|n =

n∏
l=1

qll ∀q ∈ D+
n (R),

clearly |Q|n depends analytically on q ∈ D+
n (R). Lemma 6.10 implies that the map from

D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
to R that takes (q, φ) to |qI[φ]|n is real analytic. Thus,

by Proposition 6.12, by Lemma 6.8 (i), by Lemma 6.9, together with the above consid-
erations, we can conclude that the map Λij is real analytic from V to R. Accordingly,
the statement of Theorem 5.2 holds true.

7 Conclusions

We have presented some of our recent results about the dependence of effective properties
upon regular perturbation of the geometric and physical parameters. We have considered
the average flow velocity along a periodic array of cylinders and the effective conductivity
of periodic composites, both with ideal and nonideal contact conditions. We have proven
that these quantities depend real analytically upon the parameters involved. The method
used is based on the so-called Functional Analytic Approach proposed by Lanza de
Cristoforis for the analysis of regular and singular domain perturbations (cf. [33, 34, 35]).
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