Environ Sci Pollut Res (2014) 21:10949—-10959
DOI 10.1007/s11356-014-2998-1

RESEARCH ARTICLE

Trace elements in size-segregated urban aerosol in relation
to the anthropogenic emission sources and the resuspension
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Abstract Size segregated particulate samples of atmospheric
aerosols in urban site of continental part of Balkans were
collected during 6 months in 2008. Six stages impactor in
the size ranges: Dp<0.49 pum, 0.49<Dp<0.95 pm, 0.95<
Dp<1.5 um, 1.5<Dp<3.0 um, 3.0<Dp<7.2 um, and 7.2<
Dp<10.0 um was applied for sampling. ICP-MS was used to
quantify elements: Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K,
Li, Na, Ni, Mg, Mn, Pb, Sb, V, and Zn. Two main groups of
elements were investigated: (1) K, V, Ni, Zn, Pb, As, and Cd
with high domination in nuclei mode indicating the combus-
tion processes as a dominant sources and (2) Al, Fe, Ca, Mg,
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Na, Cr, Ga, Co, and Li in coarse mode indicating mechanical
processes as their main origin. The strictly crustal origin is for
Mg, Fe, Ca, and Co while for As, Cd, K, V, Ni, Cu, Pb, and Zn
dominates the anthropogenic influence. The PCA analysis has
shown that main contribution is of resuspension (PC1, 0~
30 %) followed by traffic (PC2, 0°~20 %) that are together
contributing around 50 % of elements in the investigated
urban aerosol. The EF model shows that major origin of Cd,
K, V, Ni, Cu, Pb, Zn, and As in the fine mode is from the
anthropogenic sources while increase of their contents in the
coarse particles indicates their deposition from the atmosphere
and soil contamination. This approach is useful for the assess-
ment of the local resuspension influence on element’s contents
in the aerosol and also for the evaluation of the historical
pollution of soil caused by deposition of metals from the
atmosphere.

Keywords Urban aerosol - Size segregated of trace elements -
The processes responsible for their origin

Introduction

The knowledge of the size distributions of trace elements in
atmospheric particles is important not only because of inhala-
tion affects but also for control which metals may be dispersed
through the atmospheric transport and the evaluation of depo-
sitions rates to the Earth’s surface.

The size distribution of trace elements and metals bond-
ed to atmospheric particles is crucial in understanding the
health effects by inhalation, in evaluation their sources and
assessing their lifetime in the atmosphere. Primary particles
of natural origin generated by mechanical processes includ-
ing soil erosion, sea spray, or industrial mechanical pro-
cesses are composed of crustal elements (Seinfeld and
Pandis 1998). Urban areas are rich in anthropogenic
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sources of fine particles containing harmful metals and
trace elements. Traffic, energy production, and industrial
combustion are main urban emission sources of elements
from fossil fuels. So, Ni and V are tracers of fossil fuels
burning (Suarez and Ondov 2002; Moffet et al. 2008) and
the use of tetra-ethyl-lead as a gasoline additive resulted in
emission of submicron lead particles (Murphy et al. 2007;
Moffet et al. 2008). Trace elements of anthropogenic origin
released into atmosphere in high temperature processes:
combustion of fossil fuels, wood, and waste (Allen et al.
2001) or metal working (Ondov and Wexler 1998). Ele-
ments originating from the same source have the similar
size-distribution (Ondov and Wexler 1998).

Trace metals are found in almost all atmospheric aerosol
size fractions. Accumulation mode (0.1-1.0 pwm) deposit
slowly and can therefore be transported over long distances
from their sources, having consequent effects in remote re-
gions (Allen et al. 2001). Also, the size distributions can
provide information about proximity of the sources to the
sampling site. So, levels of primary ultrafine particles (less
of 0.1 um) are the highest close to their sources (Reponen
et al. 2003).

The resuspended surface dust make a large contribution
to the total natural emission, accounting for >50 % of Cr,
Mn, and V, and >20 % of Cu, Mo, Ni, Pb, Sb and Zn and,
volcanic activities contributing by 20 % of atmospheric Cd,
Hg, As, Cr, Cu, Ni, Pb, and Sb (Pacyna 1998; Allen et al.
2001). The dominant contribution of the local resuspension
to particulate matter levels has been reported by Pordevié
et al. 2004. The study of the local topsoil contribution to
airborne particulate matter in the area of Rome has shown
compositional differences among main geological domains
and rock types of this area. A significant enrichment in Pb,
Ni, and Cr has been observed in the PM;, resuspended
fraction of either volcanic or sedimentary outcropping rocs
(Pietrodangelo et al. 2013).

The crustal enrichment factors indicate that the freeway
traffic contribute to enrich levels of ultrafine Cu, Ba, P and Fe,
and possibly Ca. In addition, this study shows that trace
elements constitute a small fraction of PM mass in nanoparti-
cle size rang with high importance to human health
(Ntziachristos et al. 2007). Handler et al. (2008) have reported
that trace metal emissions (As, Ba, Cd, Co, Cr, Cu, Mn, Ni,
Pb, Sb, Sr, Ti, V, Zn) contributed less than 1 % of total
emissions in all size fractions. The resuspension is dominant
process for emissions of coarse particles whereas combustion
processes are dominant for emission of elements in fine par-
ticles (Handler et al. 2008). The atmospheric concentrations of
P, K, Mn, Cu, Mo, Pb, Mg, S, Ca, and especially Fe, are
associated with both traffic and non-traffic sources, and vari-
ous studies are in very good agreement with this except for the
relative abundance of Mg, Ca, and Fe in road dust depending
on locations (Ning et al. 2008).

@ Springer

The study that was performed in Dresden at the busy main
street has shown that local sources such as traffic and heating
are influencing on Cu, Cr, Fe, Mn, Zn, Ga, Si, and Ti contents
in atmospheric aerosol and that the influence of the air masses
origin is insignificant. The same study showed crustal enrich-
ment factors (CEFs) >100 for Pb, Zn and Cu for all particle
sizes indicating strong anthropogenic influence. The dominant
source for Zn was coal burning as well as for Pb in the winter
period while biomass burning is the main source for K. Also,
concentrations of Pb and K in urban atmospheric aerosol of
Dresden are the highest in air masses from the East
(Briiggemann et al. 2009).

The results of concentrations of metals in Oxford aero-
sols have shown that Fe, Mn, Sr, and Cu mainly found in
particles >1 um, the size fraction associated with resuspen-
sion of soil and road dust, while V, Ni, Cd and Pb were
predominantly present in smaller particles, <1 wm, suggest-
ing high-temperature sources for these metals (Witt et al.
2010).

Number of studies regarding ambient particulate matter
source apportionment using receptor models has been done
(Belis et al. 2013). The study of the chemical composition
and sources of fine and coarse aerosol particles in the
Eastern Mediterranean (Finokalia—Create) have shown
the significant correlation between Ti, Fe, Mn, and Ca,
and these elements have high loadings in the first compo-
nent for the coarse mode, together with Ni and V, with
moderate loading within the first component, explains
43.1 % of the total variance. In the fine mode, Ca, Fe,
Mn, and Ca have high loadings in the first component with
28.1 % of the total variance attributed to crustal component
and second factor accounting 12.5 % of the total variance
with high loadings for V and Ni may be attributed to heavy
oil combustion (Koulouri et al. 2008). Vanadium in fine
particles was selected as an indicator for emission from ship
traffic source (Zhao et al. 2013). An investigation of traffic
emission on Hatfield Tunnel shows that metals form aver-
age 27 % of total PM (Lawrence et al. 2013). The similar
investigation in Marqués de Pombal tunnel (Pio et al. 2013)
shows that Al, Fe, Mn, Cu, etc., concentrated in the coarser
size ranges are mainly emitted from mechanical processes
(road resuspension, wear of brakes, and tires) while Zn, V,
Pb, Cd, Ba, etc., appear to have a dual origin inside the
engine and in mechanical wear.

Study in Patras has shown that local sources other than
traffic, were found to contribute approximately 20 % and the
rest was attributed to long range transport. Biomass burning
was identified as a winter source, but it could not be
concluded whether it was local or transported. Domestic
heating was identified as the dominant winter source and
was found to increase PM levels sharply during nighttime.
Two fuels are commonly used in the area, diesel and
wood (Pikridas et al. 2013).
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The aim of the present study is to clarify the processes
causing the presence of elements in atmospheric aerosols and
explain their sources in urban area of continental part of
Balkan Peninsula.

Experimental methods

Samples were collected in the urban area, downtown of Bel-
grade, from June to December 2008 (Lat. 44°49'10.08"N—
Long. 20°27'32.47"E—113 m above sea level). Belgrade, the
capitol of Serbia, is located at the confluence of the rivers Sava
and Danube and has a population of about two million inhab-
itants. Total number of vehicles in Belgrade is about 500,000.
Majority of them are passenger cars, whose average age is
more than 15 years (AniCi¢ et al. 2009). In the investigated
period, leaded gasoline (0.4 g 1! Pb) was still used. For the
District Heating System of the city of Belgrade, the heating
energy is produced in 60 heating sources—15 large heating
plants and 45 boiler rooms with a total capacity of 2,868 MW,
which mainly use natural gas or heavy fuel oil (Public Utility
Company Beogradske elektrane). Fuel used for domestic
heating in individual heating facilities consists mainly of coal
or heavy fuel oil.

Belgrade is located in a continental climate region. The
average annual air temperature is 12.5 °C. The warmest month
is July with an average temperature of 23 °C, and the coldest
month is January with an average temperature of 1.4 °C. The
average annual rainfall is 690.9 1 m 2. The maximum monthly
precipitation occurs in June and the minimum in February.
The wind most frequently blows from west-northwest and
south-southeast directions (Republic Hydrometeorological
Service of Serbia). Wind of moderate to strong intensity
coming from southeast direction, called KoSava, occurs more
often during autumn and winter.

Size-segregated aerosol in 32 samples sets (corresponding
to 192 samples) were collected every sixth day by a High
Volume Cascade Impactor, Model TE-236. Time interval per
sample was 48 hours, and the average air volume sampled was
3,500 m®. Each sample set comprised six atmospheric aerosol
samples: three that are representing the coarse mode in the
ranges of 1.5<Dp<3.0 um (PM;5.30), 3.0<Dp<7.2 um
(PM34_75), and 7.2<Dp<10.0 um (PM 7, ;o) and three that
are representing fine mode in the ranges of Dp<0.49 um
(PM<0.49), 049<Dp§095 Hm (PMO'494)'95), and 0.95 <Dp§
1.5 um (PMg 95_; 5) (Pordevi¢ et al. 2012).

Gravimetric measurements and sample processing have
been performed in a clean room environment and glove box
system with nitrogen atmosphere and the filters were kept at a
temperature (20+5 °C) and humidity (45+5 %) For gravimet-
ric measurements, a KERN ABT 120-5DM balance (accuracy
class I and precision of 0.01 mg) was used according the
procedure reported by Stortini et al. (2009).

Before their use, filters in mixed cellulose ester were
washed in 1 % HNOj for 24 h, dried in a clean room (class
100) environment and stored singularly. Blanks correspond
to a set of filters deposed for few minutes (without being
sampled) between two sample sets. Samples and blanks
were stored in freeze (—20 °C) till their analytical
processing.

Sampled and blank filters were digested by Milestone®
HPR-1000/10S High Pressure temperature-controlled mi-
crowave oven (Buccolieri et al. 2005). Eight of ten ves-
sels were used for samples (half of filter per vessel) while
two of them were used only for reagents (blank control
for reagents). To avoid gas emission during the digestion
procedure, vessels with filters and reagents where left 1 h
at room temperature before digestion. The program for
digestion includes 1 h at 60 °C followed by a sequence of
steps that let samples reach 180 °C after 2 h. The choice
of the time for samples digestion is due to the composi-
tion of filter (mixed cellulose ester). In fact, for the cut off
<0.49 pum, 3 ml of distillate water was added to reagents
and sample to avoid dry or explosion episodes during
digestion. Samples recovering where performed as
described by Stortini et al. (2009).

An Inductively Coupled Plasma-Quadrupole Mass
Spectrometry (ICP-QMS—Agilent 75001) with an octo-
pole collision cell technology was used for trace ele-
ment measurements. Such technology reduces interfer-
ences of ions.

Tuning procedure was performed with a 1 ppb
multielemental solution of 10 elements. Counts were checked
for Li (7), Y (89), and T1 (205) and were assumed acceptable
when values were higher than 7,000 counts. Ce (140) was
considered in oxide ratio (156/140) and double charge
ratio (70/140) and values for both were kept <1 %. To
correct loss of sensitivity, a 10 ppb internal standard of In
(115) was used.

Results and discussion

Elements concentrations in samples have been obtained
after subtraction of the field blank values, and the limit of
detection (LOD) was calculated for each element using the
formula LOD=30 where 30 corresponds to three times the
standard deviation (SD) of the blank value; values lower
than the LOD were reported as non-detected. The accuracy
and precision of the method was controlled using the
standard reference material (Urban Particulate Matter
NIST®1684a) and the relative error was calculated using
the formula RE%=V4et— Veerd Veers* 100 in which Vg, is
the determined value and V.., is the certified value
(Table 1).
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Table 1 Accuracy evaluated against the standard reference material
(Urban Particulate Matter NIST®1684a)

Element Determined value Certified value RE %
(mg kg ) (mg kg )
Na 4,240 3,565 -16
Mg 8,130 7,514 -8
Al 34,300 30,116 =12
K 10,560 10,755 +2
\% 127 125 -1
Cr 402 455 +13
Mn 790 793 +0.4
Fe 39,200 45,598 +16
Co 17.93 15.99 —11
Ni 81.1 77.8 —4
Cu 610 507 -17
Zn 4,800 5,377 +12
As 115.5 120.24 +4
Cd 73.7 71.8 -3
Sb 454 45.6 +0.4
Pb 6,550 5,932 -9
U 5.50 6.00 9

The size-segregated and average values of mass con-
centrations of particulate matter (PM) with their standard
deviations and size-segregated of trace elements mass
concentrations are reported in Table 2. The highest
values of size-segregated particulate concentrations have
been obtained in the fine mode fractions (PM<g 49). The
domination of the fine mode has evidenced in whole
investigated period (Fig. 1), and also, the concentration
of PM has the highest value in PM 49 fraction (Table 2).
A bimodal mass size distribution with peaks at the size
ranges of PM.g 49 and PM3 o_7,, was identified that is in
accordance with distributions obtained by Song and Gao
(2011), where the general size distributions of the mass
concentrations did not changed significantly with
seasons.

We quantified 23 elements: Al, As, Bi, Ca, Cd, Co,
Cr, Cu, Fe, Ga, K, Li, Na, Ni, Mg, Mn, Pb, Sb, V, and
Zn in size-segregated concentrations ranged from picto-
grams to micrograms per cubic meter in dependence
with the element. In addition, size-segregated total mass
concentrations are given to evaluate overall presence of
elements in the investigated sample set. Relative contri-
butions of investigated elements vary through modes.
The lowest contribution of the sum of elements is in
PM_g 49 fraction (3.8 %) while the highest contribution
(11.1 %) is found in PM,; s 3, fraction (Table 2). In
general, the contribution of Al, Fe, K, Ca, Mg and Na
is the dominant. Crustal elements: Al, Fe, Ca, Mg are
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distributed in the fine and the coarse mode but, size
segregated K shows domination in the fine mode. The
second group of elements: Zn, Pb, V, Ni, Mn, Cu, and
As have moderate contributions and except Mn and Cu
their concentrations are dominating in the fine mode.
The third group of elements: Sb, Cr, Cd, Mo, Ga, Co,
Li, Tl, Bi, and U are with the negligible contribution.
Some of them are with bimodal distribution (Cr, Mo,
Ga, Co, Li, TI, and Bi) and, bimodal with domination
the fine mode for Sb while Cd is strongly dominating in
the fine mode (Table 2, Fig. 2). The study performed in
Dresden has shown that the most of the K, Pb, and Zn
were found in fine particles (PMg4,_15), Na, Mg, Ca,
Ti, Si, and Cu, Fe dominated in the coarse mode
(PM;, 35) and Cr, Mn, and Ni showed a multimodal
mass size distribution (Briiggemann et al. 2009). Two
measurement campaigns carried out in Prague city near
busy freeway and suburban crossroad (Ondracek et al.
2011) showed that main contribution of traffic in ultra-
fine size range can be attributed to direct exhaust emis-
sions, while the coarse fraction was dominated mainly by
regional background aerosol with small traces of brake
and tyre abrasion as well as the resuspension of the road
dust. Most of major elements were found in coarse
fraction of mass size distribution and it were attributed
to three different sources: abrasion of different vehicle
parts (Fe, Cu, Mn and Zn), resuspension of the road dust
(Si, Al, Ca), and long range transport or regional back-
ground (Ca and K).

Statistical analysis
Principal component analysis

Principal component analysis (PCA) is a method with
different variants of PCA that produce linear combina-
tion of the variables in the data set. These linear com-
binations represent factors (principal components) which
are directly related to the contributions of emission
sources (Seinfeld and Pandis 1998). The first principal
component (PC1) represents the largest variation; PC2 is
orthogonal to PC1 and represents the direction of the
largest residual variation around PC1. PC3 is orthogonal
to the first two and represents the direction of the
highest, residual variation around the plane of PCI
and PC2, etc. (Tsitouridou et al. 2013).

PCA for each sub data set of Dp fraction was carried
out using the data set with 23 variables, and in general,
they explain over 85 % of the total variance for each
sub data set. In Table 3, results from principal compo-
nent analysis are summarized. In each sub data set
representing Dp fraction, the first principal component
(PC1) is dominant and has the largest value of variance
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Table 2 Mass concentrations (ng m™>), mean=standard deviation (), of elements distributed through Dp intervals obtained in the measured campaign

PM<g.49 PMj 49-0.95 PMoos-15 PMis530 PM; 072 PM.7,
Cto Cto Cto Cto C+o Cxo

PM 7,900+5,000 2,700+1,500 1,800+1,000 2,000+1,200 3,300+2,000 1,300+800
Al 42.74+58.50 29.40+29.74 34.35+31.28 42.50+41.05 65.37+45.64 27.09+19.52
Fe 48.94+34.54 34.83+21.45 58.39+38.15 75.60+50.33 104.80+59.54 38.64+19.41
Kiot 95.62+57.12 21.03+£12.56 9.74+7.86 10.67+£12.04 18.23+15.53 6.68+6.68
Cay 38.36+38.57 23.95+14.58 41.38+2491 60.27+39.28 102.36+58.92 47.80+23.14
Mgiot 11.38+13.02 7.14+6.55 8.92+6.89 11.55+9.65 18.60+£12.53 7.85+4.99
Nayy 14.35+7.03 11.06+8.11 9.66+5.18 11.17+£8.32 15.53+3.00 5.21+3.43
Zn 28.17+£26.25 2.99+1.87 2.96+2.10 2.93+2.94 4.61+£5.27 2.06+1.98
Pb 9.40+7.00 3.34+4.44 2.98+3.50 2.60+4.13 3.57+£5.18 1.35+£1.96
\% 2.59+2.37 0.33+0.25 0.28+0.18 0.26+0.16 0.37+£0.23 0.15+0.08
Ni 1.14+0.96 0.21+0.13 0.19+0.12 0.19+0.11 0.28+0.17 0.09+0.05
Mn 1.55+0.82 0.83+0.43 0.91+0.48 1.10+£0.67 1.61+0.87 0.75+0.32
Cu 1.87+091 0.95+0.40 1.25+0.68 1.51+0.88 2.08+1.07 0.71+0.32
As 1.23+1.13 0.23+0.21 0.17£0.16 0.14+0.16 0.17+£0.19 0.05+0.06
Sb 0.497+0.413 0.130+0.091 0.215+0.158 0.245+0.191 0.293+0.203 0.100+0.059
Cr 0.243+0.121 0.137+0.061 0.151+0.095 0.240+0.146 0.340+0.194 0.112+0.062
Cd 0.198+0.174 0.041+0.040 0.017+0.020 0.007+0.008 0.005+0.006 0.003+0.006
Mo 0.124+0.150 0.095+0.161 0.117+0.172 0.126+0.162 0.145+0.166 0.178+0.158
Ga 0.053+0.032 0.036+0.023 0.042+0.028 0.054+0.038 0.077+0.051 0.030+0.020
Co 0.013+£0.019 0.005+0.009 0.038+0.013 0.044+0.018 0.058+0.031 0.034+0.011
Lio 0.025+0.039 0.009+0.019 0.022+0.027 0.028+0.032 0.043+0.038 0.017+0.015
Tl 0.017+0.007 0.008+0.003 0.016+0.005 0.015+0.005 0.014+0.005 0.014+0.005
Bi 0.028+0.021 0.016+0.011 0.018+0.013 0.018+0.015 0.020+0.014 0.009+0.006
U 0.022+0.011 0.023+0.011 0.004+0.003 0.004+0.003 0.005+0.003 0.003+0.002
% of PM?* 3.8 5.0 9.6 11.1 10.2 10.6

“Percentage of PM calculated from the averaged mass concentrations of the elements

(6?=30 % and higher). All fractions contain elements Al Cr, Fe, Li, Mg, and Mn have extremes and outliers in
originating from resuspension (Al, Ca, Co, Cr, Ga, Fe, the fine mode indicating their anthropogenic origin in
Li, Mg, Mn) with their domination in the coarse mode.  these cases (Fig. 2). In addition, the coarse fractions

Fig. 1 Time series of PM for all 30
size-segregated fractions | PM <0.49
""""" PM.49.0.95
""""" PM.95.1.5
----- PM1.5.3.0
a 20 -~ -PM3o.72
E —PMs72
on
=3
N—"
B 10
0
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(PM; 5_3.9, PM30_7,, and PM.-,) contain K and PM;,_
7, and PM.;, contain Mo. PC2, PC3, PC4, PC5, and
PC6 are representing anthropogenic emission sources,
combustions, and high temperature processes like metals
melting, traffic, industrial heating; fertilizer, oil refinery,
and petrochemical plant in nearby industrial city Pancevo
located on dominant wind direction (Pordevi¢ et al. 2012)
and domestic heating. The second principal component
(PC2) with 0%~20 % could be connected with traffic
(Table 3).

Cluster analysis

A cluster analysis (CA) was performed, separately for
each Dp interval including nuclei mode (PM< g 49), ac-
cumulation mode (PMg 49_9.95 and PMg ¢5_1 5), and mode
of coarse particles (PM; 539, PM3 o 75, and PM.;,),
which points the valuable information of source identifi-
cation (Pordevi¢ et al. 2004a, b; Contini et al. 2012).
The results are reported in Fig. 3. The lower value is on
the axis, the more significant are the associations
(Facchinelli et al. 2001). The first numbers of stages
show the clusters of highest association. The dendrogram
of the CA (Fig. 3) on the cumulative data set shows
several strong associations, among crustal elements as
well as among anthropogenic elements.

In all PM fractions, two main clusters can be notice
and could be divided in two groups of elements: (a)
originating from resuspension of crustal materials and
deposited elements previously emitted from primary
sources into the atmosphere and (b) elements of anthro-
pogenic origin from primary emission sources. Resuspen-
sion can be linked to Al, Ca, Co, Cr, Ga, Fe, Mg, and
Mn while group of elements of primary anthropogenic
origin is As, Bi, Pb, Sb, Tl, and Zn. Some elements such
as Cd, Cu, Li, Mo, Na, and U appear in different frac-
tions and seemingly without rules. This could mean that
primary sources emit the elements in corresponding frac-
tion or may be due to number of measured values close
to the limit of detection such as Li, Mo, and U or this
analysis may not accurately indicate the origin of Cu and
Na (Fig. 3). In the fractions of fine mode, Cd is associ-
ated with Pb indicating common primary source, but it
seems that in fractions of the coarse mode, they have
separate origin.

The strongest associations were found between Ni and
V and between Al and Mg through all PM fractions. As
presented in CA (Fig. 3), it is evident that the strong
association between Ni and V exists in all fractions. The
Ni—V associations in the fine and the accumulation mode
and in the fraction PM; 5 3, of coarse mode are in the
group of elements of primary anthropogenic origin that
could be combustion of fossil fuels (Suarez and Ondov
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2002; Moffet et al. 2008). Associations of Ni—V present-
ed in fractions of PMj3 (7, and PM., are in the clusters
of elements representing the resuspension (Fig. 3). Their
strong associations in the fine and the accumulation
mode as well as fraction PM; s_3 o of coarse mode indi-
cate their common origin from primary anthropogenic
emission sources—fossil fuels combustion. The strong
Ni—V associations in coarse mode is related to resuspend-
ed materials previously settled from the atmosphere
which were originally emitted from the primary anthro-
pogenic sources. The association Al-Mg is strong in all
fractions representing the resuspension.

Potassium is associated with anthropogenic elements
only in PM g 49 fraction while in other fractions associ-
ated with elements originating from resuspension
(Fig. 3). Such distribution of K indicates the primary
emission as combustion process, most probably biomass
fuels. The uncertainties in the source apportionment due
to impactor losses were already noticed (Contini et al.
2014).

The Spearman coefficients of correlations among var-
iables in all fractions were found for the following pairs:
Al-Mg, Fe—Mn, and Ni—V (Table 4). Correlation coeffi-
cients of AI-Mg association generally are increasing with
the increase of the particle size and the highest values
are in PM3y 7, and PM.;, fractions representing the
crustal origin of aluminosilicates. The highest values of
correlation coefficients for Fe—Mn association were
found in D, intervals of coarse particles (PM; s 3, and
PM; _7,) indicating also their origin from crustal sub-
strates. The highest coefficient of correlation of Ni—V
association is in PM.g 49 fraction and with the increase
of the particle size the correlation is decreasing. This
indicates the domination of primary emission sources
that could be urban traffic in the vicinity of the sampling
site. The time series of Ni—V couples are shown on
Fig. 4. The time series for all fractions are almost iden-
tical. This further indicates common emission sources
with their simultaneous emissions throughout the whole

Fig.2 Distribution of elements concentrations with median, interquartile P
range—IQR (Q1 as 25th percentile and O3 as 75th percentile), min, max,
outliers—o (>1.5 IQR) and extremes—*(>3IQR) through Dp. Note:
(extremes—*: NoS8: 2 to 4 August 2008; No 14: 7 to 9 September
2008; No 18: 1 to 3 October 2008; No 23: 31 to 2 October/November
2008; No 24: 6 to 8 November 2008; No 31: 18 to 20 December 2008; No
32: 24 to 26 December 2008 (outliers—o: No 2: 27 to 29 June 2008; No
3:3 to 5 July 2008; No 4: 9 to 11 July 2008; No 6: 21 to 23 July 2008; No
8:2to4 August 2008; No 9: 8 to 10 August 2008; No 11: 20 to 22 August
2008; No 12: 26 to 28 August 2008; No 14: 7 to 9 September 2008; No
18: 1 to 3 October 2008; No 19: 7 to 9 October 2008; No 20: 13 to 15
October 2008; No 23: 31 to 2 October/November 2008; No 24: 6 to 8
November 2008
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Table 3 Sources identification and contribution by PCA

Fraction  PCl o> (%) PC2 0% (%) PC3 0% (%) PC4 o* (%) PC5 % (%) PC6 o2 (%)

PM<g 49 Al, Ca, Co,Cr, 3257 Bi, Cd,Pb,Tl, 16.75 Bi,Cu,K,Sb 14.00 As,Ni,V 1397 —Mo,U 10.98
Ga, Fe, Li, Na
Mg, Mn,

PMo49 095 Al Ca, Co,Cr, 2822 As,Bi,Cd,Cu, 25.18 —Co,—-Mo,U 12.59 Ni,V 10.10 Cr,Cu,Na 9.48
Ga, Fe, Li, K, Mn, Pb,
Mg, Mn Sb, T1, Zn

PMoos 15 Al Ca, Co,Cr, 34.14 As,Bi, Cr,Cu, 2228 As,Ni, V 1231 Bi, —Ga, 1089 —Cd,Na  6.27
Ga, Fe, K, Li, Fe, Pb, Sb, —Mo, T1
Mg, Mn U, Zn

PM;539 Al Ca, Co,Cr, 3631 BiCr,Cu Fe, 2262 Ni,V 13.10 Li,—Mo, Tl, 9.14  As, Cd 5.93
Ga, Fe, K, Li, Pb, Sb, Zn U
Mg, Mn, Na

PM;o7, Al Ca, Co,Cr, 3453 Bi, Ca, Cu, Fe, 2259 Na,Ni,V 11.83 As,Cd, Tl 931 Li,U 8.48
Ga, Fe, K, Pb, Sb, U,
Mg, Mn, Mo Zn

PM.7, Al, Ca, Co,Cr, 34.57 Cu, Pb,Sb,Zn 1445 As,Bi,Co, 12.17 Ny, V 10.73  Li,—Mo,U 8.51 Cd 671
Ga, Fe, K, Sb, T1, U
Mg, Mn, Mo,
Na

The sign “—” in front of the element is indicating negative factor loading

0% —variance

measurement period. The downward trend in concentra-
tions of Al, Mg, Mn, and Fe from the middle autumn is
caused by the emission flux reduction of the resuspen-
sion due to wetting of the soil caused by temperature

decreasing and increase the relative humidity. For Ni and
V, the evident increase in the concentrations starting
from the autumn, especially in nuclei mode, indicates
an increase in the number of emission sources from

PM<o49
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Fig. 3 Cluster analysis of the cumulative data set
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Table 4 The most significant .

correlations between variables; Association PM<o49 PMg 49 0.05 PMoos-1.5 PMis30 PMs 72 PM.,

Spearman’s coefficients of corre-

cances levels (p<0.000) Fe-Mn 0.929 0916 0.930 0.944 0.947 0.806
Ni-V 0.978 0.969 0.973 0.955 0.941 0.908

combustion of fossil fuels with the start of heating
season.

Elemental enrichment factors in PM fractions

In this study, we used enrichment factor (EF) model,
which connects elements in the aerosol with their emis-
sion sources, to separate the elements of the primary
emission sources from those arising from the resuspen-
sion (Hlavay et al. 1996). Enrichment factor expressed
as EF:(X/R)aerosol/(X/R)crust» where (X/R)aerosol is the
concentration ratio of element X to the reference ele-
ment R in the aerosol, and (X/R).. 1S the concentration
ratio of X and R in crust. The values of EF less than 10
indicate the crustal source while elements with higher
EFs have a significant anthropogenic source. Aluminum
was used as the reference element. Pan et al. (2013)
have reported that EF values higher of 100 were signif-
icantly higher than historical data recorded in the 1980s
and 1990s.

Average EF values with appropriate standard devia-
tions for each investigated fraction are presented in
Fig. 5. In all fractions Mg, Fe, Ca, and Co are of
strictly crustal origin, but in fine mode, small part of
Mn has anthropogenic contribution. The majority origin

" PMcoss 250
PMo.as.095
PMoosas
—--=-PM1530 200
» e
i —
é T 150
: E
220 N : ¢
2 ; . L'?‘ , a 100
A £
" ¢
i 50
0
Jun. Aug.
P
w0 PMo.49.095 3
PMoosas
e
= =--PMag72 4
N —hara
& :
ER0 :
oo =
E =

20

Jun Aug. Oct. Dec. Jun Aug

of Cr is crustal material while small part of anthropo-
genic origin was noticed in all fractions.

In PM.g 49 fraction, the majority part of Cd, K, V, Ni,
Cu, Pb, Zn, and As has the anthropogenic origin; As and
Zn have significantly high EF values—higher than 100. In
the next fraction (PMg49 0.95), the majority origin of K,
Ni, and V is crustal, and in PMg 9515 and in coarser
fractions, the origin of K is strictly crustal while in the
same fractions main origin of Ni and V is crustal also
(Fig. 5).

For As, Cu, Pb, and Zn the anthropogenic origin is
dominant in all PM fractions except that the larger
contribution of anthropogenic sources is in the fine
mode (Fig. 5).

The characterization of size-segregated atmospheric
aerosols carried out in Budapest, Hungary revealed that
most elements in the coarse size fraction had crustal
EFs close to one, suggesting soil and road dust dis-
persal and resuspension as sources. Some elements,
ie., S, Cl, Cu, Zn, Ge, As, Se, Br, Mo, Ru, Sb, I,
W, Au, and Pb were significantly enriched. In the fine
size fraction, S, Cl, Cu, Zn, Ge, As, Se, Br, Mo, Cd,
Sb, I, W, Au, Hg, and Pb had very high EFs, pointing
to their anthropogenic origin. Na, Mg, Al, Si, P, Ca,
Ti, Fe, Ga, Sr, Zr, Mo, and Ba had a unimodal size
distribution with most of their mass in the coarse mode
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Fig. 4 Time series of Al, Mg, Fe, Mn, Ni, and V for all size-segregated fractions
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Fig.5 Enrichment factors in all size-segregated fractions (Al—reference
element)

indicating that they were attributable to dispersion, and
soil and road dust resuspension processes. On the other
hand, S, CI, K, V, Cr, Mn, Ni, Cu, Zn, Ge, As, Se, Br,
Rb, and Pb either had a unimodal size distribution with
their mass occurring primarily in the accumulation

@ Springer

mode or exhibit clearly a bimodal size distribution at
the urban background site. Significant mass in the fine
particles pointed to high-temperature sources (Salma
et al. 2001).

In all fractions, the average values and standard
deviations of EF for Na are similar indicating the emis-
sion sources that are not of crustal origin. High values
of Na can be attributed to long-range transport. In our
previous work (Pordevi¢ et al. 2012), we assumed the
impact of marine aerosol on urban aerosol of continen-
tal part of Balkan, most probably from the Mediterra-
nean region and from the Atlantic. Zhao et al. (2013)
have reported that Na could have the major marine
origin.

Conclusion

The main difference in mass concentrations of investi-
gated elements in continental urban aerosol was noticed.
The maximum contribution is in the PM; s 3, fraction
while the smallest contribution is in the PMg 49 fraction.
As, Cd, K, Ni, Pb, and Zn dominate in the fine mode
pointing to the combustion process as emission sources
while main presence of Al, Ca, Co, Fe, and Mg in the
coarse mode indicates resuspension process. The resus-
pension and traffic together are contributing with around
50 % of elements in the investigated urban aerosol. The
strongest associations were found between Al-Mg, Fe—
Mn, and Ni-V in all size-segregated fractions. The first
two indicating the resuspension while Ni—V association
indicating the fossil fuels combustion. EF model sepa-
rated the resuspension from anthropogenic influence in
all fractions while long-range transport noticed for Na.
The influence of marine aerosol (Na) is the most prob-
ably from the Mediterranean region and from the
Atlantic.

This approach is useful for assessing the contribution
of the local resuspension of crustal elements and ele-
ments previously settled from anthropogenic sources on
element’s contents in the aerosol but also for the eval-
uation of historical pollution of soil caused by deposi-
tion of metals from the atmosphere.
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