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Abstract. In this paper we reason about the notion of proportional
lumpability, that generalizes the original definition of lumpability to cope
with the state space explosion problem inherent to the computation of
the performance indices of large stochastic models. Lumpability is based
on a state aggregation technique and applies to Markov chains exhibiting
some structural regularity.

Proportional lumpability formalizes the idea that the transition rates of
a Markov chain can be altered by some factors in such a way that the
new resulting Markov chain is lumpable. It allows one to derive exact
performance indices for the original process.

We prove that the problem of computing the coarsest proportional lumpa-
bility which refines a given initial partition is well-defined, i.e., it has
always a unique solution. Moreover, we introduce a polynomial time al-
gorithm for solving the problem. This provides us further insights on
both the notion of proportional lumpability and on generalizations of
partition refinement techniques.
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1 Introduction

Markov chains constitute the basic underlying semantics model of a plethora
of modelling formalism for reliability analysis and performance evaluation of
complex systems, such as Stochastic Petri nets [22], Stochastic Automata Net-
works [24], queuing networks [3] and Markovian process algebras [10, 11].

Although the use of high-level specification formalisms highly simplifies the
design of compositional/hierarchical quantitative models, the stochastic process
underlying even a very simple model may have a large number of states that
makes its analysis a difficult, sometimes impossible, task. In order to study mod-
els with a very large state space without resorting to approximation or simulation
techniques we can attempt to reduce the state space of the underlying Markov
chain by aggregating states with equivalent behaviours (according to a notion
of equivalence that captures our concept of behaviour). An interesting class of
these aggregation methods that can be decided by the structural analysis of the
original Markov chain is known as lumping. In the literature, several notions of



lumping have been introduced: strong and weak lumping [15], exact lumping
[25], and strict lumping [4]. The lumpability method allows one to efficiently
compute the exact values of the performance indices when the model is actually
lumpable. However, it is well known that not all Markov chains are lumpable. In-
deed, Markov chains arising in real-life applications are, in general, not lumpable.
To cope with this problem, in [7] the notion of quasi-lumpability has been intro-
duced. The idea is that a quasi-lumpable Markov chain can be altered in such a
way that the new resulting Markov chain is lumpable and steady state probabil-
ity bounding methods [5, 7, 8] can be applied to the new lumpable Markov chain
in order to obtain bounds on the performance indices of the original model.

In [19], the notion of proportional lumpability has been introduced. It extends
the original definition of lumpability but, differently than the general definition
of quasi-lumpability, it allows one to derive exact performance indices for the
original process. In [20] we extended the work presented in [19] by comparing
the notion of proportional lumpability with other definitions of lumping such
as weak lumpability [15,17] and the notion of exact lumpability for ordinary
differential equations (ODEs) [16, 18].

The definition of proportional lumpability requires to find a function that
assigns a positive coefficient to each state of the system. Being the set of all
possible such functions infinite, the existence of an efficient algorithmic tech-
nique to either check or compute proportional lumpability is not an immediate
consequence of the definition.

In this paper we study the properties of proportional lumpability and present
two alternative characterizations of it. The first characterization has been proved
in [20] and allows one to efficiently verify whether a partition of the state space
of a Markov chain is induced by an equivalence relation which is a propor-
tional lumpability. The second charaterization is a novel contribution and it is
exploited to design a polynomial time algorithm to compute the coarsest propor-
tional lumpability of a given Markov chain. Indeed, in the case of the classical
notion of strong lumpability, partition refinement algorithms are at the basis of
the efficient computation of the coarsest lumpability included in a given initial
partition. In the same spirit, we prove that the problem of computing the coars-
est proportional lumpability which refines a given initial partition is well-defined,
i.e., it has always a unique solution. Moreover, we introduce a polynomial time
algorithm for solving the problem. This provides us further insights on both the
notion of proportional lumpability and on generalizations of partition refinement
techniques.

Structure of the paper. The paper is structured as follows: In Section 2 we
review the theoretical background on continuous-time Markov chains and recall
the concept of strong lumpability. The notion of proportional lumpability is
introduced in Section 3 and one novel characterization of it is proved. In Section
4 an algorithm for proportional lumpability is presented and both its correctness
and its complexity are proved. Section 5 concludes the paper.



2 Background

In this section we rapidly review the fundamentals of continuous-time Markov
chains and the concept of lumpability.

Continuous-Time Markov Chains. A Continuous-Time Markov Chain (CTMC)
is a stochastic process X (t) for ¢t € RT taking values into a discrete state space
S such that the Markov property holds, i.e., the conditional (on both past and
present states) probability distribution of its future behaviour is independent of
its past evolution until the present state:

PT‘Ob(X(tn+1) = Sn+41 | X(t1> = Sl,X(tg) = 82,... ,X(tn) = Sn) =
Prob(X (tn+1) = snt+1 | X(tn) = sn)-

A stochastic process X (¢) is said to be stationary if the collection of random
variables (X (t1), X (t2),..., X (t,)) has the same distribution as the collection
(X(t1+7), X(ta+7),..., X(tn+7)) for all t1,t,...,t,, 7 € RT. A CTMC X (t)
is said to be time-homogeneous if the conditional probability Prob(X (¢t + 7) =
s| X(t) = ') does not depend upon ¢, and is irreducible if every state in S can be
reached from every other state. A state in a Markov process is called recurrent if
the probability that the process will eventually return to the same state is one. A
recurrent state is called positive-recurrent if the expected return time is finite. A
CTMC is ergodic if it is irreducible and all its states are positive-recurrent. In the
case of finite Markov chains, irreducibility is sufficient for ergodicity. Henceforth,
we consider ergodic CTMCs.

An ergodic CTMC possesses an equilibrium (or steady-state) distribution,
that is the unique collection of positive real numbers 7(s) with s € S such that

tlggo Prob(X(t) =s | X(0) =s") =7(s).

Notice that the above equation for 7(s) is independent of s’. We denote by ¢(s, s)
the transition rate out of state s to state s’, with s # s’, and by ¢(s) the sum of all
transition rates out of state s to any other state in the chain. A state s for which
q(s) = oo is called an instantaneous state since when entered it is instantaneously
left. Whereas such states are theoretically possible, we shall assume throughout
that 0 < ¢(s) < oo for each state s. The infinitesimal generator matrix Q of
a CTMC X (¢t) with state space S is the |S| x |S| matrix whose off-diagonal
elements are the ¢(s, s’)’s and whose diagonal elements are the negative sum of
the extra diagonal elements of each row, i.e., ¢(s,s) = — Zs’es, siots q(s,s"). For
the sake of simplicity, we use ¢(s, s’) to denote the components of matrix Q. For
s€ Sand S CS we write ¢(s, S) to denote ) ¢ q(s,s’).

Any non-trivial vector of positive real numbers p satisfying the system of
global balance equations (GBEs) uQ = 0 is called invariant measure of the
CTMC. For an irreducible CTMC X (¢), if pq and p, are two invariant measures
of X (), then there exists a constant k£ > 0 such that g, = kp,. If the CTMC is
ergodic, then there exists a unique invariant measure 7 whose components sum
to unity, i.e., Y s7(s) = 1. In this case 7 is the equilibrium or steady-state
distribution of the CTMC.



Strong Lumpability. In the context of performance and reliability analysis, the
notion of lumpability provides a model aggregation technique that can be used
for generating a Markov chain that is smaller than the original one but allows
one to determine exact results for the original process.

The concept of lumpability can be formalized in terms of equivalence rela-
tions over the state space of the Markov chain. Any such equivalence induces
a partition on the state space of the Markov chain and aggregation is achieved
by clustering equivalent states into macro-states, thus reducing the overall state
space. If the partition can be shown to satisfy the so-called strong lumpability
condition [15, 2], then the equilibrium solution of the aggregated process may be
used to derive an exact solution of the original one.

The notion of strong lumpability has been introduced in [15] and further
studied in [1, 4, 21, 26].

Definition 1 (Strong lumpability). Let X (t) be a CTMC with state space S
and ~ be an equivalence relation over S. We say that X (t) is strongly lumpable
with respect to ~ (resp., ~ is a strong lumpability for X(t)) if ~ induces a
partition on the state space of X (t) such that for any equivalence class S;, S; €
S/ ~ with S; # 5; and s,s' € S;,

Q(Sa SJ) = q(s/, S]) :

Thus, an equivalence relation over the state space of a Markov process is
a strong lumpability if it induces a partition into equivalence classes such that
for any two states within an equivalence class their aggregated transition rates
to any other class are the same. Notice that every Markov process is strongly
lumpable with respect to the identity relation, and also with respect to the trivial
relation having only one equivalence class.

In [15] the authors prove that for an equivalence relation ~ over the state
space of a Markov process X (t), the aggregated process is a Markov process
for every initial distribution if, and only if, ~ is a strong lumpability for X (¢).
Moreover, the transition rate between two aggregated states S;,S; € S/ ~ is
equal to ¢(s, S;) for any s € S,.

Proposition 1 (Aggregated process for strong lumpability). Let X (t)
be a CTMC with state space S, infinitesimal generator Q and equilibrium dis-
tribution w. Let ~ be a strong lumpability for X (t) and X (t) be the aggregated

process with state space S/ ~ and infinitesimal generator Q defined by: for any
equivalence class S;,S; € S/ ~,

q(5i,55) = 4(s,55)

for any s € S;. Then the equilibrium distribution 7 of )N((t) is such that for any
equivalence class S € S/ ~,



3 Proportional Lumpability

The notion of proportional lumpability has been introduced in [19]. As the
notion of quasi-lumpability [7], also called near-lumpability in [4], proportional
lumpability extends the original definition of strong lumpability but, differently
from the general definition of quasi-lumpability, it allows one to derive an exact
solution of the original process.

Definition 2 (Proportional lumpability). Let X(t) be a CTMC with state
space S and ~ be an equivalence relation over S. We say that X (t) is propor-
tionally lumpable with respect to ~ (resp., ~ is a proportional lumpability for
X (t)) if there exists a function k from S to RT such that ~ induces a partition
on the state space of X (t) satisfying the property that for any equivalence classes

Si,S; € S/~ with S; # S; and s,s' € S,

Q(Svsj) Q(slﬂgj).

K(s) k(')
We say that X (t) is k-proportionally lumpable with respect to ~ (resp., ~ is

a k-proportional lumpability for X (t)) if X (¢) is proportionally lumpable with
respect to ~ and function k.

The following theorem [19] proves that proportional lumpability allows one
to compute an exact solution for the original model.

Theorem 1 (Aggregated process for proportional lumpability). Let X (t)
be a CTMC with state space S, infinitesimal generator Q and equilibrium distri-
bution 7. Let k be a function from S to RY, ~ be a k-proportional lumpability for
X(t) and X (t) be the aggregated process with state space S/~ and infinitesimal

generator Q defined by: for any equivalence classes S;,S; € S/~

Q(sv Sj)
K(8)

for any s € S;. Then the invariant measure p of )~((t) is such that for any
equivalence class S € §/~,

EJV(SM S]) =

() = Y m(s)nls) (1)

ses

The next Definition 3 introduces a way to perturb a proportionally lumpable
CTMC in order to obtain a strongly lumpable one. In contrast with previous
perturbation-based approaches, Theorem 2 gives a way to compute the station-
ary probabilities of a proportionally lumpable chain given those of the perturbed
lumpable one. The proof of Theorem 2 is given in [19].

Definition 3 (Perturbed Markov chains). Let X (t) be a CTMC with state
space S, and infinitesimal generator Q. Let k be a function from S to RT. We



Fig. 1: CTMC representing the reliability of a system with 3 components.

say that a CTMC X'(t) with infinitesimal generator Q' is a perturbation of X (t)
with respect to k if X'(t) is obtained from X (t) by perturbing its rates such that
for all s,s' € S with s # ¢,

Theorem 2 (Equilibrium distribution for proportional lumpability).
Let X(t) be a CTMC with state space S, infinitesimal generator Q and equilib-
rium distribution 7. Let k be a function from S to RY. Then, for any perturba-
tion X'(t) of the original chain X (t) with respect to k according to Definition 3
with infinitesimal generator Q' and equilibrium distribution w’, the equilibrium
distribution 7 of X (t) satisfies the following property: let K =3 _gm'(s)/K(s)
then, for all s € S

Example 1. Consider the standard reliability problem for a system consisting of
N components. The time to failure of each component i € {1,..., N} is expo-
nentially distributed with rate p; and it is independent of the state of the other
components. This type of system has been studied in several works, like, e.g.,
[9,12-14,27]. As in [14], we assume that when the system fails it is restored to
a new “good” state and the time it takes for this restoration is exponentially
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Fig. 2: Aggregated CTMC representing the reliability of the system in Fig.1,

distributed with rate A\. At any point in time, the state of the system can be
represented as a boolean vector of size N, & = (z1,...,2n), where z; = 1 if the
i-th component of the system is working, otherwise z; = 0. Hence the set of all
possible states is S = {0, 1} . Under these conditions, the time evolution of the
state of the system can be described by a continuous time Markov chain. The
Markov process corresponding to a system with 3 components, i.e., N = 3, is
depicted in Figure 1. This system is proportionally lumpable with respect to the
partition: S, ={Z € §: > x; =n} with n € {0,1,2,3}, i.e,,

So = {(0’0’0)}
S; ={(1,0,0),(0,1,0),(0,0,1)}
Sy = (1, 1, O), (1, 0, 1), (O7 1, 1)}
Ss={(1,1,1)}

and the function s such that for each state s € Sy U Sa, k(s) = ¢(s), while
for s € Sp U Ss, k(s) =1.

Thus, we can analyze the aggregated Markov chain represented in Figure 2 and,
by Theorems 1 and 2 we can compute the exact solution to the original model.

3.1 Alternative characterizations of proportional lumpability

We present two alternative characterizations of proportional lumpability. The
first characterization has been proved in [20] and allows one to efficiently verify
whether a partition of the state space of a Markov chain is induced by a pro-
portional lumpability. The second charaterization is a novel controbution and is
exploited in the next section to design a polynomial time algorithm to compute
the coarsest proportional lumpability of a given Markov chain.

First, for a given equivalence relation ~ over the state space of a CTMC, we
denote by g..(s) the sum of all transition rates from the state s to any state ¢
such that s 4 ¢, ie., for all s € S,

als) = S as, 1),
tohs

The following theorem shows that proportional lumpability can be charac-
terized in terms of g (s) by replacing x(s) with g-(s) in the original definition.



Theorem 3 (Characterization 1 of proportional lumpability [20]). Let
X(t) be an ergodic CTMC with state space S and ~ be an equivalence relation
over S. The relation ~ is a proportional lumpability for X (t) if and only if for
any equivalence classes S;, S; € S/~ with S; # S; and s,s' € S;,

1. q(8) #0 if and only if g.(s') #0
2. if g (s) # 0 then
Q(Sasj) Q(Slvsj)

g~ () g~(s')

While the above characterization can be exploited to efficiently check whether
a given relation is a proportional lumpability, it is not immediate to guess how to
use it within an algorithm for the computation of the proportional lumpability
that refines a given initial relation. As we will see in Section 4, if the relation
changes during the computation, ¢~ also changes. So it could be the case that one
of the equalities of item 2 which is not true at the current step will become true
later. On the other hand, the following characterization of proportional lumpa-
bility is easier to use to define a partition refinement algorithm for proportional
lumpability.

Theorem 4 (Characterization 2 of proportional lumpability). Let X (t)
be an ergodic CTMC with state space S and ~ be an equivalence relation over
S. The relation ~ is a proportional lumpability for X (t) if and only if for any
equivalence classes S;, S, Sy € S/~ with S; # Sj, S; # Sk, and s,s' € S,

1. q(s,Sk) # 0 if and only if q(s', S) # 0 and
2. if q(s,Sk) # 0, then
Q(Sv Sj) Q(Slv Sj)

q(&Sk) q(8/7sk)

Proof. =) Suppose that ~ is a k-proportional lumpability for a function x : § —
R™, ie., for any equivalence classes S;, S; € S/~ with S; # S; and s,s" € S;,

K(s) K(s')
Item 1. follows by the definition of proportional lumpability. Moreover, if ¢(s, Si) #
0 we have that also ¢(s’,Sk) # 0 and

q(s,8;)  q(s,85) w(s)  q(s',8;) w(s')  q(s,8))

Q(S’Sk) H(S) Q(57Sk) K(S/) q(S/aSk) Q(S/ask).

<) Suppose that ~ is an equivalence relation such that for any equivalence

classes S;, Sj, Sy € S/~ with S; # S;, S; # Sk, and s,s" € S;,

1. q(s, Sg) # 0 if and only if ¢(s’, Sk) # 0 and
2. if q(s, Sk) # 0, then

Q(S’Sj) q(slaSj)

q(S7Sk) q(8/7sk)



For each S € §/ ~ such that there exists s € S with g (s) # 0 we choose a class
Bg # S of §/ ~ such that ¢(s, Bs) # 0. We define x : S — R as follows:

— if ¢ (s) = 0, then k(s) = 1 otherwise
— if s € S, then k(s) = q(s, Bg).

We prove that ~ is a k-proportional lumpability. Let S;, S; € S/~ with S; # S;
and s,s € S;

q(svsj) o Q(SaSj) - q(sl,S]—) o Q(Slvsj).

K(s) q(s,Bs,)  q(s,Bs,) K(s")

3.2 Comparison with lumpability of the embedded Markov chain

We compare proportional lumpability with lumpability of the embedded
Markov chain [20]. The following Examples 2 and 3 are novel.

One standard approach for computing the stationary probability distribution
of an ergodic continuous-time Markov chain X (¢) is by analyzing its embedded
Markov chain XZ(t). Strictly speaking, the embedded Markov chain is a regular
discrete-time Markov chain (DTMC), sometimes referred to as its jump process.
Given X (t) with state space S, each element of the one-step transition probabil-
ity matrix of the corresponding embedded Markov chain is denoted by p(s, s'),
and represents the conditional probability of the transition from state s into
state s’, defined by:

p(s,s') = q(;(’;),) for s # s

while p(s, s) = 0. Assuming that X (¢) is aperiodic, let 7* be its steady-state
distribution. Then, one may derive the distribution 7 of X (¢) as follows: let
W =73 .csm(s)/q(s), then

™ (s)

m(s) = Wq(s)

Notice that, in general, our definition of ¢.(s) is different from that of ¢(s),
hence the fact that X(¢) is proportionally lumpable does not imply that the
corresponding embedded Markov chain X ¥(t) is lumpable.

On the other hand, if X () is lumpable then X (¢) is proportionally lumpable
with respect to function s from S to R such that x(s) = ¢(s) for all s € S. In
conclusion, we can say that if X (¢) has a strongly lumpable embedded process,
then it is also proportional lumpable but the opposite does not hold.

Ezxample 2. Consider again the problem of reliability for a system consisting of
N components. Suppose that we are now interested in the number of compo-
nents working at any point time. Thus the state space S = {S; : 0 < i < N}



Fig.4: Aggregated CTMC for system repair model with common cause failures.

where S; denotes the state of the system where ¢ components are working. We
assume that in each state S;, the time to failure of a component is exponentially
distributed with rate p;. Each componet can be restored with rate A. In some
cases, the system fails due to the simultaneous failure of components due to
common factors. Common cause failures may arise due to the failure of common
power supply, environmental conditions (e.g., earthquake, flood, humid-ity, etc.),
common maintenance problems, etc. Simultaneous failure due to common cause
may occur with failure rate u.. The state transition diagram for system repair
model is depicted in Figure 3.

This model is proportionally lumpable with respect to the relation ~ over
S given by the reflexive, symmetric and transitive closure of {(S5;,5;) : 1 <
i, < N}, and the function & such that x(S;) = ¢ (S;) for i € {0,..., N}. This
relation induces two equivalence classes, Cy = {Sp} and Cy = {S1,...,Sn}, and
the model in Figure 3 is proportionally lumpable to the one depicted in Figure 4.

In this case the model in Figure 3 has not a strongly lumpable embedded
process due to the fact that ¢(S;) # ¢~ (S;) for each i € {0,...,N}.

Ezample 3. Consider the model described in Example 1. We showed that the
CTMC depicted in Figure 1 is proportionally lumpable. It is easy to see that
this model has also a strongly lumpable embedded process. Indeed, this trivially
follows by Theorem 3 and the fact that ¢(s) = g (s) for all s € S where ~ is the
relation inducing the partition S, = {Z € §: Y z; = n} with n € {0,1,2,3}.
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4 Computing Proportional Lumpability

In this section we consider the maximum proportional lumpability problem.

Definition 4 (Maximum Proportional Lumpability Problem). Let X (t)
be a CTMC with state space S and let R be an equivalence relation over S.
The maximum proportional lumpability problem over X (t) and R consists in
finding the largest equivalence relation ~ such that ~C R and ~ is a proportional
lumpability for X (t).

We have to prove that the maximum proportional lumpability problem is
well-defined, i.e., it always admits a unique solution. To this aim, it is convenient
to reason in terms of partitions instead of equivalence relations. As a matter of
fact, each equivalence relation R over § is naturally associated to the partition
S/R whose blocks correspond to the maximal sets of R-equivalent elements,
and vice-versa. This allows us to talk about proportional lumpabilities as both
equivalence relations and partitions. In particular, a partition P is said to be a
proportional partition when it is associated to an equivalence relation which is a
proportional lumpability.

We introduce some notations and terminologies over partitions useful for
providing an alternative definition of the maximum proportional lumpability
problem.

Given two partitions P; and P, over S we say that P; is finer than Ps,
denoted by P; C P, if and only if for each block By of P; there exists a block
B of Py such that By C Bs. This is equivalent to say that the blocks of Py are
unions of blocks of P;. Equivalently we say that Py is coarser than P; (also Py
refines Py) if P; is finer than Ps.

Let R and R, be two equivalence relations over S. It holds that Ry C Rs if
and only if the partition P; = §/R; associated to Ry is finer than the partition
Py = S/R2 associated to Ra, i.e., Py C Po.

Definition 5 (Maximum Proportional Partition Problem). Let X (t) be
a CTMC with state space S, let P be a partition over S. The maximum pro-
portional partition problem over X (t) and P consists in finding the coarsest
proportional partition P~ refining P.

Proposition 2 (Equivalence of the two problems). Let X (t) be a CTMC
with state space S. Let R be an equivalence relation over S and S/R be the parti-
tion associated to R. ~ is the solution of the maximum proportional lumpability
problem over X (t) and R if and only if the partition S/ ~ is the solution of the
mazximum proportional partition problem over X (t) and S/R.

Proof. This is an immediate consequence of the definitions. a0

As a consequence, from now on we will focus on the maximum proportional
partition problem.

Notice that the partition S/Id, where Id is the identity relation, is associated
to the proportional lumpability Id and it is finer than any other partition P.

11



In other terms the set of proportional partitions that refine a given partition P
is always not empty. Howerver, it could be the case that for a given partition
P such set contains different elements which are maximal with respect to the
partial order C. The following property will allow us to prove that this is never
the case, i.e., that the maximum proportional partition problem has always a
unique solution. The proofs of the following lemma and theorem are reported in
the Appendix.

Lemma 1. Let X(t) be a CTMC with state space S and let P1 and Ps be two
proportional partitions over S. Let P be the smallest partition that is coarser
than both P1 and Py. P is a proportional partition.

Theorem 5 (Uniqueness). The mazimum proportional partition problem has
always a unique solution.

Partition refinement algorithms already defined in the context of bisimulation
[23] and lumpabilities [28, 1] are based on the following idea: at every step each
existing block B is split into Bi, Bs using a reference block S, called splitter,
which witnesses that the elements of B; and By are not equivalent, no matter
how S will be split during the next steps. In such framework the correctness of
the algorithm is proved by proving that:

ST. Step Correctness: at each step the current partition is refined into a new one
that is coarser than the solution;
FC. Final Convergence: the final partition is a proportional partition.

In order to be able to proceed along the same lines, we first need to prove
that the maximum proportional partition problem has a chance be solved by
iteratively applying refinement steps.

Proposition 3 (Iterative Refinements). Let X(t) be a CTMC with state
space S, let P be a partition over S. Let P~ be the solution of the maximum
proportional partition problem over X (t) and P. If P’ is finer than P and coarser
than P~, i.e., P~ T P’" C P, then the solution of the mazimum proportional
partition problem over X (t) and P’ is P~.

Proof. This is an immediate consequence of the definition of maximum propor-
tional partition problem. O

We now focus on Step Correctness, i.e., we define splitting strategies that
approaches the current partition to the result. To this aim we deeply analyse the
characterization provided in Theorem 4.

Notice that if P has a unique class, then P is a proportional partition, i.e., no
refinement is needed. In the case of partitions with only two classes the second
condition of Theorem 4 is trivially satisfied, so we get the following characteri-
zation for such simple partitions.

12



Algorithm 1 Fix point computation of BISIMSPLIT

1: function B1SIMSPLIT(X (t), P)

2 repeat

3 Bool = True

4 for S, B e P with S# B do > S splits B
5: By ={se€ B|q(s,S) #0}
6

7

8

9

if By # BA By # () then
P = (P\{B})U{B,, B\ Bi}
Bool = False
until Bool > Exit when Bool is True
10: return P

Lemma 2. Let X(t) be a CTMC with state space S, let P be a partition over S
with |P| = 2. P is a proportional partition if and only if for all S;, Sy € P with
S; # Sk, and s,s’ € S; it holds that

Q(Sa Sk) 7é 0 Zﬁ Q(Sla Sk) 7£ 0
Proof. This is an immediate consequence of Theorem 4. ad

In the general case only the left to right direction of the above result continues
to hold and provides us a first splitting strategy.

Lemma 3. Let X(t) be a CTMC with state space S, let P be a partition over
S. If P is a proportional partition, then for all S;, Sy € P with S; # Sk, and
s,s € S; it holds that

q(SaSk) 7& 0 Z.[f q(Sl,Sk) 7é 0

Proof. It immediately follows from the definition of proportional lumpability.
O

Hence, we can split blocks exploiting the above condition. If s and s’ in S; are
such that ¢(s, Sk) # 0 while ¢(s’, Sx) = 0, no matter how S will be split during
the computation s and s’ will always violate the condition with respect to at
least one new class Sj, C Si. So, we split S; separating the elements reaching Sk
from those that do not reach Si. We call such splits BISIMSPLIT, since they are
exactly the splits performed in classical strong bisimulation algorithms [23]. In
Algorithm 1 we describe the function that computes these splits until a fix-point
is reached.

Proposition 4 (BisimSplit Correctness). Let X (t) be a CTMC with state
space S, let P be a partition over S. Let P~ be the solution of the maximum
proportional partition problem over X (t) and P. Let P’ be the partition returned
by BISIMSPLIT(X (t), P). P’ is finer than P and coarser than P...

Proof. This is a consequence of Lemma 3. O
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At this point we focus on the second condition of Theorem 4 and we translate
it in a splitting strategy. If s and s’ satisfy the first condition of Theorem 4, but
not the second one, then one could believe that next splits on .S; and S could
avoid the problem. In other terms it could be possible for s and s’ to remain in
the same block thanks to changes in S; and Sj. The following result proves that
this is never the case. The proof is reported in the Appendix.

Lemma 4. Let X(t) be a CTMC with state space S, let P be a partition over
S. Let P~ be the solution of the mazimum proportional partition problem over
X(t) and P. If there exist S;,S;, S, € P with S; # S;, Si # Sk, and s5,5" € S;
such that q(s, Sg) # 0, q(s’,Sk) # 0, and

q(s, ;) ?éQ(S'aSj)
q(s, k) "~ a(s',Sk)

then s and s’ belong to different blocks in P~.

As a consequence we get the splitting strategy described in Algorithm 2.

Algorithm 2 Fix point computation of PROPSPLIT

1: function PROPSPLIT(X (t),P)

2 repeat

3 Bool = True

4: for S,T € P with S # T do

5: for Be P with B#£S,B#T and Vs € B it is ¢q(s,T) # 0 do
6.

7 B ={Bi,...,B,} such that By C B and

8 for all s,s" € By it is ZE:TS% = ZE::%

9: if |B| > 1 then

10: P=(P\{B}HUB

11: Bool = False

12: until Bool > Exit when Bool is True

13: return P

Proposition 5 (PropSplit Correctness). Let X(t) be a CTMC with state
space S, let P be a partition over S. Let P~ be the solution of the maximum
proportional partition problem over X (t) and P. Let P’ be the partition returned
by PROPSPLIT (X (t),P). P’ is finer than P and coarser than P-..

Proof. This is a consequence of Lemma 4. ad

The algorithm we propose for solving the maximum proportional partition
problem alternatively applies the two above described splitting strategies until
a fix point is reached. It is described in Algorithm 3.
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Algorithm 3 Fix point computation of the Maximum Proportional Partition

1: function MaxProP(X (t),P)

2 repeat

3: P =P

4: P =PROPSPLIT(X (t),BisIMSPLIT(X (t), P))
5

6

until P = P’
return P

Since in Proposition 3 we proved that the problem can be solved through an
iterative algorithm and in Propositions 4 and 5 we provided the Step Correctness,
it only remains to prove that the final result is a proportional partition and to
analyse the complexity of the procedure.

Theorem 6 (Correctness and Complexity). Let X(t) be a CTMC with
state space S, let P be a partition over S. MAXPROP (X (), P) returns the so-
lution of the mazimum proportional partition problem over X (t) and P in time

O(IS[).

Proof. As far as correctness is concerned, in virtue of Propositions 3, 4, and
5 we only have to prove that the output of the algorithm is a proportional
partition. The output of the algorithm is a fix-point for the function PROP-
SPLIT(X (t),BIsSIMSPLIT(X (¢), —)). We have that BISIMSPLIT implements the
first condition of Theorem 4 and PROPSPLIT implement the second condition of
Theorem 4. So, since Theorem 4 is a characterization for proportional lumpabil-
ity, the output of the algorithm is a proportional partition.

During the computation O(|S|) splits will be performed by either BisSiMSPLIT
or PROPSPLIT, since in the worst case the final partition has ©(|S]|) blocks.
Each split performed by BISIMSPLIT can be computed in time O(|S|?), e.g., by
exploiting [23]. As for the splits performed by PROPSPLIT, from the infinitesimal
generator of X (t) and the blocks of the current partition in time ©(|S|?) we can
compute a matrix in which for each state s and each class S we store ¢(s, S).
This matrix has size O(|S?|). Each block T of the current partition corresponds
to a column ¢ in the matrix. For each column ¢ we compute a new matrix in
which for each row s having ¢(s,t) # 0 we normalize all the row dividing by
q(s,t). This take time O(|S|?) and allow us to split each class B with respect
to all other classes S, through a single complete scan of the matrix. Hence, for
each normalizer T' we need time O(|S|?). Since T has O(|S]) possible values, one
split of PROPSPLIT requires O(|S|?). O

Notice that the above complexity result can be refined by exploiting adjacency
lists, hence replacing a factor |S|? by the number of non-null elements of the
infinitesimal generator of X (¢).
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5 Conclusion

In this paper we recall the notion of proportional lumpability and present
two characterizations of it. These characterizations allow us to develop a compu-
tational method for proportional lumpality. More precisely, the first characteri-
zation has been proved in [20] and can be exploited to efficiently check whether a
given relation is a proportional lumpability, while the second characterization is
a novel contribution and allows us to develop an algorithm for the computation
of the proportional lumpability that refines a given initial relation.

The algorithm we presented for proportional lumpability at the moment does
not exploit any ad-hoc technique for reducing the computational complexity,
such as the process the smallest half policy presented in [23] for bisimulation
computation and extended to lumpability in [6,28]. As future work we plan to
investigate along this direction.
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A Appendix

Proof of Lemma 1

First notice that each block A € P can be written both as a union of blocks
of Py and as a union of blocks of Ps, i.e.,

A=A11UA12U---UA1k1 :A21UA22U"'UA2k2

with Aij e P;.

Since P; and P, are proportional partitions, there exist two functions k1, ko
from S to RT that witness this fact. This implies that if we take two states s
and s’ which are not in A and are in a block B; of P;, it holds that:

a(s, A Yhiials, Aiy)  Yhals Ay) g, A)

Ki(8) Ki(s) ki(s") ki(s")

This last can be rewritten as:

oo, ) = 0 0(s )

For each block B € P we fix a representative element b € B. For each ' € B
there exists at least one finite sequence by, b1, . .., b,, such that by = b, b,, = b’
and for each h = 0,...,m —1 there exists By, such that by, by 1 € By, and either
By, € Py or By, € Ps. For each b’ € B we fix one of such sequences. For the sake
of clarity, let us consider a simple case where b,b; € By € Py, by,bs € By € P,
and by, b’ € By € P;. Let A € P with A # B. In virtue of the last equation, we
have:

oA = S e ) -

k1(b) K2(b1) K1(b2)
rk1(b1) Ko(b2) K1(V)

q(b, A) = q(v', A)

In the general case we obtain:
q(b,A) = K(b,V)q(V', A)
where K (b, b') is a product of fractions involving values of k1 and k9 that depends
on the sequence that we have fixed from b to b'. Since both b and the sequence
have been fixed we can define K(b') = K(b,b'). As a consequence, if ¥',b" € B
we obtain that for each A € P with A # B it holds
K(¥)q(t', A) = q(b, A) = K(b")q(b", A)

This means that P is a proportional partition. a
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Proof of Lemma 4

Let §; = AiU---UA, and Sy, = B1 U...B,, with Ay, B, € P.. Let & be
a function witnessing that P.. is a proportional lumpability. If by contradiction
there exists a block C' € P, such that s,s’ € C, then we would have
a(s,Ap) _ q(s', Af)

k(s) k()

for each f =1,...,n and

Q(Sth) Q(S/7Bh)

k(s) k(s

for each h = 1,...,m. As a consequence by summing for f = 1,...,n and
h=1,...,m we have
q(s, Sj) _ a(s',5;) q(s,Sk)  aq(s', Sk)
= and =
K(s) k(s") K(s) K(s")

Since by hypothesis it holds ¢(s, Sg) # 0 and ¢(s’, Si) # 0 we get

q(s,5;) _ a(s',5;)

q(s,Sk)  q(s', Sk)

which contradicts the hypothesis. a

Proof of Theorem 5

The existence of at least one solution is trivial, since the identity relation is
a proportional lumpability.

As far as the uniqueness is concerned, let us consider the maximum pro-
portional partition problem over X (¢) and P. Let us assume by contraddiction
that the set of proportional partitions that refines P has at least two different
maximal elements. This means that there are two different partitions 9@, and
Qy such that:

a. Q; is a proportional partition;
b. Q; refines P;
c. each Q' coarser than Q; and refining P is not a proportional partition.

By Lemma 1 the smallest partition Q that is coarser than both Q; and Q5 is a
proportional partition. Moreover, since both Q; and Qs refine P, it holds that
Q refines P. This contradicts item c. O
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