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Abstract. Blockchains are distributed ledgers storing data and proce-
dures in an immutable way. The validation of the information stored
therein as well as the guarantee of its immutability can be achieved
without the need of a central authority. Proof-of-work is the maximum
expression of the distributed nature of such systems, and requires miners
to spend a large amount of energy to secure the blockchain. The cost is
mostly paid by the end-users that offer fees to support the validation of
their transactions. In general, higher fees correspond to shorter valida-
tion delays. However, given the limited throughput of the system and
variability of the workload, the fee one needs to offer to satisfy a certain
requirement on the validation delay strongly depends on the intensity of
the workload that, in turns, is subject to high variability.

In this work, we propose a time series analysis of the workload of Bitcoin
blockchain and compare the accuracy of Facebook Prophet model with
a ARIMA model. We take into account the periodicity of the workload
and show by simulations how these predictions, accompanied with their
confidence intervals, can be used to estimate the confirmation delays of
the transactions given the offered fees.

Keywords: Blockchain - Confirmation time analysis - Time series anal-
ysis.

1 Introduction

Blockchains have been attracting more and more attention from the research
community from the economical, security and application points of view. More
recently, the quantitative analysis of blockchains has also emerged as an impor-
tant research challenge.

The blockchain distributed ledger has substantially three main roles: (i) verify
the information or procedures that end-users wants to store according to some
rules, (ii) guarantee the immutability of the stored information and (iii) make
the information or procedure publicly available. While there are several ways to
achieve these goals, in this paper, we focus on the most popular one, namely the
proof-of-work (PoW).

PoW has been introduced by the seminal paper [12] by the pseudonym
Satoshi Nakamoto with the aim of creating a distributed ledger for economical
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transactions based on the cryptocurrency Bitcoin (BTC). Many public blockchains
use PoW as consensus algorithm and, recently, it has been proposed also for
permissioned blockchains [10]. Therefore, henceforth, we will focus on BTC
blockchain since it is, together with Ethereum, the mostly used and known
blockchains. However, the methodologies and discussions that we propose can
be easily extended to other blockchain systems with similar characteristics.

In BTC, the blockchain stores transactions into blocks. Blocks have a maxi-
mum size of 1IMB and are generated, on average, every 10 minutes. This means
that the maximum throughput of the system is fixed by design. Transactions are
proposed by the end users and are sent to the miners for being processed.

Miners maintain a queue called Mempool that contains all the pending trans-
actions, i.e., the transactions sent by end users but that have not been added to a
block yet. When a transaction is included in a block, we say that it is confirmed,
i.e., it is permanently stored in the system. The transaction residence time in
the Mempool is called confirmation delay. This delay is crucial in determining
the Quality-of-Service (QoS) of applications based on blockchains.

In order to understand the quantitative dynamics of the transaction confor-
mations, we need to review the procedure implemented by the miners to secure
the blockchain system. Each miner selects from the Mempool a set of trans-
actions to fill a block, then he/she checks their integrity (e.g., when there is
a transfer of cryptocurrency it verifies that there is not double spending) and
finally it works on a computational problem that requires a large amount of
energy in order to be solved. This latter step is the PoW. The miner that firstly
announces the solution of its computational problem is entitled to add his/her
new block to the blockchain after the other peers have verified the correctness
of the solution.

In order to cover the energy and hardware costs, miners receive a certain
amount of cryptocurrency when they succeed in a block consolidation: some is
freshly created by the system and given to the miners and then they receive the
fees promised by the owners of the transactions added to new block. These fees
are offered by the end users on a voluntary base, i.e., they can even offer 0 BTC.
However, the miners tend to select from the Mempool those transactions that
offer the highest fee.

From the end-user’s point of view, an interesting trade off arises: on the one
hand, he/she wishes to offer the lowest possible fee to reduce the running costs
of his/her activities, on the other he/she may have some requirements on the
QoS, e.g., the need to confirm the transaction within a certain amount of time.
For example, the transaction may be associated with a trading speculation and
hence must be confirmed in a few minutes, or may be a bid for a certain auction
with a deadline.

Blockchain systems can be studied as distributed systems by means of formal
methods in the style of [5,6]. Queueing theory allows us to study the relation
between the holding time in the Mempool and the arrival intensity of the transac-
tions. Clearly, when the holding times increase, the transaction fees also increase.
However, while for high fees consolidated in few blocks it is safe to assume that
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the arrival intensity is time homogeneous, for transactions offering low fees this
is unrealistic.

In this paper, we study the problem of predicting the traffic intensity in
BTC blockchain with the aim of parameterising a simulation model that stud-
ies the expected confirmation time of transactions. After collecting data about
the transaction arrival process at our BTC node, we use these traces to train
two possible prediction models: one based on Facebook Prophet model [13], and
the other is the well-known Autoregressive Integrate Moving Average (ARIMA)
model. Both models provide confidence intervals in the prediction of the arrival
process and allow us to consider pessimistic-, average- and optimistic-case sce-
narios. After comparing the two predictive models, we study by simulation the
transaction confirmation time as a function of the offered fees and compare the
results obtained with the real trace as input with those obtained by using the
predicted trace as input.

The paper is structured as follows. In Section 2, we discuss the related work
done in similar fields. Section 3 describes the motivation of this paper and gives
a brief description of the applied prediction models. In Section 4, we examine
the ARIMA and Prophet forecasts accuracy after certain hours from the trans-
action arrival and the accuracy of the predictions on the expected confirmation
time using Monte Carlo simulations. Finally, Section 5 concludes the paper and
provides an insight for future work.

2 Related work

Statistical analysis on blockchain and in particular BTC system have been widely
investigated in the recent years. However, most of the research efforts have been
devoted to the prediction of the conversion rate to USD or other currencies (see,
e.g., [11,4]).

In our case, we are interested in studying the cost of transaction fees. Most
of the previous works assume a time-homogeneous arrival process, as in [7,8,1]
which can be reasonable for expensive transactions that are confirmed within one
hour from their request. However, when the delay is longer, the fluctuations of
the arrival process cause the model with the homogeneity assumption to generate
inaccurate predictions.

In addition, [9] provides a similar contribution by demonstrating the station-
ary analysis of the queueing model and the definition of the customer priority
classes. However, the authors focus on a game theoretical framework where they
attempt to find correlations between the fee fluctuations and the miners’ eco-
nomical incentive.

Another work [14] analyses the transaction fees in the blockchain networks.
However, their research is related to the Ethereum blockchain and particularly
the smart contract transactions.

To the best of our knowledge, this is the first study that aims at predicting
the intensity of the transaction arrival process by using time series analysis and
predicting on the confirmation time based on the offered fee.
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3 Background and motivation

This section describes the goal of the paper and provides background information
about the models used for the prediction of the arrival rate of transactions.

3.1 The problem of predicting the minimum fee for QoS

PoW is a method for both reaching consensus among the miners and guaran-
teeing the immutability of the blockchain contents. More precisely, it quantifies
the expected energy cost required to modify a confirmed transaction. The more
computational power (usually called hashpower) the miners invest the more se-
cure the distributed ledger is. For this reason it becomes crucial to incentivize
more miners to join the network with some rewards.

In the BTC blockchain, miners are rewarded in two ways: i) for each con-
firmed block, the miner who created it receives a certain amount of cryptocur-
rency and ii) for each transaction included in the block, the same miner receives
the fee offered by the user who created that transaction.

In BTC the cryptocurrency is the Bitcoin but since its value is high (at the
moment, IBTC ~ 35,000 USD), fees are usually expressed in Satoshi (sat) where
1BTC=103sat.

While the former reward is going to be dismissed in the next years, the latter
plays a crucial role in understanding the QoS of applications that use BTC
blockchain. Indeed, miners aim at maximising their profit and thus choose to
include in the block the transactions with the highest fee.

Transaction fees are known to be subject to high fluctuations as shown by
Figure 1a. We may notice that the average fee for a transaction can vary from
around 4.5 to 9 USD in a month. How to decide which fee to offer to have an
expected confirmation delay?

It is important to understand that the answer to this question depends on
several state variables of the blockchain. First, we should consider the Mempool
occupancy (usually called improperly Mempool size), i.e., the backlog of the
transactions that are waiting to be confirmed. Figure 1b shows the trace of the
Mempool occupancy in the month of June 2021. The are several bursts that
clearly affect the decision on the fee to be offered.

However, the most important factor is the transaction arrival process. Recall
that all the transactions arriving after a tagged transaction ¢ offering a fee per
byte f will overtake t if they offer more than f. Fee per byte is commonly used
to compare the cost of transactions because these may have different sizes. Since
block sizes are fixed (i.e., a block can contain approximately 2,300 transactions
at most) and the inter-generation time of blocks is on average 10 minutes, this
implies that the competition among the transactions gets tougher when the
traffic is higher. Figure 2b shows the distribution of the fee per byte offered
under heavy-load conditions as measured by our monitor.

Summarising, the confirmation time of a transaction ¢ arriving at time 7
depends on the following aspects:
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from http://www.blockchain.com

Fig. 1: Blockchain network indicators.
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Fig. 2: Continue. Blockchain network indicators.
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— The arrival rate of the transactions after 7 and before the confirmation of ¢,
limited to those whose fees are higher than the fee offered by ¢;

— The state of the Mempool at 7;

— The distribution of fees offered by the other users.

In general, we measure the confirmation delay in number of blocks rather than
in seconds. However, it is well-known that the time between consecutive block
consolidations is approximately exponential with mean 600s [3].

Figure 2a shows the intensity of the arrival process in a period of time. This
is subject to high variability and exhibits a clear seasonality. Therefore, in any
procedure aimed at predicting the expected confirmation time of transactions,
we must implicitly or explicitly deal with the prediction of the arrival intensity
at the moment in which the transactions is sent to the ledger.

The goal of this paper is that of evaluating the quality of the predictions
of the arrival process given by two popular approaches to time series analysis:
the ARIMA and Facebook Prophet models. Moreover, we will use these pre-
dictions to assess, by simulation, the quality of the estimations of the expected
confirmation time of transactions.

3.2 Background on the ARIMA model

ARIMA(p,d,q) model [2] one of the most widely used models for statistical
forecasting a time series of observations X;. The ARIMA equation is a linear
(i.e., regression-type) equation in which the predictors consist of lags of the
dependent variable and/or lags of the forecast errors. The general model can be
written as

(1—¢1L—- =g lP)(1 =L)Xy =c+ (1 + 0, L4+ 0,0

where L is the lag-operator, i.e. L¥a, = a;_; and &, is a white noise. The
value p refers to the “AutoRegressive” component and represents the number of
lagged observations included in the model. The “Integrated part” of the ARIMA
model indicates that the data values have been replaced with the difference
between their current and previous values, i.e. (1 — L)z; = x4 — x;—1. The value
d is a number of times that the raw observations are differenced. In general,
differencing refers to the transformation applied to non-stationary time series
in order to make them stationary by attempting to remove the deterministic
components such as trends or periodicities. The value g, stands for the size of the
“Moving Average” window for the forecast errors. Automatic identification of the
orders p,d,q and statistical estimation of the parameters ¢1,...,¢p,01,...,6,
can be done easily (see [2]).

The data are collected every 10 minute and our time series exhibit seasonality
with frequency of 144 = 24 x 6 which is exactly 24 hours in 10-minutes terms.
In our experiment, using the Akaike Information Criterion, we identify a special
instance of the ARIMA model, namely a multiplicative seasonal model [2]:

(1—¢1L—¢oLP)(1— L)1 — L)X, = (1 +6,L + 0,L%)e,.
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3.3 Background on the Facebook Prophet model

The Prophet model [13] is a modular regression model with interpretable pa-
rameters that can be adjusted in order to optimize the prediction response.
The authors use a decomposable time series model with three key compo-
nents, namely trend, seasonality, and holidays. The model may be represented
as follows:
Xe=gi+si+hi+e;.

where g; refers to the trend function that simulates non-periodic changes in the
value of the time series, s; describes periodic changes of the series, that is any
seasonality effects, and h; stands for the effects of holidays which occur on rather
irregular pattern over one or more days. The error term & is still white noise
and represents any idiosyncratic changes of the model.

What is more, one of the features of g; can be changepoint prior scale. The
changepoints allow to incorporate trend changes in the growth models and stand
for the points in time at which the trend is supposed to change its vector. It can
be set manually otherwise it will be done automatically. This feature modulates
the flexibility of the automatic changepoint selection. Larger values will allow
many changepoints and small ones - few.

The authors frame the forecasting problem as a curve-fitting exercise, which
differs from the models that account for the temporal dependence structure in the
data. Although they miss some inferential benefits of using a generative model,
e.g., the ARIMA model, their approach provides several practical advantages
such as the fast fitting, ability to use irregular time data, flexible tuning of the
trend, and seasonality behaviour.

4 Evaluation of the accuracy in performance predictions

This section consists of two parts. First, we study the accuracy of the ARIMA
and Prophet predictions on the time series of the transaction arrivals in the BTC
blockchain. This allows us to obtain a punctual value of the prediction after
hours from the last considered arrival of transaction and its confidence interval.
Thus, for each epoch, we have a predicted expected value, a lower bound that
represents the optimistic scenario and an upper bound leading to the pessimistic
scenario.

The second contribution of the section is the estimation of the accuracy
of the predictions on the expected confirmation time by means of Monte Carlo
simulations of the confirmation process. The simulation uses as input three values
of the confidence interval (lower, upper and central) to obtain an optimistic,
pessimistic and expected estimation of the confirmation time.

It is worthy of notice that, while the expected confirmation delay is monotonic
increasing with respect to the arrival rate, the relation between waiting time and
intensity of the arrival process is not linear and hence the intervals obtained in the
confirmation delay predictions are not symmetric with respect to the prediction
obtained using the expected arrival rate.
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4.1 Comparison of time series prediction models

This section describes the accuracy of the estimates as well as their insights
obtained by the aforementioned prediction models.

In order to collect the time series, we have installed a BTC mining node and
logged the transactions announced at its Mempool. We have collected the data
for five days and obtained our dataset that was coherent with the information
available on specialised websites but with higher granularity (see Fig. 2a). Ad-
ditionally, we analysed the distribution of transaction fees of the Bitcoin clients
in heavy load conditions (see Fig. 2b).

In order to train the models, we divided our dataset in two parts with the
same size: the first one has been used to train the models, while the second part
has been used to assess the accuracy of the prediction.

For both the models, we use prediction intervals with a coverage of 95%.

Fig. 3 and 4 show predictions of the transaction arrival intensity provided
by the Prophet and ARIMA models, respectively. What is more, Fig. 3a and 3b
illustrate the prediction deviation due to the choice of different changepoint
prior scale values, namely, 0.06 and 0.07 accordingly. Thus, the outcome of the
Prophet model at the parameter 0.07 gives the best prediction, according to our
experiment. In our assessment, we will use the best results.

For both the plots, we used the first 2.5 days of data to train the model, and
then we predicted the future arrivals. We show the test data of our dataset (blue
line), the prediction of the model (red line) and the confidence intervals (grey
lines). As expected, as the prediction time is moved far in the future, the con-
fidence interval becomes wider. However, for practical applications, predictions
are useful when performed within approximately 10 or 12 hours, otherwise it is
very likely that the transaction is delay tolerant.

Even before formally testing the accuracy of the predictions with an error
measure, we may notice that Prophet seems to give a better accuracy in this
context.

Now, we consider the predictions of the Prophet and ARIMA model at fixed
time intervals. More precisely, given an interval 7, at each time ¢ we use all the
data up to ¢ to train the model, and forecast the value of the time series at time
t+T.

Fig. 6 shows the comparison of the predictions obtained with the Prophet
and ARIMA models for different values of 7. We can see that, although the
ARIMA predictions tend to be more noisy, both the models show rather good
predictions of the test data.

More precisely, in Table 1 we compute the absolute errors of the Prophet
and ARIMA predictions. According to our experiments, Prophet outperforms
ARIMA, especially for short term predictions. Henceforth, we will carry out our
experiments by using the Prophet model.
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(b) The comparison at changepoint prior scale of 0.07.

Fig.3: Comparison of the actual arrival rate of transactions and the predicted
response based on the Prophet model with different changepoint prior scale.
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Fig.4: Comparison of the actual arrival rate of transactions and the predicted
response based on the ARIMA model.

Table 1: Mean Absolute Errors of Prophet and ARIMA models with different
size of the prediction horizon.
Prediction horizon 7 in hours|Prophet Error| ARIMA Error

1 0.3120 0.3668
2 0.3366 0.3896
4 0.3966 0.4219

12 0.6333 0.6416
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(a) Comparison of the actual arrival rate of transactions and the predicted response
for 7 = 1 hour ahead based on the Prophet with changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and the predicted response
for 7 = 1 hour ahead based on the ARIMA model.

Fig.5: Comparison of the Prophet and ARIMA prediction models at prediction
horizon 7 = 1 hour and confidence interval of 0.95.
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(a) Comparison of the actual arrival rate of transactions and the predicted response
for 7 = 2 hours ahead based on the Prophet with changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and the predicted response
for 7 = 2 hours ahead based on the ARIMA model.

Fig. 6: Comparison of the Prophet and ARIMA prediction models with prediction
horizon 7 = 2 hours and confidence interval of 0.95.
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(a) Comparison of the actual arrival rate of transactions and the predicted response
for 7 = 4 hours ahead based on the Prophet with changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and the predicted response
for 7 = 4 hours ahead based on the ARIMA model.

Fig. 7: Comparison of the Prophet and ARIMA prediction models with prediction
horizon 7 = 4 hours and confidence interval of 0.95.
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(a) Comparison of the actual arrival rate of transactions and predicted response for
7 = 12 hours ahead based on the Prophet prediction approach by Facebook with
changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and predicted response for
7 = 12 hours ahead based on the ARIMA model.

Fig. 8: Comparison of the Prophet and ARIMA prediction models with prediction
horizon 7 = 12 hours and confidence interval of 0.95.
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4.2 Simulations

In this section, we are interested in determining the accuracy of the estimation of
the expected confirmation time using the Prophet prediction model to determine
the arrival intensity of the transactions.

We resort to Monte Carlo simulations whose structure can be summarised as
follows:

— We consider a fixed sequence of transaction arrivals. This can be trace-
driven by our dataset or obtained by the models (optimistic-, average- or
pessimistic-case scenarios).

— The generation of the blocks occurs at random time intervals, exponentially
distributed with average 10 minutes. This follows from the memoryless char-
acteristic of the mining process and from the invariant properties of the BTC
blockchain.

— At a block generation instant, the most valuable transactions of the Mempool
are confirmed and removed from the queue. We assume that the block con-
tains 2,300 transactions. Transaction fees are chosen probabilistically using
the distribution of Figure 2b.

— Initially, the Mempool is populated with a fixed amount of transactions.
These transactions offer a fee per byte according to the distribution of Fig-
ure 2b. Notice that, although this is an approximation since the cheapest
transactions tend to remain in the Mempool, the comparison remains fair
since the initial Mempool population is the same for all the scenarios.

More precisely, we number the transactions from —M to oo, where M is the
initial Mempool size, transaction 0 is the tagged transaction whose confirmation
time is measured, and transaction denoted by i > 0 are those arriving after the
tagged one.

Transaction t; is denoted by a pair (7, f;), where 7; is the arrival time and
fi the offered fee. For i < 0, ¢; = 0. f; is sampled from the distribution of
Figure 2b independently of 7;. 7;, for ¢ > 0 are obtained from the real traces
or from the predictions of Prophet. Notice that, in practice, the fees may be
dependent from the system state (Mempool size, intensity of the arrival process)
but in this context we use the simplifying assumption of independence since we
mainly focus on the accuracy of the predictive power of the Prophet model.

Let 7 be the set of transactions.

Let X;, Xo,... be the sequence of block consolidation times, and assume
Xo = 0. Then, X;11 — X;, ¢ > 0, are i.i.d. exponential random variables with
mean 10 minutes.

The state of the simulation model is described by a collection of transactions
in the Mempool, denoted by M, where the subscript ¢ expresses that the state
is associated with the instant immediately after the consolidation of block i.

The set of transactions arriving during the consolidation of the (i + 1)-th
block, but after the consolidation of the i-th, can be denoted by:

.Ai:{tiETlTi>Xi/\Ti§Xi+1}
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Now, let F(M) the set of at most 2,300 transactions with the highest fee
present in M.
Thus we have the following recursive relation:

- M():{tiETZTiSO}
— Mi+1 ZMZ‘UAZ‘\]‘—(MZ‘UAZ‘)

Thus, the confirmation time T, for the tagged transaction is given by:

T. =min{i : to ¢ M;}.

The Monte Carlo simulation experiment consists of 10,000 samples of T, for
a fixed fee fy. Then, the expected confirmation time is obtained by averaging the
sample values. The experiments have been repeated 30 times and the estimates
have been used to determine the confidence interval for the expected confirmation
delay. To avoid confusion, we omit the confidence interval from the plot. For a
confidence of 95% we have a maximum relative error of 7%.

For each scenario that we consider, the tagged transaction offers a certain
fee per byte that controls the confirmation time: the higher the fee, the quicker
the process.

According to the trace of arrival that we use, we obtain 4 estimates: the
first using the real data, the second using the average prediction of Prophet, the
third and fourth using the trace given by the lower and upper bounds of the
confidence intervals determined by the Prophet. These two latter scenarios can
be interpreted as pessimistic and optimistic cases in terms of confirmation delay.

Fig. 9a and 9b show the expected number of blocks required for the trans-
action confirmation for different offered transaction fees. The grey bars refer to
the expected number of blocks obtained from the real data while the stack of
the second bar in light, normal and dark blue represent the optimistic-, average-
and pessimistic- case scenarios, respectively, derived from the predicted data.

In the scenario of Figure 9a, the data were derived from the time series
shown in Figure 3b, and the arrival time of the tagged transaction is 2020/11/18
05:10. Thus, the first half of the dataset was used to train the model. While in
the second scenario (Figure 9b), the arrival time for the tagged transaction is
2020/11/19 08:30:00, and hence the training data include all the series up to
that epoch.

The inspection of Figure 9a shows that the pessimistic case scenario for
70 sat/B is absent: this happens because the transaction is dropped before its
confirmation (usually after 72 hours of residence in the Mempool). A second
observation is that, especially in heavy-load (70 and 80 sat/B), the distance
between the optimistic prediction and the average is smaller than that from
the pessimistic and the average. This is due to the non-linearity of expected
response time of a queueing system with respect to the arrival intensity. Finally,
for this scenario, we notice that while the prediction obtained with the dataset
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Expected number of blocks
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Transaction fee (sat/B)

(a) The simulation results at 50% of the training data.

Expected number of blocks

70 80 90 100
Transaction fee (sat/B)

(b) The simulation results at 70% of the training data.

Fig.9: Simulation results based on the actual data (grey bar) compared to the
results of the Prophet predicted response (blue bars) with the optimistic, average
and pessimistic cases and the initial Mempool occupancy of 10,000 transactions
and different amount of the training data.
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is always within the optimistic and pessimistic cases, it seems to be closer to the
latter. Indeed, Fig. 3b shows that predicted values for the first period of time are
rather underestimated by the model. To confirm this explanation, we can look
at the beginning of the next prediction interval (2020/11/19 08:30:00) when the
prediction accuracy is higher. In this case, there is a good matching between the
predicted average confirmation time and that obtained by using the real dataset
(see Figure 9b).

5 Conclusion

In this paper, we have applied two different time series forecast models, namely
the Prophet by Facebook and ARIMA, in order to predict the arrival rate of the
transactions at the Mempool of the Bitcoin network. According to our exper-
iments, the Prophet model provides more accurate predictions in terms of the
absolute errors.

Moreover, we have investigated if these predictions can be used to parame-
terise a model aimed at estimating the expected confirmation time of a trans-
action given its offered fee. We have shown two scenarios and in both cases we
obtained valuable predictions that can be used to study the trade off between
the blockchain running costs and the quality of service.

Although our study has been carried out for the BTC blockchain, it can be
extended to any similar system where transactions are chosen from the Mempool
according to an auction (e.g., Ethereum blockchain).

Future works have several directions. First, it would be important to compare
the approach proposed here with other forecasting models, e.g., based on machine
learning. Second, an analytical model of the queueing processes associated with
the transactions should be studied to avoid the computationally expensive Monte
Carlo simulations required to obtain the prediction on the expected confirmation
time.
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