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Abstract. A guideline for an effective and efficient use of a deterministic variant of the Particle
Swarm Optimization (PSO) algorithm is presented and discussed, assuming limited computa-
tional resources. PSO was introduced in Kennedy and Eberhart (1995) and successfully applied
in many fields of engineering optimization for its ease of use. Its performance depends on three
main characteristics: the number of swarm particles used, their initialization in terms of initial
location and speed, and the set of coefficients defining the behavior of the swarm. Original PSO
makes use of random coefficients to sustain the variety of the swarm dynamics, and requires ex-
tensive numerical campaigns to achieve statistically convergent results. Such an approach can
be too expensive in industrial applications, especially when CFD simulations are used, and for
this reason, efficient deterministic approaches have been developed (Campana et al. 2009).
Additionally, the availability of parallel architectures has offered the opportunity to develop
and compare synchronous and asynchronous implementation of PSO. The objective of present
work is the identification of the most promising implementation for deterministic PSO. A para-
metric analysis is conducted using 60 analytical test functions and three different performance
criteria, varying the number of particles, the initialization of the swarm, and the set of coeffi-
cients. The most promising PSO setup is applied to a ship design optimization problem, namely
the high-speed Delft catamaran advancing in calm water at fixed speed, using a potential-flow
code.
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1 INTRODUCTION

Particle Swarm Optimization (PSO) was originally introduced by Kennedy and Eberhart
[1, 2], based on the social-behavior metaphor of a flock of birds or a swarm of bees in search
for food, and belongs to the class of heuristic algorithms for single-objective evolutionary
derivative-free global optimization. Derivative-free global optimization approaches are usu-
ally preferred to derivative-based local approaches, when objectives are noisy, derivatives are
unknown and the existence of multiple local optima cannot be excluded, as often encountered in
simulation-based design (SBD) optimization. Original PSO makes use of random coefficients
to sustain the variety of the swarm dynamics, and therefore requires extensive numerical cam-
paigns to provide statistically convergent results. Such an approach can be too expensive in
SBD optimization for industrial applications, when CPU-time expensive computer simulations
are used directly as analysis tools. For these reason, efficient deterministic approaches (D-PSO)
have been developed and their use in ship hydrodynamics applications has been proven to be
effective and efficient, compared to local methods [3] and random PSO [4]. Moreover, the avail-
ability of parallel architectures and high performance computing (HPC) systems has offered the
opportunity to extend original synchronous PSO (S-PSO) to CPU-time efficient asynchronous
approaches (A-PSO) [5, 6]. Recent applications of PSO to ship SBD include medium- to high-
fidelity hull-form and waterjet design optimization of fast catamaran, by morphing techniques
[7, 8] and geometry modifications based on Karhunen-Loève expansion (KLE) [4], and low-
to medium-fidelity optimization of unconventional multi-hull configurations [9]. When global
techniques are used with CPU-time expensive solvers, the optimization process is computation-
ally very expensive and its effectiveness and efficiency remain an algorithmic and technological
challenge.

Effectiveness and efficiency of PSO are significantly influenced by the choice of three main
parameters: (a) the number of swarm particles interacting during the evolutionary optimization,
(b) the initialization of the particles in terms of initial location and speed, and (c) the set of coef-
ficients defining the personal or social tendency of the swarm dynamics. These parameters and
their effects on PSO have been studied by a number of authors (see, e.g., [10]). Nevertheless,
a specific indication of the optimal number of particles to be used with PSO is not present, the
particles initialization has been little discussed (although significantly affects the PSO algorithm
performance), and the coefficient set has been rarely investigated in a systematic way, including
exhaustive combination of all parameters.

The objective of the present work is the identification of the most effective and efficient
parameters for S/A D-PSO, for use in SBD optimization. The focus is on industrial problems
directly using CPU-time expensive analyses, with a number of design variables ranging from
two to twenty and simulations budget up to 1024 times the number of variables.

The approach includes a parametric analysis using 60 analytical test functions [11, 12] char-
acterized by different degrees of non-linearities and number of local minima, with full-factorial
combination of: (a) number of particles, using power of two per number of design variables; (b)
initialization of the swarm, in terms of initial position and velocity, by Hammersley distributions
[13]; (c) five set of coefficients, chosen from literature [14, 15, 16, 17, 18, 19]. Box constraints
are treated by an inelastic-wall-type approach (IW) [20]. Three absolute metrics are defined and
applied for the evaluation of the algorithm performances, based on the distance between PSO-
found and analytical optima. The most significant parameter among (a), (b) and (c) is identified,
based on the associated relative variability of the results. The most promising parameters for
S/A D-PSO are defined and applied to an industrial problem, namely a fast catamaran hull-form
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optimization in calm water at fixed speed. The objective function is the total resistance over dis-
placement ratio. The hull geometry modification is performed using the KLE-based morphing
approach presented in [4], using respectively four- and six-dimensional design spaces. Inelastic
and semi-elastic wall-type (IW/SEW) approaches are used for box constraints. Computer sim-
ulations are performed using a potential flow (PF) model with the INSEAN-WARP code [21].
Finally, present optimization results are compared with those obtained in earlier research, based
on a high-fidelity URANS solver [4].

2 PSO FORMULATIONS

Consider an objective function:

f(x) : Rn −→ R (1)

The global optimization problem reads as follows

min
x∈L

f(x), L ⊂Rn (2)

where L is a closed and bounded set belonging to Rn. To minimize the objective function f is
necessary to find a ∈ L so that:

∀ b ∈ L : f(a) ≤ f(b) (3)

Then a is a global minimum for the function f(x). Usually, the identification of the global
minimum is not possible or very hard, therefore solutions with sufficient good fitness are con-
sidered acceptable for practical purposes. In PSO, candidate solutions are the particles, denoted
by x ∈ L with associated fitness f(x).

2.1 Original formulation

The original formulation of the PSO algorithm, as presented by Shi and Eberhart [14], is{
vk+1

i = wvk
i + c1r1(xi,pb − xk

i ) + c2r2(xgb − xk
i )

xk+1
i = xk

i + vk+1
i

(4)

The above equations represent speed and position of the i-th particle at the k-th iteration respec-
tively: w is the inertia weight; c1 and c2 are the social and cognitive learning rate; r1 and r2 are
two random numbers in the range [0, 1]; xi,pb is the personal best position ever found by the i-th
particle and xgb is global best position ever found among all particles.

From the work of Clerc, Kennedy, Eberhart and Shi [22, 23, 24, 25, 15] appears that use of a
constriction factor χ may be necessary to ensure convergence of PSO. Accordingly, the system
in Eq. 4 is amended as follows{

vk+1
i = χ

[
vk

i + c1r1(xi,pb − xk
i ) + c2r2(xgb − xk

i )
]

xk+1
i = xk

i + vk+1
i

(5)

χ = 2˛̨̨̨q
2−ϕ−

√
ϕ2−4ϕ

˛̨̨̨ , where ϕ = c1 + c2, ϕ > 4
(6)

Typically, when Clerc’s constriction method is used [23], ϕ value is set to 4.1, with χ = 0.729,
c1 = c2 = 1.494.
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2.2 Deterministic formulation (D-PSO)

In order to make the overall PSO more efficient for use in SBD with CPU-time expensive
analyses, a deterministic algorithm was formulated in [3] by suppressing the random coeffi-
cients in Eq. 5, which becomes{

vk+1
i = χ

[
vk

i + c1(xi,pb − xk
i ) + c2(xgb − xk

i )
]

xk+1
i = xk

i + vk+1
i

(7)

The above formulation was compared to the original random PSO in, e.g., [4].

2.3 Synchronous and asynchronous implementations (S/A-PSO)

The synchronous implementation of PSO updates personal and global bests, particles speed
and position at the end of each iteration. If the evaluation time of the objective function is
significantly not uniform (e.g., due to iterative process/convergence of analysis tools), this leads
to an increase of wall-clock time and CPU-time reservation. S-PSO is presented as a pseudo-
code in the following and as a block diagram in Fig. 1a.

Algorithm 1 S-PSO
For k = 1, number of iterations

For i = 1, number of particles
Evaluate objective function f(xi)

End
Update xi,pb, xgb, and particle positions and velocities xk+1

i , vk+1
i

End

In contrast to S-PSO, the asynchronous implementation updates personal and global bests,
particles speed and position as soon as the information is available and the individual particle
accomplished its analysis and is ready for a new one. A-PSO is presented as a pseudo-code in
the following and as a block diagram in Fig. 1b.

Algorithm 2 A-PSO
For k = 1, number of iterations

For i = 1, number of particles
Evaluate objective function f(xi)
Update xi,pb, xgb, and particle positions and velocities xk+1

i , vk+1
i

End
End
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Figure 1: Block diagram for parallel PSO algorithm. The green boxes represent the first set of particles evaluated
by the algorithm
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2.4 Box constraints

The original PSO provides a free update of position and velocity of particles, regardless of
the domain of interest and its bounds. This implies that, during the evolution of the swarm,
the particles are allowed to go outside the domain bounds. This can be a critical issue in SBD
problems, when the domain bounds cannot be violated due to physical/geometrical/grids con-
straints. Accordingly, a barrier (wall) is used on the bounds of the research space in order to
confine the particles [26, 27]. Herein, the approach presented in [20] is used.
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Figure 2: Inelastic (a) and semi-elastic (b) wall type approaches applied in the transition from k-th to (k + 1)-th
PSO iteration

The particles are confined with an inelastic wall (IW) type approach. Specifically, if a parti-
cle is found to exceed one of the bounds in the transition from k-th to (k + 1)-th PSO iteration,
it is placed on the bound setting to zero the associated velocity component (see Fig.2a). This
approach helps the algorithm to explore the domain bounds. The IW approach is implemented
herein as follows.

Algorithm 3 Inelastic-wall-type approach (IW)
For i = 1, number of particles

For j = 1, number of variables
if xj

i > xj,max
i then xj

i = xj,max
i , vj

i = 0
if xj

i < xj,min
i then xj

i = xj,min
i , vj

i = 0
End

End

The use of IW has some limitation: in the unlikely event that all the particles tend to leave the
domain from the same hyper-corner, the IW sets all speeds to zero and the PSO algorithm may
stop. For this reason, a semi-elastic wall (SEW) type approach is also used. Accordingly, the
particle is placed on the bound, while the associated velocity component is defined as follows
(see also Fig. 2b):

Algorithm 4 Semi-elastic-wall-type approach (SEW)
For i = 1, number of particles

For j = 1, number of variables
if xj

i > xj,max
i then xj

i = xj,max
i , vj

i = − vj
i

χ(c1+c2)

if xj
i < xj,min

i then xj
i = xj,min

i , vj
i = − vj

i

χ(c1+c2)

End
End
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The damping factor [χ(c1 + c2)]
−1 is used to ensure that the particle falls within the feasible

domain.

3 PSO PARAMETERS AND EVALUATION METRIC

PSO parameters used are defined in the following. Their full-factorial combination is taken
into account, resulting in 210 PSO setups.

3.1 Number of particles

The number of particles used is defined as

Np = 2m ·Ndv , with m ∈ N [1, 7] (8)

therefore ranging from 2 ·Ndv to 128 ·Ndv.

3.2 Particles initialization

The initialization of particles location and speed is performed using a deterministic and ho-
mogeneous distribution, following the Hammersley sequence sampling [13]. Specifically, let
p = {p1, . . . , pNdv−1} be a vector of prime numbers with pi 6= pj , ∀i 6= j. Any positive integer
i can be expressed using any pj by

i =
r∑

k=0

akp
k
j (9)

where r is a suitable integer and ak is an integer in [0, pj − 1]. Finally, define φpj
(i) =∑r

k=0 ak/p
k+1
j and the i-th particle location as

ζi =

{
i

Np

, φp1(i), · · · , φpNdv−1
(i)

}
for i = 0, 1, 2, ..., Np − 1 (10)

The above equation is applied to three different regions, defined as:

1. entire optimization domain (red dots in Fig. 3a)

2. domain bounds (blu triangles in Fig. 3b)

3. domain and bounds (red dots and blue triangles in Fig. 3c)
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Figure 3: Examples of initializations in L = [−1, 1]× [−1, 1] with 32 particles

The initial velocity is defined by the following positions:
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• null velocity:
vi = 0, ∀ i ∈ [1, Np] (11)

• non-null velocity, based on initial particle position:

vi =
2√
Ndv

(
xi −

l + u

2

)
(12)

where l and u represent the lower and upper bound for x, respectively [4].

Combining initial position and velocity approaches results in six different initializations,
summarized in Tab. 1.

Table 1: Swarm initialization

Hammersley, over v = 0 v 6= 0

Domain A.0 A.1
Bounds B.0 B.1

Domain and bounds C.0 C.1

3.3 Coefficient set

Table 2 summarizes the coefficient sets used herein. The first set is the original proposed by
Eberhart and Clerc [14, 15]; the second was suggested by Carlisle and Dozier in [16]; the third
is that proposed by Trela in [17]; the fourth is a further suggestion by Clerc in [18]; the fifth
was suggested by Peri and Tinti in [19].

Table 2: Coefficient set

ID Set Name χ c1 c2 β

1 Eberhart and Clerc (2000) 0.729 2.050 2.050 0.869
2 Carlisle and Dozier (2001) 0.729 2.300 1.800 0.869
3 Trelea (2003) 0.600 1.700 1.700 0.642
4 Clerc (2006) 0.721 1.655 1.655 0.697
5 Peri and Tinti (2012) 0.754 2.837 1.597 0.953

As shown in [12], the particles free dynamics is oscillatory and stable if the following con-
dition holds: {

0 < a < 1

(1−
√

a)
2

< ω < (1 +
√

a)
2 (13)

where a = χ and ω = χ (c1 + c2). Introducing

β =
ω − (1−

√
a)

2

(1 +
√

a)
2 − (1−

√
a)

2 (14)

the condition of Eq. 13 reduces to {
0 < χ < 1

0 < β < 1
(15)

which is satisfied by all coefficient sets in Tab. 2.
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3.4 Number of function evaluations and PSO iterations

The number of function evaluations Nfeval (evaluations budget) is defined as

Nfeval = 2n ·Ndv, where n ∈ N [7, 10] (16)

and therefore ranges from 128 ·Ndv to 1024 ·Ndv. As per Eq. 8, the number of PSO iterations
Niter is

Niter =
Nfeval

Np

=
2n ·Ndv

2m ·Ndv

= 2n−m (17)

3.5 Evaluation metric

Three absolute performance criteria are introduced as evaluation metric, and defined as fol-
lows:

∆x =

√√√√ 1

Ndv

Ndv∑
i=1

(
xi − x?

i

Ri

)2

∆f =
fmin − f ?

min

f ?
max − f ?

min

∆ =

√
∆2

x + ∆2
f

2
(18)

∆x is the root mean square of the normalized Euclidean distance (in the domain space) between
PSO-found (x) and analytical minimum (x?); Ri is the range of the i-th variable; ∆f is the
associated normalized distance in the image space, where fmin is the PSO-found minimum and
f ?

min is the analytical one, and f ?
max is the analytical maximum in the research space.

4 OPTIMIZATION PROBLEMS

4.1 Test functions

Sixty analytical test functions are used, as summarized in appendix A, Tab. 9. They include
simple unimodal, highly complex multimodal and not differentiable problems (see e.g., [11, 12,
28]), with dimensionality ranging from two to twenty.

4.2 Hull-form SBD optimization of a high-speed catamaran

The high-speed Delft catamaran [7] is used as SBD test problem. The objective function is
the total resistance over displacement ratio (obj = Rt/δ) in calm water, advancing at Froude
number (Fr) equal to 0.5 [4]. Geometry modifications have to fit in a box, defined by maxi-
mum overall length, beam and draught. Two feasible design spaces are considered. The first
includes overall dimension bounds, whereas the second includes overall dimension bounds and,
in addition, constant length between perpendiculars (Lpp). Modifications of the parent hull
are performed using high-dimensional free-form deformation (FFD) and 95%-confidence di-
mensionality reduction based on KLE. Accordingly, four variables are used for the first design
space and six for the second, referred to in the following as 4D and 6D space, respectively.
New designs g are produced as

g(x) =

(
1−

Ndv∑
j=1

xj

)
g0 +

Ndv∑
j=1

xj gj (19)

where−1 ≤ xj ≤ 1,∀j ∈ [1, Ndv] are the design variables; Ndv = 4 for the first feasible design
space whereas equals 6 for the second; g0 is the original geometry and gj are the geometries
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associated to the design space principal directions, as provided by KLE for dimensionality
reduction. For details, the reader is referred to [4].

Simulations are conducted using the WARP (WAve Resistance Program) code, developed
at CNR-INSEAN. Wave resistance computations are based on linear potential flow theory and
details of equations, numerical implementation and validation of the numerical solver are given
in [21]. The frictional resistance is estimated using a flat-plate approximation, based on local
Reynolds number [29]. Simulations are performed for the right demi-hull, since the problem is
symmetrical with respect to the xz plane. The problem is discretized as follows: 20× 1 panels
in the inner-upstream sub-domain, 20 × 40 in the outer-upstream, 20 × 1 on the inner-hull,
20 × 40 on the outer-hull, 80 × 1 in the inner-dowstream, 80 × 2 in the transom-downstream,
80 × 40 in the outer-downstream and 125 × 50 on the body surface (Fig. 4). Domain bounds
are defined by 1 Lpp in the upstream, 4 Lpp in the downstream and 2 Lpp in the side.

X
Y

Z

hull body

X
Y

Z

outer hull

outer upstream

outer downstream

inner downstream

inner hull

inner upstream

Figure 4: Panel-grid for INSEAN-WARP

5 NUMERICAL RESULTS

5.1 Test functions and guideline identification

Test-function results are presented in the following and used to define guidelines for S/A
D-PSO.

5.1.1 SD-PSO

Figures 5 and 6, show the performances of SD-PSO versus the budget of function evalua-
tions, in terms of ∆x, ∆f , ∆, for Ndv < 10 and≥ 10 respectively. Average values are presented,
conditional to number of particles, particles initialization and coefficient set, respectively. Fig-
ures 7 and 8 show the relative variance σ2

r of ∆x, ∆f , ∆ for Ndv < 10 and ≥ 10 respectively,
retained by each of the PSO parameters. The particles initialization is found the most signifi-
cant parameters, especially for Ndv ≥ 10, whereas the coefficient set is shown to be the least
important. Tables 3 and 4 summarizes the five best performing setups based on ∆x, ∆f , ∆, for
Ndv < 10 and ≥ 10 respectively, varying the budget of function evaluations available. Average
values and standard deviations among all PSO setups are also provided.
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5.1.2 AD-PSO

Generally, AD-PSO results are found similar to SD-PSO. Specifically, Figs. 9 and 10, show
the performances of AD-PSO versus the budget of function evaluations, in terms of ∆x, ∆f ,
∆, for Ndv < 10 and ≥ 10 respectively. Average values are presented, conditional to number
of particles, particles initialization and coefficient set, respectively. Figures 11 and 12 show the
relative variance σ2

r of ∆x, ∆f , ∆ for Ndv < 10 and ≥ 10 respectively, retained by each of
the PSO parameters. The particles initialization is the most significant parameters, especially
for low budgets and Ndv ≥ 10. The coefficient set is shown to have a small effect on the
performance, compared to other PSO parameters. Tables 5 and 6 summarizes the five best
performing setups based on ∆x, ∆f , ∆, for Ndv < 10 and ≥ 10, respectively, varying the
budget of function evaluations. Overall averages and standard deviations among all PSO setups
are also included.
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Figure 5: SD-PSO average performance for Ndv < 10
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Table 3: Best performing setups for SD-PSO, Ndv < 10

Nfeval/Ndv

Average Best SD-PSO
(STD)

∆x ∆f ∆
Np

Ndv
Init Coef ∆x

Np
Ndv

Init Coef ∆f
Np

Ndv
Init Coef ∆

128

16 A.1 3 0.072 4 C.1 4 0.015 4 C.1 4 0.064
0.180 0.168 0.203 64 A.1 5 0.075 2 A.1 4 0.030 2 A.1 4 0.073

32 A.1 3 0.076 8 A.1 3 0.048 4 C.1 3 0.083
(0.098) (0.114) (0.109) 16 A.0 3 0.080 4 A.1 3 0.053 16 A.1 3 0.083

4 C.1 3 0.080 4 C.1 3 0.053 8 A.1 3 0.087

256

64 A.1 4 0.063 4 C.1 4 0.014 16 A.0 3 0.053
0.166 0.145 0.183 16 A.1 3 0.064 16 A.0 3 0.017 16 A.1 3 0.055

32 A.1 5 0.065 16 A.1 3 0.026 4 C.1 4 0.060
(0.097) (0.118) (0.112) 16 A.0 3 0.066 2 A.1 4 0.030 2 A.1 4 0.072

32 C.0 3 0.067 8 C.1 4 0.038 16 A.0 4 0.053

512

64 A.1 4 0.049 16 A.0 3 0.012 16 C.0 3 0.049
0.156 0.129 0.167 64 A.0 4 0.056 4 C.1 4 0.013 32 A.1 3 0.049

64 A.1 2 0.056 32 C.0 3 0.017 32 C.0 3 0.049
(0.098) (0.120) (0.114) 32 A.1 5 0.058 16 A.0 1 0.018 16 A.1 3 0.053

32 C.0 3 0.059 32 A.1 3 0.019 16 A.0 1 0.053

1024

64 A.1 4 0.038 64 A.0 4 0.004 64 A.1 4 0.030
0.149 0.118 0.156 64 A.1 2 0.039 32 C.1 4 0.005 64 A.0 4 0.031

64 A.0 4 0.043 64 A.1 3 0.005 64 A.1 3 0.039
(0.099) (0.123) (0.117) 128 C.1 4 0.049 64 A.0 3 0.007 64 A.1 2 0.039

32 A.1 1 0.049 64 A.1 4 0.007 32 C.1 4 0.041

Av.

64 A.1 4 0.047 4 C.1 4 0.014 16 A.0 3 0.060
0.163 0.140 0.177 64 A.0 4 0.062 16 A.0 3 0.025 4 C.1 4 0.061

32 A.1 5 0.064 2 A.1 4 0.030 16 A.1 3 0.061
(0.097) (0.118) (0.111) 16 A.1 3 0.064 16 A.1 3 0.034 32 A.1 3 0.066

32 A.1 3 0.065 32 A.1 3 0.039 32 C.0 3 0.071
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Figure 6: SD-PSO average performance for Ndv ≥ 10
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Table 4: Best performing setups for SD-PSO, Ndv ≥ 10

Nfeval/Ndv

Average Best SD-PSO
(STD)

∆x ∆f ∆
Np

Ndv
Init Coef ∆x

Np
Ndv

Init Coef ∆f
Np

Ndv
Init Coef ∆

128

2 A.1 2 0.155 2 C.1 2 0.023 2 A.1 2 0.118
0.323 0.217 0.301 4 A.1 4 0.155 2 A.1 4 0.025 2 C.1 2 0.119

2 C.1 1 0.156 4 C.1 2 0.027 2 A.1 4 0.121
(0.136) (0.195) (0.162) 4 C.1 4 0.158 4 A.1 3 0.030 4 C.1 4 0.122

2 A.1 4 0.159 4 C.1 4 0.031 4 C.1 2 0.122

256

4 C.1 2 0.149 4 C.1 2 0.019 4 C.1 2 0.108
0.311 0.199 0.286 4 A.1 4 0.152 8 A.1 4 0.019 8 A.1 4 0.115

2 A.1 2 0.153 4 C.1 4 0.021 4 C.1 4 0.116
(0.139) (0.196) (0.163) 2 C.1 1 0.154 8 C.1 4 0.022 8 C.1 4 0.116

4 C.1 4 0.156 2 C.1 2 0.022 2 A.1 2 0.117

512

4 C.1 2 0.147 16 A.1 3 0.011 4 C.1 2 0.106
0.298 0.183 0.272 32 A.1 4 0.149 8 A.1 4 0.013 8 C.1 4 0.110

4 A.1 4 0.151 8 C.1 2 0.014 8 A.1 4 0.111
(0.140) (0.197) (0.165) 64 A.1 3 0.153 8 A.0 4 0.017 4 C.1 4 0.114

8 C.1 4 0.153 4 C.1 2 0.018 8 C.1 2 0.115

1024

32 A.1 4 0.136 16 A.1 3 0.009 32 A.1 4 0.098
0.291 0.172 0.263 64 A.1 3 0.144 16 A.1 4 0.011 64 A.1 3 0.105

64 C.1 4 0.145 32 A.1 4 0.011 4 C.1 2 0.106
(0.142) (0.199) (0.168) 4 C.1 2 0.147 8 A.1 4 0.012 16 A.1 4 0.109

128 A.1 4 0.148 32 C.1 3 0.013 8 C.1 4 0.109

Av.

4 A.1 4 0.152 4 C.1 2 0.020 4 C.1 2 0.111
0.306 0.193 0.280 4 C.1 2 0.152 8 C.1 2 0.022 4 C.1 4 0.117

2 A.1 2 0.153 2 C.1 2 0.022 2 A.1 2 0.117
(0.139) (0.196) (0.164) 2 C.1 1 0.154 8 A.1 4 0.023 8 C.1 4 0.117

4 C.1 4 0.156 4 C.1 4 0.039 2 C.1 4 0.118

 0

 20

 40

 60

 80

 100

 100  1000

σ
2

r 
[%

]

No. of feval per Ndv [-]

N. Part
Init

Coef

(a) ∆x

 0

 20

 40

 60

 80

 100

 100  1000

σ
2

r 
[%

]

No. of feval per Ndv [-]

N. Part
Init

Coef

(b) ∆f

 0

 20

 40

 60

 80

 100

 100  1000

σ
2

r 
[%

]

No. of feval per Ndv [-]

N. Part
Init

Coef

(c) ∆

Figure 7: σ2
r(%) of SD-PSO for Ndv < 10
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r(%) of SD-PSO for Ndv ≥ 10
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Figure 9: AD-PSO average performance for Ndv < 10

Table 5: Best performing setups for AD-PSO, Ndv < 10

Nfeval/Ndv

Average Best AD-PSO
(STD)

∆x ∆f ∆
Np

Ndv
Init Coef ∆x

Np
Ndv

Init Coef ∆f
Np

Ndv
Init Coef ∆

128

16 A.1 1 0.069 4 C.1 3 0.004 4 C.1 4 0.053
0.175 0.164 0.199 16 A.1 3 0.069 4 C.1 4 0.007 4 C.1 3 0.061

16 A.0 3 0.071 4 C.0 3 0.021 4 C.0 4 0.076
(0.096) (0.113) (0.107) 4 C.1 4 0.073 4 C.0 4 0.022 8 A.1 3 0.080

16 A.1 4 0.076 2 A.1 4 0.037 2 A.1 4 0.082

256

16 A.1 2 0.057 4 C.1 4 0.003 4 C.1 4 0.046
0.160 0.142 0.178 16 A.1 3 0.057 4 C.1 3 0.004 4 C.1 3 0.059

16 A.1 1 0.059 4 C.0 4 0.014 16 A.0 3 0.066
(0.093) (0.118) (0.107) 16 A.0 3 0.060 4 C.0 3 0.020 4 C.0 4 0.067

16 A.0 4 0.060 2 A.1 4 0.037 16 A.1 3 0.074

512

32 C.1 4 0.046 4 C.1 4 0.003 16 A.0 4 0.036
0.146 0.124 0.159 16 A.0 4 0.049 4 C.1 3 0.004 4 C.1 4 0.040

16 A.1 2 0.050 16 A.0 4 0.005 16 A.1 2 0.053
(0.092) (0.117) (0.109) 32 A.1 4 0.051 4 C.0 4 0.014 16 A.1 3 0.056

16 A.1 1 0.053 4 C.0 3 0.019 16 A.1 4 0.057

1024

32 C.1 4 0.040 16 A.0 4 0.002 16 A.0 4 0.034
0.138 0.110 0.147 32 A.1 2 0.043 4 C.1 4 0.003 64 A.0 4 0.036

64 A.0 4 0.046 4 C.1 3 0.004 32 A.1 4 0.038
(0.093) (0.120) (0.111) 32 A.1 4 0.047 64 A.0 3 0.006 64 A.0 3 0.038

16 A.1 2 0.047 64 A.0 4 0.008 32 C.1 4 0.039

Av.

16 A.1 4 0.058 4 C.1 4 0.004 4 C.1 4 0.045
0.154 0.135 0.170 16 A.1 1 0.058 4 C.1 3 0.004 4 C.1 3 0.060

16 A.1 3 0.059 4 C.0 4 0.016 16 A.0 4 0.065
(0.092) (0.114) (0.106) 32 C.1 4 0.060 4 C.0 3 0.020 16 A.0 3 0.068

16 A.0 3 0.061 2 A.1 4 0.037 4 C.0 4 0.069
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Figure 10: AD-PSO average performance for Ndv ≥ 10

Table 6: Best performing setups for AD-PSO, Ndv ≥ 10

Nfeval/Ndv

Average Best AD-PSO
(STD)

∆x ∆f ∆
Np

Ndv
Init Coef ∆x

Np
Ndv

Init Coef ∆f
Np

Ndv
Init Coef ∆

128

4 A.1 4 0.147 2 C.1 4 0.013 4 A.1 4 0.107
0.320 0.214 0.297 2 C.1 4 0.152 4 A.1 4 0.015 2 C.1 4 0.109

8 C.1 4 0.152 2 A.1 4 0.019 4 C.1 4 0.116
(0.136) (0.191) (0.159) 2 A.1 2 0.158 4 C.1 4 0.022 2 A.1 4 0.116

4 C.1 4 0.159 4 C.1 3 0.027 8 C.1 4 0.117

256

4 A.1 4 0.145 4 A.1 4 0.010 4 A.1 4 0.104
0.307 0.194 0.282 8 C.1 4 0.149 2 C.1 4 0.012 8 C.1 4 0.108

4 C.1 2 0.150 8 A.1 3 0.016 2 C.1 4 0.108
(0.137) (0.190) (0.160) 2 C.1 4 0.151 2 A.1 4 0.016 4 C.1 2 0.111

32 A.1 3 0.154 8 C.1 4 0.017 4 C.1 4 0.114

512

32 A.1 3 0.141 16 A.0 3 0.010 4 A.1 4 0.103
0.292 0.176 0.265 4 A.1 4 0.144 4 A.1 4 0.010 8 C.1 4 0.105

16 A.1 4 0.145 8 A.1 4 0.011 16 A.1 4 0.105
(0.139) (0.191) (0.162) 8 C.1 4 0.147 2 C.1 4 0.012 2 C.1 4 0.108

4 C.1 2 0.147 16 A.1 4 0.013 32 A.1 3 0.108

1024

32 A.1 3 0.136 16 A.1 4 0.008 32 A.1 3 0.100
0.283 0.165 0.255 64 C.1 3 0.140 16 A.0 3 0.008 16 A.1 4 0.101

128 A.1 2 0.141 16 A.0 4 0.009 4 A.1 4 0.102
(0.140) (0.194) (0.164) 32 C.1 4 0.142 8 A.1 4 0.010 32 C.1 4 0.104

16 A.1 4 0.142 4 A.1 4 0.010 8 C.1 4 0.104

Av.

4 A.1 4 0.145 4 A.1 4 0.011 4 A.1 4 0.104
0.300 0.187 0.275 8 C.1 4 0.148 2 C.1 4 0.012 2 C.1 4 0.108

2 C.1 4 0.151 2 A.1 4 0.016 8 C.1 4 0.108
(0.136) (0.190) (0.160) 4 C.1 2 0.151 4 C.1 4 0.018 4 C.1 2 0.112

32 A.1 3 0.152 8 A.1 3 0.018 4 C.1 4 0.114
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Figure 11: σ2
r(%) of AD-PSO for Ndv < 10
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Figure 12: σ2
r(%) of AD-PSO for Ndv ≥ 10

5.1.3 Suggested guideline for S/A D-PSO

The most frequent setup is selected in Tabs. 3, 4, 5 and 6, in order to define a guideline
for the use of S/A D-PSO as simple and general as possible. This corresponds to a number
of particles Np equal to 4 times the number of design variables Ndv, a particles initialization
including distribution on domain and bounds with non-null velocity, and the set of coefficients
by Clerc (2006) [18], χ = 0.721, c1 = c2 = 1.655. The guideline is summarized in Tab. 7.

Table 7: Suggested guideline for S/A D-PSO

Np/Ndv Init Coef

4 C.1 (including domain and bounds) 4 (Clerc, 2006)

Figures 13 and 14 show the performance of the suggested PSO setup, for SD-PSO and AD-
PSO and Ndv < 10 and ≥ 10, respectively. Average performance, standard deviation and best
performing setup among all combinations is shown for each budget. The guideline setup is
found always very close or coincident to the best. In addition, it may be noted how AD-PSO is
always equivalent or slightly better than SD-PSO.

5.2 High-speed catamaran SBD optimization

A preliminary sensitivity analysis for each design variable is shown in Fig. 15, showing ∆obj

compared to the parent hull. Changes in ∆obj are found significant in each direction, revealing
a reduction of the objective function close to 9% for the 4D design space, and close to 10% for
the 6D.
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(b) Ndv ≥ 10

Figure 13: Performance of suggested guideline using SD-PSO
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Figure 14: Performance of suggested guideline using AD-PSO

Optimization results in Tab. 8 show that both algorithms (S/A D-PSO) with IW and SEW
lead to a reduction of the objective function close to 20% for the 4D design space and greater
than 20% for the 6D design space. Furthermore the optimum configuration leads to a consider-
able reduction of wave’s elevation compared to the original geometry (Figs. 17 and 18). There
are not significant differences between the results obtained by SD-PSO and AD-PSO except
for SD-PSO with IW for the 6D design space. In this case the optimization stops after 6 PSO
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Figure 15: Sensitivity analysis

iterations, due to IW approach. As shown in Fig. 16, differences in optimal design variables
are due to the use of IW or SEW for box constraints. The final configuration for the first design
space (4D) is fairly close (except for the second variable) to that obtained using metamodels
with a URANS solver [4] (Fig. 16a), while for the second design space (6D) the differences
are more significant (Fig. 16b). Finally, S/A D-PSO iterations are shown in Fig. 19, revealing a
quite sudden convergence.

Table 8: SBD results

Design space wall approach Rt [N] δ [N] obj ∆obj(%)

Original 50.15 852.5 5.88e-2

4D
SD-PSO IW 39.92 850.9 4.69e-2 -20.24

SEW 40.36 850.6 4.67e-2 -20.57

AD-PSO IW 39.85 851.1 4.68e-2 -20.41
SEW 40.68 851.7 4.71e-2 -19.90

6D
SD-PSO IW 39.41 849.1 4.64e-2 -21.10

SEW 34.29 835.4 4.10e-2 -30.27

AD-PSO IW 34.31 835.5 4.11e-2 -30.10
SEW 34.08 830.8 4.09e-2 -30.30
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Figure 16: Comparison between optimal design variables of SD-PSO, AD-PSO with IW and SEW by PF and those
obtained by metamodels with URANS in [4]
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(a) Original Delft catamaran

(b) SD-PSO with IW

(c) SD-PSO with SEW

(d) AD-PSO with IW

(e) AD-PSO with SEW

Figure 17: 4D SBD results
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(a) Original Delft catamaran

(b) SD-PSO with IW

(c) SD-PSO with SEW

(d) AD-PSO with IW

(e) AD-PSO with SEW

Figure 18: 6D SBD results
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Figure 19: Convergence of S/A D-PSO

6 CONCLUSIONS AND FUTURE WORK

A guideline for an effective and efficient use of S/A D-PSO has been suggested and dis-
cussed, assuming limited computational resources. A parametric analysis has been conducted
using 60 analytical test functions from literature and three different absolute performance crite-
ria, varying the number of particles, the initialization of the swarm, and the set of coefficients.
All possible combinations of PSO parameters led to 210 optimizations for each function. The
most promising PSO setup has been identified and successfully applied to a ship SBD optimiza-
tion problem, namely the high-speed Delft catamaran advancing in calm water at fixed speed
using a potential-flow code. The optimization pertained to the hull form and aimed at the total
resistance over displacement ratio reduction, using four- and six-dimensional design spaces.

The outcomes of the current analysis may be summarized as follows:

• The particles initialization has been found the most significant PSO parameter, especially
for Ndv ≥ 10 and low budgets of function evaluations. Conversely, the coefficient set has
been found with a little influence on the PSO performance, compared to other parameters.

• The suggested guideline setup corresponds to: a number of particles Np equal to 4 times
the number of design variables Ndv; particles initialization including (Hammersley) dis-
tribution on domain and bounds with non-null velocity; set of coefficient by Clerc (2006)
[18], i.e., χ = 0.721, c1 = c2 = 1.655.

• The guideline setup has been found always very close or coincident to the best setup
among all 210 available, for each budget. In addition, it has been proven to perform well
for a 4D and a 6D ship SBD problems.

• AD-PSO has been found with equivalent performance to SD-PSO.

• SEW approach for box constraints should be preferred to IW, in order to avoid an early
arrest of the swarm particles.

Future work includes developments for new particles initialization methodologies, with ap-
plication to test functions and ship SBD problems, using S/A D-PSO. Future research also in-
cludes the extension of present studies to multi-objective D-PSO with application to reliability-
based robust design optimization [30].
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A LIST OF TEST FUNCTIONS

Table 9 summarizes the test functions used in the current work.

Table 9: Test functions

fk(x) Name Dimension Bounds Optimum
Ndv [xmin, xmax]i,...,Ndv min f(x)

f1(x) Sphere 2 [−5, 5]Ndv 0.000
f2(x) Freudenstein-Roth 2 [−5, 5]Ndv 0.000
f3(x) Ackley 2 [−5, 5]Ndv 0.000
f4(x) Three-Hump Camel Back 2 [−5, 5]Ndv 0.000
f5(x) Six-Hump Camel Back 2 [−2.5, 2.5]i, [−1.5, 1.5]j -1.032
f6(x) Quartic 2 [−10, 10]Ndv -0.352
f7(x) Beale 2 [−4.5, 4.5]Ndv 0.000
f8(x) Schubert penalty 1 2 [−10, 10]Ndv -186.731
f9(x) Schubert penalty 2 2 [−10, 10]Ndv -186.731
f10(x) Booth 2 [−10, 10]Ndv 0.000
f11(x) Matyas 2 [−10, 10]Ndv 0.000
f12(x) Goldstein-Price 2 [−2, 2]Ndv 3.000
f13(x) Bukin n.6 2 [−15,−5]i, [−3, 3]j 0.000
f14(x) Rosenbrock 2 [−100, 100]Ndv 0.000
f15(x) Schaffer n.2 2 [−100, 100]Ndv 0.000
f16(x) Schaffer n.6 2 [−100, 100]Ndv 0.000
f17(x) Easom 2 [−100, 100]Ndv -1.000
f18(x) Test Tube Holder 2 [−10, 10]Ndv -10.872
f19(x) Treccani 2 [−5, 5]Ndv 0.000
f20(x) Tripod 2 [−100, 100]Ndv 0.000

f21,22(x) Exponential 2, 4 [−10, 10]Ndv -1.000
f23,24(x) Styblinski-Tang 2, 4 [−5, 5]Ndv −39.166 ·Ndv

f25,26(x) Cosine Mixture 2, 4 [−1, 1]Ndv −0.100 ·Ndv

f27,28(x) Hartman n.3, n.6 3, 6 [0, 1]Ndv -3.860, -3.320
f29,30,31,32(x) 5n loc. minima (Levy) 2, 5, 10, 20 [−10, 10]Ndv 0.000
f33,34,35,36(x) 10n loc. minima (Levy) 2, 5, 10, 20 [−10, 10]Ndv 0.000
f37,38,39,40(x) 15n loc. minima (Levy) 2, 5, 10, 20 [−5, 5]Ndv 0.000
f41,42,43,44(x) Griewank 2, 5, 10, 20 [−10, 10]Ndv 0.000
f45,46,47,48(x) Alpine 2, 5, 10, 20 [−10, 10]Ndv 0.000
f49,50,51,52(x) Multi Modal 2, 5, 10, 20 [−10, 10]Ndv 0.000
f53,54,55,56(x) Dixon-Price 2, 5, 10, 20 [−10, 10]Ndv 0.000

f57(x) Colville 4 [−10, 10]Ndv 0.000
f58(x) Shekel n.5 4 [0, 10]Ndv -10.153
f59(x) Shekel n.7 4 [0, 10]Ndv -10.403
f60(x) Shekel n.10 4 [0, 10]Ndv -10.536
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