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1 Introduction

The intuitive notion of commodity is “somewhat ambiguous (should two apples of
different sizes be considered two units of the same commodity?)”. Economic theory
relies on the idealized concept of an Arrow-Debreu commodity, whose description
is “objective, quantifiable and universally agreed upon” and may include physical
characteristics, geographic and temporal location, or other less obvious items.

It is apparent that “the less crude the categorization of commodities becomes,
the more scope there is for agents to trade, and the greater the set of imagin-
able allocations”. The Arrow-Debreu commodities are identified so precisely that
“further refinements cannot yield imaginable allocations which increase the satis-
faction of the agents”. (Quotes are from Geanakoplos, 1989.)

It may be highly unpractical for an economy (if not impossible) to discover
or to agree on the full set of Arrow-Debreu commodities. This concern is usually
muted, especially when technical reasons call for simplifying assumptions. For
instance, right after building up the idea that “a commodity is a good or a service
completely specified physically, temporally, and spatially”, Debreu (1959, p. 32)
abruptly informs the reader that “it is assumed that there is only a finite number
of distinguishable commodities” (emphasis added).

This paper unmutes the concern and considers exchange economies where a
continuum of goods has been reduced to a finite number of tradable commodities,
by means of a classification. Here is an example. The people of a village cultivate
a vineyard on the banks of a long river. The quality of the grapes depends on
the position of the vines: one obtains different types of wine by pressing grapes
grown on different vines. By custom, the villagers blend their grapes and produce
at most two types of wine. Their production technology separates the grapes
growing on the lowlands (L) from those growing on the hills (H). The position θ
of the boundary between L and H is a convention that defines the classification
of grapes into two wines.

We view a market economy as an institution that binds agents’ demands to
the extant classification. This paper studies and compares competitive allocations
generated via different classifications for the same endowment of goods. Following
Richter and Rubinstein (2015), the competitive equilibrium may be seen as “a
method of creating harmony in an interactive situation with [. . .] self-interested
agents.” We investigate both standard price-based competitive allocations and
an alternate mechanism (without prices) where harmony is achieved through the
selection of an appropriate classification.

Continuing the example, imagine that, after the elders choose a position θ, the
yields are blended into wine L and wine H and distributed among the families
of the village. Each family is entitled to receive their allotted number of bottles,
but can demand the type of wine they prefer. When it is not possible to satisfy
everyone’s requests, there is a conflict. Assuming the elders use prices to resolve
conflicts and allocate wine, the selection of θ influences the final allocation by
which the conflict is eliminated. In the absence of prices, the mere choice of an
appropriate θ may be enough to avoid conflict.

Our model ensures that the set of price-based competitive allocations depends
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continuously on the choice of the classification, and therefore agents receive sim-
ilar payoffs in economies using similar classifications. The main insight is that
the choice of a classification induces novel and significant externalities across con-
sumers’ demands. Therefore, when assessing competitive allocations, it is im-
portant to be aware of the underlying classification.1 In particular, one might
interpret our classification as an abstract public good, i.e. as a parameter that af-
fects agents’ preferences and endowments; see Mas-Colell (1980) and Diamantaras
and Gilles (1996).

We show that, in equilibrium, the relative prices of two commodities depend
on the classification of other (distinct) commodities; agents’ consumption may
change even if the relative prices do not move. Moreover, if one can modify the
extant classification, a competitive allocation may no longer be Pareto-optimal.
On the other hand, refining a classification by introducing new commodities may
not be Pareto-improving or may even reduce utilitarian welfare. A related claim
that increasing trading opportunities may not be Pareto-improving is already in
Hart (1975, Section 6), where it is shown that opening a new market after agents
have already traded their initial endowments may damage some consumers.

Section 5 of the paper defines an allocation mechanism where the mere choice
of an appropriate classification suffices to achieve an equilibrium. This fits into the
program initiated in Richter and Rubinstein (2015) and fully spelled out in Richter
and Rubinstein (2020): a society may seek harmony through decentralized “price-
like” institutions enforcing a set of social norms that constrain agents’ choices.
Instead of calling on prices and budgets, equilibrium may be achieved by enforcing
an appropriate classification of goods into commodities.

Our model is consistent with the seminal insight in Lancaster (1966) that the
carriers of value are not goods, but their characteristics. The classification deter-
mines which bundles of characteristics can be traded as a commodity. Following
Mas-Colell (1975) and Jones (1984)’s model of economies with commodity differen-
tiation, we assume a measure space for the characteristics and define commodities
as measurable sets of characteristics. We focus on the classification and assume
that every good in the endowment is part of a tradable commodity. Diamantaras
and Gilles (2003) use a general equilibrium model to study the costly institutional
arrangements that support the introduction of new tradable commodities.

We assume that the classifications are given and do not analyze how they
can be selected. As in our model, Sprumont (2004) considers a measure space
of Lancasterian characteristics and defines commodities through partitions but,
differently from this paper, he provides an axiomatic “subjective” approach to the
definition of commodities, using agents’ preferences to reveal subsets of charac-
teristics that are sufficiently homogeneous and distinct to deserve being singled
out.

1 The widespread diffusion of protected designation of origins attests to the importance of
classification.
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2 The model

We consider a society endowed with a continuum of goods to be distributed over a
finite set of n agents. The agents have their own preferences on consumption and
hold compatible claims on the society’s endowment. It is infeasible (or impractical)
to trade over a continuum, but the society can classify goods and reduce them to
a finite number of commodities. The adoption of a classification by the society
defines which commodities are tradable in the economy: a commodity is tradable
if and only if it is present in the classification. The classification is shared by all
agents and binds their choices: an agent can demand only bundles of tradable
commodities.

Goods and bundles. The unit interval I represents the space of goods’ char-
acteristics. Each t ∈ I is interpreted as a complete description of the relevant
attributes of a certain good. Every measurable subset F ⊆ I defines a selection
of goods with specific characteristics, called a type. (In the sequel, any subset
of I is understood to be measurable with respect to the Borel σ-algebra.) The
distribution of goods is described by a non-negative measure ω on I normalized
to ω(I) = 1, so that ω(F ) is the total amount of goods with characteristics in F .
Every positive, ω-integrable function g defines a bundle of goods, where

∫
F g dω is

the amount of goods of type F that is considered in the bundle g.

Agents. There are n agents. Their preferences on bundles of goods are repre-
sented by utility functions on L1

+(ω) that are linear, norm-continuous and nor-
malized so that the bundle constantly equal to 1 gives utility 1. This implies that
every agent i is associated with a measure νi on I such that

∫
g dνi is the utility

that i receives from consuming a bundle g. Furthermore, each νi is absolutely
continuous with respect to ω and normalized to νi(I) = 1. We call νi agent i’s
evaluation measure.

Every agent i has a claim κi > 0 on the society’s endowment, and we assume∑n
i=1 κi = 1.

Classification of goods. A classification is a partition of I into a finite number
of intervals of positive ω-measure. We imagine that every cell of the classification
combines its elements under the same label, and agents recognize its content as
one of the tradable commodities. If the classification π has n cells, there are
n tradable commodities in the economy. Given a classification π, the bundles
of tradable commodities correspond to the functions that are measurable with
respect to the partition π. A π-bundle of commodities is a vector x = (xB) ∈ Rπ

+
that specifies a quantity for each tradable commodity, so that x corresponds to
the simple function ∑B∈π

xB

ω(B)1B.
Consumers can demand only bundles of tradable commodities. Thus, a generic

outcome of the model combines a labelling of tradable commodities and an allo-
cation of goods compatible with it. We represent it as a configuration 〈π, (xi)〉,
where π is the shared classification and each xi ∈ Rπ

+ is the π-bundle selected by
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agent i. We say that the profile 〈π, (xi)〉 is feasible if the total amount of goods
distributed does not exceed their initial availability, i.e. if ∑i x

i
B = ω(B) for every

B ∈ π.

The exchange economy defined by a classification. A classification π is
the basis for an exchange economy E(π), where the commodity space is the set of
π-bundles Rπ

+. Every agent is endowed with the vector ei = (κiω(B)) ∈ Rπ
+ and

ranks the π-bundles according to the linear function:

Vi(π, x) =
∑
B∈π

xB
ω(B)νi(B)

which is simply the restriction of his primitive utility function to the set of π-
bundles. Because νi(B) measures agent i’s evaluation for all the goods of type B,
the ratio xB

ω(B)νi(B) gives i’s utility from consuming xB units of commodity B.
A competitive equilibrium in the economy E(π) is a pair 〈p, (xi)〉 formed by a

price vector p ∈ Rπ
+ and an allocation (xi) such that: (i) p ·xi ≤ κi

∑
BpBω(B) for

all i and (ii) if Vi(π, y) > Vi(π, xi) for some π-bundle y then p ·y > κi
∑
B pBω(B).

We say that the configuration 〈π, (xi)〉 is competitive if (xi) corresponds to a
competitive equilibrium in E(π).

In short, imposing a classification π reduces the economic interaction to a
finite dimensional economy E(π) where agents have linear preferences and there
is no self-sufficient set of agents (Gale 1976). It follows that: (i) there exists a
competitive equilibrium in E(π); (ii) every two competitive prices in E(π) are
proportional with each other; and (iii) agents receive the same utility under any
two competitive allocations in E(π).

3 Classification matters

Standard models of exchange take the notion of commodity as primitive. We de-
part from this assumption and consider alternative classifications for the same set
of goods. This section studies the competitive outcomes reachable under different
classifications with the same number of commodities.

Our first set of results shows that similar classifications lead to similar exchange
economies, and hence to similar sets of competitive allocations. To formalize this
intuition we write Π(k) for the set of classifications formed by at most k intervals,
and we endow it with a suitable topological structure. Let σ(π) denote the σ-
algebra generated by a classification π and set:

δω(π, π′) = sup
B∈σ(π)

inf
B′∈σ(π′)

ω(B4B′).

The function dω(π, π′) = inf{δω(π, π′), δω(π′, π)} defines a pseudo-metric on the
set of classifications; see Boylan (1971). Indeed, dω is the Hausdorff pseudo-metric
induced by the set-theoretical distance, mapping every B,B′ ⊆ I into ω(B4B′);
see Aliprantis and Border (2006), Section 13.5.
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Proposition 1. (Π(k), dω) is a compact space where two classifications have zero-
distance if and only if they coincide up to negligible sets.

For readability, all proofs are relegated to Appendix A.3.
We can now formalize the intuitive notion that the set of competitive outcomes

in the society depends continuously on the choice of the classification. Let W(π)
denote the set of all the competitive equilibria in the economy E(π) and recall
that, by the observations above, W(π) is non-empty.

Theorem 2. The competitive equilibrium-correspondenceW is upper-hemicontinuous
on the compact space (Π(k), dω).

A corollary of Theorem 2 is the intuition that, if goods are allocated through a
price-based mechanism, then agents receive similar payoffs in economies defined by
similar classifications. Define the function Ψi(π) that assigns to every classification
π the utility that agent i receives in a competitive equilibrium of the economy
E(π). The function Ψi is well defined because any two competitive equilibria in
E(π) generate the same utility profile. The intuition can be stated as follows.

Corollary 3. The function Ψi is continuous on the compact space (Π(k), dω).

3.1 Pareto-optimality and welfare theorems

We turn to studying the efficiency of competitive outcomes. We say that a con-
figuration 〈π, (xi)〉 Pareto-dominates another configuration 〈ρ, (yi)〉 if Vi(π, xi) ≥
Vi(ρ, yi) for all i, with a strict inequality for at least an agent i. Given a set of
feasible configurations F , a configuration 〈π, (xi)〉 ∈ F is Pareto-optimal in F if
there is no configuration in F that Pareto-dominates it.

It is a simple observation that any competitive configuration is Pareto-optimal
among those based on the same classification, i.e. that if 〈π, (xi)〉 is competitive
then no feasible configuration of the type 〈π, (yi)〉 Pareto-dominates it. This is a
consequence of the first Welfare Theorem applied to the exchange economy E(π),
because (xi) is a competitive allocation within E(π).

A more interesting scenario opens when we compare allocations based on dif-
ferent classifications: then it is no longer true that any competitive configuration
is Pareto-optimal. The following example shows a simple society where a compet-
itive configuration is (strictly) Pareto-dominated by another competitive one.

Example 1. Consider a society where ω is the Lebesgue measure and there are
three agents who all have the same claims (i.e., κi = 1

3 for i = 1, 2, 3). Agent
1’s preferences are described by the evaluation measure ν1; agents 2 and 3 have
identical preferences described by the evaluation measure ν2. We assume

ν1(F ) = 3ω
(
F ∩

[
0, 1

3

])
and ν2(F ) = 3ω

(
F ∩

[1
3 ,

1
2

))
+ ω

(
F ∩

[1
2 , 1

])
;

that is, agent 1 cares only about goods in the first third of the interval (and is
indifferent over them), while agents 2 and 3 value any good in

[
1
3 ,

1
2

)
thrice as

much as those in
[

1
2 , 1

]
.
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Let π be the classification formed by the intervals A =
[
0, 1

2

)
and B =

[
1
2 , 1

]
and

consider the economy E(π). Agent 1’s evaluations for the two tradable commodities
are respectively 1 and 0, and thus he demands only the first commodity. Agents 2
and 3 have identical evaluations for the commodities and demand whatever is
cheaper. A competitive equilibrium has identical prices for the commodities: it
assigns the π-bundle x1 =

(
1
3 , 0

)
to agent 1, and the bundles x2 = x3 =

(
1
12 ,

1
4

)
to

agents 2 and 3. At the competitive configuration 〈π, (xi)〉 the agents have utilities:

V1(π, x1) = 2
3 , V2(π, x2) = 1

3 , V3(π, x3) = 1
3 .

Consider an alternative classification ρ = {A′, B′} where A′ =
[
0, 1

3

)
and

B′ =
[

1
3 , 1

]
. In the economy E(ρ), agent 1 demands only commodity A′ and agents

2 and 3 demand only commodity B′. A competitive equilibrium has identical prices
for the commodities: it assigns the ρ-bundle y1 =

(
1
3 , 0

)
to agent 1, and the bundles

y2 = y3 =
(
0, 1

3

)
to agents 2 and 3. In this case, agents have utilities:

V1(ρ, y1) = 1, V2(ρ, y2) = 1
2 , V3(ρ, y3) = 1

2 .

Clearly, the competitive configuration 〈ρ, (yi)〉 Pareto-dominates the competitive
configuration 〈π, (xi)〉.

The non-optimality of competitive allocations follows because the classification
π affects agents’ preferences within the economy E(π). In other words, the classi-
fication underlying an economy creates an externality, and thus the first Welfare
Theorem does not hold across different classifications. This is reminiscent of the
case of an exchange economy where agents’ preferences are price-dependent and
the standard Welfare Theorems may fail.

Nonetheless, using the continuity of agents’ preferences on classifications, we
can prove the existence of competitive configurations that are Pareto-optimal.

Theorem 4. The set of competitive configurations based on classifications in Π(k)
has a Pareto-optimal configuration.

This result states that, for any k, there exists a Pareto-optimal configuration
among those based on no more than k commodities. The upper bound makes it
possible to to use the compactness of Π(k) in the proof. In general, if there are
no bounds on the number of commodities forming a classification, there may not
exist a Pareto-optimal configuration, even within the set of the competitive con-
figurations. Appendix A.1 shows a pathological case in which every competitive
configuration can be Pareto-improved by a classification based on a strictly larger
number of commodities.

Perhaps surprisingly, while the first Welfare Theorem fails for competitive
configurations based over different classifications, it is possible to prove a version
of the second Welfare Theorem for competitive configurations.
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Proposition 5. If 〈π, (xi)〉 is a feasible Pareto-optimal configuration such that
xiB > 0 for every i and every B in π, then one can redefine agents’ claims so that
〈π, (xi)〉 is competitive.

Proposition 5 ensures that a feasible interior configuration that is Pareto-
optimal can be cast as a competitive configuration after suitably modifying agents’
claims. This aligns well with the classical version of the second Welfare Theorem,
by which any interior Pareto-optimal allocation in an exchange economy is com-
petitive for some suitable initial distribution of resources.

3.2 The relative scarcity of commodities

In a competitive equilibrium, one may interpret the ratio of the prices of two
commodities as an index of relative scarcity: given preferences and endowments,
the greater is the ratio, the higher is the value attributed to the first commodity.
We argue that this ratio is not an intrinsic property of the two commodities,
because it depends on how other distinct commodities have been classified.

The next example keeps two commodities fixed and studies how the ratio of
their prices varies as we change the rest of the classification. Even if agents’
evaluations of the two commodities remain constant, the ratio of their prices
ranges over an interval that can be made arbitrarily large. This implies that
knowing the ratio of the prices of two commodities is meaningless without a full
description of the whole classification.

Example 2. Consider a society where ω is the Lebesgue measure and there are
2n agents who all have identical claims. There are two types of agents, forming
groups of equal size. The preferences of agents in groups 1 and 2 are respectively
described by the evaluation measures:

ν1(F ) = 2ω
(
F ∩

[
0, 1

2

])
and ν2(F ) = 2ω

(
F ∩

[1
2 , 1

])
.

For every t ∈ (0, 1), let πt be the classification formed by the four intervals:

A =
[
0, 1

4

)
, Bt =

[1
4 ,

1 + 2t
4

)
, Ct =

[1 + 2t
4 ,

3
4

)
, D =

[3
4 , 1

]
.

The two commodities A and D are acknowledged as tradable in any classification
πt, while the other two tradable commodities Bt and Ct depend on the choice of
t. We claim that the ratio of equilibrium prices for the two commodities A and D
depends on the threshold t.

For every t, let pt be a competitive price system in E(πt) and let ϕ(t) denote
the ratio pt(A)/pt(D). Note that the function ϕ does not depend on how the pt’s
are chosen, because two competitive prices in E(πt) must be proportional to each
other. Assuming pt(D) = 1 for all t, we compute the equilibrium prices case by
case.

Suppose t ≤ 1
2 . Then commodities A and Bt are desirable only for agents in

group 1, Ct is desirable for agents of both groups, and D is desirable only for agents
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in group 2. Computations show that in equilibrium agents from group 1 demand
commodities A, Bt and Ct as long as t ≤ 1

6 , and demand only commodities A and
Bt if t > 1

6 . On the other hand, agents from group 2 demand positive amounts of
commodities Ct and D. Because pt(D) = 1, the resulting equilibrium prices are:

pt(A) =


1

1−2t , if t ≤ 1
6 ,

2
1+2t , if t > 1

6
, pt(Bt) =


1

1−2t , if t ≤ 1
6 ,

2
1+2t , if t > 1

6
, pt(Ct) = 1

2(1− t) .

Suppose instead t ≥ 1
2 . The situation is symmetric to the above. In equilibrium,

agents from group 1 demand commodities A and Bt, while those from group 2
demand only commodities Ct and D if t ≤ 5

6 , and may add commodity Bt when
t ≥ 5

6 . The resulting equilibrium prices are:

pt(A) =


3−2t

2 , if t ≤ 5
6 ,

2t− 1, if t > 5
6
, pt(Bt) =


3−2t

4t , if t ≤ 5
6 ,

2t−1
2t , if t > 5

6
, pt(Ct) = 1.

The function ϕ(t) coincides with pt(A): it is increasing for t ≤ 1
6 , decreasing for

1
6 < t < 5

6 , and increasing again for t ≥ 5
6 . Its graph is plotted in Figure 1.

It attains every value between 3
2 (when t = 1

6) and 2
3 (when t = 5

6). The index

Figure 1: Graph of the ratio of the equilibrium prices of commodities A and D.

of relative scarcity for commodities A and D depends on the whole classification
of tradable commodities. Moreover, for every threshold t there exists s such that
ϕ(t) = 1/ϕ(s), so that pt(A)/pt(D) = ps(D)/ps(A). We conclude that whatever
holds about the equilibrium value of A relative to D in a given classification is
specularly true about D relative to A under a different classification.

Note that changes in the threshold t affect the utilities that agents receive in
equilibrium, and hence their relative welfare within the society (in spite of their
identical claims). Precisely, the ratio of the utilities that the two groups of agents
receive in equilibrium varies significantly with t: if ui(t) is the utility received by
agents of group i = 1, 2 in the economy E(πt), computations show that the function
ξ(t) = u1(t)/u2(t) has the same graph as the function ϕ plotted in Figure 1.
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In Example 2, the ratio of the prices of two commodities A and D ranges over
a closed interval as we change the classification and keep A and D fixed. One can
modify the example and make the range of the interval arbitrarily large. However,
because both agents’s preferences and the function ϕ(t) are continuous and the
set of classifications we consider is compact, the range must remain bounded.

4 Refining classifications

Refining a classification introduces new tradable commodities by splitting an in-
terval into two or more sub-intervals: goods that were bundled in the original
classification are acknowledged as distinct commodities. Formally, we say that a
classification ρ refines a classification π (and write ρ � π) if the latter belongs
to the σ-algebra generated by ρ. When ρ � π, every π-bundle corresponds to a
unique ρ-bundle and every feasible exchange in E(π) can also be realized within
E(ρ). But the set of bundles that are tradable in ρ is larger, giving agents more
trading possibilities.

An immediate consequence of refining the classification underlying an economy
is that allocations that were Pareto-optimal under the initial classification may
cease to be so. Given two classifications ρ � π, any allocation f in the economy
E(π) has an equivalent allocation in E(ρ), but not vice versa. Therefore, the
Pareto-optimal allocation f in E(π) may be dominated by some other allocation
in E(ρ) that has no correspondent in E(π). A similar argument holds for core-
allocations, which are the allocations that no coalition can improve upon: given a
core-allocation f in E(π), a group of agents may find a profitable way to reallocate
their endowments among themselves in E(ρ), but not in E(π). Core allocations in
E(π) may not remain so after refining a classification.

The rest of this section compares the competitive outcomes that can be achieved
by increasing the number of commodities and refining the classification underlying
the economy. Throughout, we assume that agents act competitively, and there-
fore goods are assigned only via competitive allocations consistent with the given
classification. The agents’ levels of utility are uniquely determined by the set of
tradable commodities under consideration.

4.1 Refinements may switch trading positions

The introduction of a new commodity may change drastically the individual trad-
ing positions. An agent who only buys commodity A in a given economy may
switch to selling her entire endowment of A when the underlying classification is
refined. This suggests that a social planner who knows only agents’ demands for
a given classification (but not their true preferences on goods) cannot predict how
they would trade under a finer classification.

The next example compares an economy based on three commodities A, B
and C against one that refines the classification by splitting C into two distinct
commodities. There is an agent who consumes only commodity A in the first
economy but consumes only B in the second one. This occurs even though neither
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A or B are directly affected by the refinement and even if their relative prices
remain identical.

Example 3. Consider a society where ω is the Lebesgue measure and there are 4
agents with different claims: agents 1 and 2 have claim 1

3 , while 3 and 4 have claim
1
6 . Individual preferences are respectively described by the evaluation measures:

ν1(F ) = 3
2ω

(
F ∩

[
0, 2

3

))
, ν2(F ) = 3

2ω
(
F \

[1
3 ,

2
3

))
,

ν3(F ) = 5
3ω

(
F ∩

[1
3 ,

2
3

))
+ 8

3ω
(
F ∩

[2
3 ,

5
6

))
,

ν4(F ) = 5
3ω

(
F ∩

[1
3 ,

2
3

))
+ 8

3ω
(
F ∩

[5
6 , 1

])
.

Let π = {A,B,C} be the classification defined by A =
[
0, 1

3

)
, B =

[
1
3 ,

2
3

)
and

C =
[

2
3 , 1

]
.

When all commodities carry the same price, agent 1 is indifferent between A
and B, agent 2 between A and C, while 3 and 4 prefer B over the other commodi-
ties. Therefore, there is only one equilibrium in E(π) where all prices are identical
and the agents consume the bundles

x1 =
(1

3 , 0, 0
)
, x2 =

(
0, 0, 1

3

)
, x3 = x4 =

(
0, 1

6 , 0
)
.

Consider the finer classification ρ = {A,B,C1, C2} obtained by splitting C
into two intervals C1 =

[
2
3 ,

5
6

)
and C2 =

[
5
6 , 1

]
. This refinement of π allows 3

and 4 to differentiate between which parts of C they like more: 3 prefers C1 while
4 prefers C2, while in the earlier classification this difference in preferences was
muted. On the other hand, 1 and 2 value C as much as C1 or C2.

The only equilibrium in E(ρ) assigns identical prices to all commodities and
gives to each agent the bundle:

x1 =
(

0, 1
3 , 0, 0

)
, x2 =

(1
3 , 0, 0, 0

)
, x3 =

(
0, 0, 1

6 , 0
)
, x4 =

(
0, 0, 0, 1

6

)
.

In the economy E(π) agent 1 sells all her endowments of B and C to buy A, while
in E(ρ) she buys only commodity B. Nevertheless, the commodities A and B and
their relative prices are the same in both economies.

An adaptation of the argument in Example 2 shows that refining a classifica-
tion may change the relative scarcity of commodities, and hence the equilibrium
allocation. The current example says more, proving that agents’ consumption of
some commodities may change even when their relative prices do not.

4.2 Refinements may not be Pareto-improving

In many situations, increasing the number of commodities allows every agent to
achieve higher levels of utility. As a way of illustration, if π is the trivial classifi-
cation {I} then every refinement of π gives agents the opportunity of demanding
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more sophisticated bundles while leaving them the possibility of consuming as
much as they did under π. Thus, every agent considers any refinement at least as
good as π.

However, it is possible that introducing a new tradable commodity gives some
agents more market power and damages some others. The next example considers
a classification π with the following property: for every ρ � π formed by adding
a new commodity to π there is an agent who strictly prefers every competitive
allocation in E(π) to any competitive allocation in E(ρ). This shows that adding
a new commodity to π is not a Pareto-improvement for the society, and indeed it
damages at least one agent.

Example 4. Consider an economy where ω coincides with the Lebesgue measure.
There are 4 agents with identical claims and with preferences derived from the
following evaluation measures:

ν1(F ) = 2ω
(
F \

[1
4 ,

3
4

])
, ν2(F ) = 2ω

(
F ∩

[1
4 ,

3
4

])
,

ν3(F ) = 2ω
([

0, 1
2

])
, ν4(F ) = 2ω

([1
2 , 1

])
.

Let π be the classification formed by the two intervals A =
[
0, 1

2

]
and B =

(
1
2 , 1

]
.

In the exchange economy E(π) agents 3 cares only about commodity A, agent 4
only about B, and agents 1 and 2 are indifferent between them. An equilibrium is
achieved when the two commodities have the same price and agents demand, for
example, the π-bundles:

x1 = x3 =
(1

4 , 0
)
, x2 = x4 =

(
0, 1

4

)
.

We claim that for every refinement ρ of π formed by 3 tradable commodities there is
an agent that strictly prefers (xi) to any competitive allocation in E(ρ). Precisely,
we assume that ρ is obtained by splitting A into two commodities A1 and A2 and
we prove that, in equilibrium, agent 3 cannot afford 1

4 units of goods of type A1
or A2, implying that 3 receives a strictly lower utility under ρ. The same strategy
shows that if ρ is obtained by splitting B then agent 4 strictly prefers π to ρ.

Assume t ∈
(
0, 1

2

)
such that ω(A1) = t and ω(A2) = 1

2 − t. Let p be a
competitive price in E(ρ) normalized so that p(B) = 1 and let w be agent 3’s
wealth at p. We assume that p(A1) ≤ p(A2) (the other case is treated identically)
so that agent 3 demands exactly:

w

p(A1) = 1
4

[
t+ p(A2)

p(A1)

(1
2 − t

)
+ 1

2p(A1)

]

units of commodity A1.
Let us assume by contradiction that w/p(A1) is greater than 1

4 . There are two
possible cases:

11



• if p(A1) = p(A2) ≤ 1 then each of the agents 1, 2 and 3 demands 1
4 units of

commodity A1 or A2. This creates an excess of demand and p cannot be an
equilibrium price. On the other hand, if p(A1) = p(A2) > 1 then w/p(A1) is
strictly less than 1

4 .

• If p(A1) < p(A2) then agents 1 and 3 demand commodity A1 instead of
A2. Therefore, p(A2) ≤ 2, or no agents would demand commodity A2. At
the same time, it must be that p(A1) ≥ 1

2t or agent 1 would demand only
commodity A1, leaving 3 with strictly less than 1

4 units of commodity A1.
Combining these two inequalities we obtain:

w

p(A1) = 1
4

[
t+ p(A2)

p(A1)

(1
2 − t

)
+ 1

2p(A1)

]
≤ 1

4 [t+ 2t(1− 2t) + t] = t− t2

which is strictly smaller than 1
4 for every t < 1

2 .

The argument in Example 4 is based only on refinements of π formed by 3
intervals. If we allow for richer classifications, then we could find refinements
of π that are strictly preferred to π by every agent in the society. As a way of
illustration, let ρ be formed by the intervals:

A =
[
0, 1

4 − ε
)
, B =

[1
4 − ε,

1
2

]
, C =

(1
2 ,

3
4 − ε

]
, D =

(3
4 − ε, 1

]

with ε ∈
(
0, 1

4

)
. For ε sufficiently small, an equilibrium in E(ρ) is achieved when all

commodities have identical prices with agent 1 consuming the whole of commodity
A, agent 3 the whole of commodity B, agent 2 commodity C, and 4 commodity
D. This leaves every agent with a utility strictly larger than the one they received
with the allocation (xi).

The example in the next paragraph refines Example 4 by describing an econ-
omy where adding new commodities (in any number) to the initial classification
damages at least an agent. This is obtained by assuming an atom in the space
of goods’ characteristics, so that some tradable commodities cannot be split into
smaller parts.

4.3 Refinements may reduce the utilitarian welfare

The utilitarian social welfare associated to a classification π is the sum of the
utilities that agents receive in any competitive equilibrium of E(π). In Example 4,
adding new commodities to the initial classification damages some agents but
increases the utilitarian social welfare. The next example describes a society where
every refinement of the starting classification gives a strictly lower utilitarian social
welfare: hence, adding new commodities (in any number) may reduce the sum of
agents’ utilities, and the initial classification is preferred to any refinement both
from a Paretian and a utilitarian point of view.

Example 5. Let λ be the standard Lebesgue measure on I and δ{1} denote the
Dirac measure associated with the point 1, i.e. the function defined by δ{1}(F ) = 1
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if 1 ∈ F and δ{1}(F ) = 0 otherwise. We consider a society where there are 2n
agents with identical claims and the measure ω is given by:

ω(F ) = 1
2
(
λ(F ) + δ{1}(F )

)
.

There are only two types of agents, forming groups of equal size. Agents in type 1
and 2 have preferences derived respectively from the evaluation measures:

ν1(F ) = λ(F ) and ν2(F ) = 1
4λ

(
F ∩

[
0, 1

2

])
+ 3

4λ
(
F ∩

[1
2 , 1

])
+ 1

2δ(F ).

Intuitively, agents of type 1 value all types of goods identically, while those of type
2 care more about goods in

[
1
2 , 1

)
and give a special importance to those labelled

with 1.
Let π be the classification formed by the commodities A = [0, 1) and B = {1}.

Within the economy E(π) a competitive equilibrium is reached when A and B have
the same prices, with every agent from group 1 consuming 1

2n units of commodity
A and every agent from group 2 consuming 1

2n units of B.
We want to prove that, if ρ � π, then every competitive allocation in E(ρ)

assigns a positive amount of goods of type A to agents in group 2. Because the
utility received from goods of type A is higher for agents in group 1, we conclude
that the sum of agents’ utilities in E(ρ) must be strictly lower than in E(π).

Suppose by contradiction that this is not the case, i.e. that there exists a re-
finement ρ of π and a competitive allocation in E(ρ) such that agents in group 1
consume all goods of type A and those in group 2 all goods of type B. Because B
is an atom, ρ can refine π only by splitting A into smaller intervals and leaving
B intact. We write ρ = {A1, . . . , Am, B} where i < j implies s < t for all s ∈ Ai
and t ∈ Aj. By assumption, in equilibrium agents from group 1 demand all com-
modities A1, . . . , Am and so these must have all equal prices (or agents of group 1
would demand only the cheapest ones). At the same time, Am must cost strictly
more than B, or agents in group 2 would rather demand Am than B. It follows
that the average price of the commodities Aj’s is is strictly greater than that of B,
implying that each agent in group 2 can demand more than 1

2n units of commodity
B. This leads to an excess of demand of commodity B, which contradicts the
assumption that prices are competitive.

Example 5 compares two competitive configurations: in the first one, agents
in group 2 have a large demand set that allows agents in group 1 to select their
best option. In the second configuration, the introduction of a new commodity
allows agents in group 2 to demand more sophisticated bundles and to compete
for some goods that were previously consumed by agents of group 1, even if the
latter have a higher evaluation of these goods. This causes the utilitarian welfare
to be lower.

The example has a significant share of goods represented by an atom, that
cannot be split into smaller commodities. The only possible refinements damage
agents of type 1, putting those of type 2 in a favorable position. This suggests
that agents with higher evaluations of atoms may benefit more from the intro-
duction of new commodities. Appendix A.2 elaborates on Example 5 and obtains
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slightly weaker results under the additional assumption that all commodities can
be refined, i.e. that the measure ω is atomless.

The last two examples are possibility results, but their import does not hold
in general. The example in Appendix A.1 can be used to define a sequence of
competitive configurations 〈πn, (xin)〉 in which every πn+1 refines πn and every
configuration is strictly preferred to the previous one both from a Paretian and a
utilitarian point of view.

4.4 The optimal number of commodities

Limitations on the number of commodities may be driven by economical consid-
erations. Even when technically possible, operating within economies with many
commodities is costly both for the agents, who have to process more information,
and for the market institutions, that have to handle more elaborated transactions.
A social planner may prefer a simpler environment if the social cost of increas-
ing the number of commodities is higher than what agents gain from the richer
trading possibilities.

The socially optimal number of commodities depends on how the planner ranks
the possible configurations, on agents’ preferences and on the cost of introducing
new commodities. This paragraph studies the simple case in which the configura-
tion is chosen as to maximize the utilitarian social welfare and the cost of operating
in the market is proportional in the number of commodities acknowledged by the
classification.

Formally, let USW (k) be the maximum utilitarian social welfare that can
be achieved using at most k commodities. In defining USW we consider any
configuration 〈π, (xi)〉 with |π| ≤ k and do not require it to be competitive (i.e.
that (xi) is a competitive allocation in E(π)). The social cost of operating with
k commodities is ck, with c ∈ (0, 1). Thus, the problem faced by the planner is
formalized as follows:

max
k≥1

USW (k)− ck. (1)

There is always a solution to the problem (1) because the function USW is
bounded from above. To see this, recall that none of the n agents can receive
a utility higher than 1, which corresponds to consuming all the goods available.
Thus, the optimal utilitarian social welfare with any number of commodities lies
between 1, which corresponds to giving all goods to one agent, and n, which could
be obtained only if every agent could consume all goods. We conclude that there
exists a k∗ that solves problem (1) and that 1− c ≤ k∗ ≤ n−1

c
+ 1.

Without restrictions on agents’ preferences, it is not possible to give any
sharper estimation of the optimal value k∗. As a way of illustration, observe that
if all agents have evaluation measures that coincides with ω then USW (k) = 1
for all k, meaning that k∗ = 1. On the other hand, the next example shows that
k∗ could be n−1

c
+ 1.

Example 6. Let c ∈ (0, 1) be such that n−1
c

+ 1 ∈ N. Consider an economy where
ω coincides with the Lebesgue measure and n agents. The evaluation measure of
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each i is:
νi(F ) = (1− c)ω

([
0, 1
n

])
+ c ω

((
i− 1
n

,
i

n

])
.

We claim that USW (k) is constantly equal to 1− c for every k ∈ {1, . . . , n−1
c

+ 1}
because for every k smaller than n−1

c
+ 1 the classification formed by k intervals

that maximizes the utilitarian social welfare is given by the intervals

A1 =
[
0, 1
n

]
, A2 =

( 1
n
,

2
n

]
, . . . , Ak =

(
k − 1
n

, 1
]
.

5 Equilibrium without prices

Typically, a decentralized allocation mechanism rests on a set of social norms that
constrain agents’ consumption possibilities. In equilibrium, agents have the right
to demand their preferred bundle among those conformant with the active social
norm, and their demands are mutually compatible; see Richter and Rubinstein
(2020). A competitive configuration, for example, is a price-based equilibrium
where individuals demand only bundles that are tradable and meet specific budget
constraints.

This section defines an allocation mechanism where the mere choice of an
appropriate classification suffices to achieve an equilibrium. To this end, we com-
partmentalize the effect of the classification on individual demands by introducing
a simple social norm of rationing that is not price-based: the quantity of goods
that an agents can demand cannot exceed his claim. Thus, given a classification
π, a π-bundle is admissible for agent i if it belongs to the set:

Ai(π) =
{
y ∈ Rπ

i :
∑
B∈π

yB ≤ κi

}
.

Agent i’s π-demand set is the collection of π-bundles that maximize i’s utility
among those that are admissible for i, i.e. the set:

Di(π) = {x ∈ Ai(π) : Vi(π, x) ≥ Vi(π, y) for every y ∈ Ai(π)} .

A configuration 〈π, (xi)〉 is an equilibrium if xi ∈ Di(π) for every i. We say that
π supports the equilibrium.

Compare the standard price-based notion of equilibrium with the one just
defined. The first one relies on the assumption that agents can exchange goods
in different quantities. All consumers may trade up a large amount of some
commodity for a smaller portion of another one they like more, when the prices
allow it. This is problematic when agents are not allowed to bargain over the
quantity of goods they receive. On the contrary, our notion of equilibrium let
agents exchange only bundles that contain the same total amount of goods. The
following is a simple example of a situation where the total amount of commodities
for each agent is fixed, so that our equilibrium notion is preferable to the standard
price-based one.
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Example 7. A College study program offers n courses organized in two teaching
periods. The schedule must satisfy three criteria: lessons cannot overlap, the
total number of teaching hours is constant, and the classes of a course are evenly
distributed within each of the assigned periods. Every professor must teach one
course of the same length and has preferences on the period and the concentration
of his classes. The school board chooses how to divide the academic year in two
terms, and then asks each professor to indicate in which of the two terms she
prefers to teach. We ask whether there exists a division in two terms that satisfies
every teacher’s requests.

We imagine that each professor is assigned a bundle (x, y) where x and y are the
number of hours she has to teach in the first and in the second term, respectively.
By viewing each teaching period as a different commodity, the scheduling problem
can be approached as an allocation problem. In this framework, an equilibrium
would be a division of the school year in two teaching periods that ensures that
every teacher is free to choose how to divide his classes between the two terms.

Remark. Because an equilibrium corresponds to a competitive configuration
where all commodities come at the same price, the equilibrium allocation is triv-
ially envy-free, in the sense that no agent will prefer the bundles assigned to any
other consumer with the same claim. Furthermore, one may adapt the argument
in Example 1 exhibiting two equilibria, one of which strictly Pareto-dominates the
other, and show that our notion of equilibrium may not lead to Pareto-optimal
configurations. It does not seem obvious how to establish the existence of a
Pareto-optimal equilibrium.

5.1 Equilibrium existence

The coarse partition π = {I} always supports an equilibrium where each agent
i receives a fraction ki of the overall endowment. This section studies conditions
under which for every number of commodities there is a classification supporting
an equilibrium. We find that two conditions are sufficient to ensure this result:
a) the measure ω has to be non-atomic, so that the endowment of goods is well
distributed; and b) at least an agent i has a higher value when a commodity is
defined by a smaller interval, exhibiting a strong preference for concentration. To
formalize this last notion, we consider a larger class of preferences.

We associate every agent i with a set-function ηi defined on the subsets of
I, and called i’s evaluation function. Intuitively, ηi(B) is the utility that agent
i receives from consuming commodity B; in particular, x units of commodity B
yield utility x

ω(B)ηi(B). Given a classification π, the utility Vi(π, x) of agent i for
a π-bundle x ∈ Rπ

+ is the sum of the evaluations for each commodity weighted by
the quantity received:

Vi(π, x) =
∑
B∈π

xB
ω(B)ηi(B). (2)

We assume that each evaluation function ηi satisfies the following conditions:

• ηi is normalized, i.e. ηi(∅) = 0 and ηi(I) = 1;
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• ηi is monotone, i.e. ηi(F ) ≤ ηi(G) whenever F ⊆ G are subsets of I;

• ηi is submodular, i.e. ηi(F ∪ G) + ηi(F ∩ G) ≤ ηi(F ) + ηi(G) for every two
F,G ⊆ I;

• ηi is absolutely continuous with respect to ω, i.e. ηi(F n)→ 0 whenever (F n)
is a monotone sequence of subsets of I such that ω(⋂F n) = ∅.

The submodularity of the function ηi implies decreasing marginal evaluations: for
every F,G,G′ ⊆ I such that G ⊂ G′, we have ηi(F ∪G)− ηi(G) ≥ ηi(F ∪G′)−
ηi(G′), meaning that the marginal benefit of adding F to a portion G of I is
decreasing in the content of G. The absolute continuity of ηi with respect to ω
implies that any agent’s evaluation for a vanishing quantity of goods decreases
to 0. Note that the evaluation measures used above are just additive evaluation
functions: Equation (2) is the natural extension of the functions Vi’s generated
by evaluation measures.

Another consequence of submodularity is that the ratio ηi(F )/ω(F ) increases
as ω(F ) decreases. Intuitively, the average benefit from a type of goods increases
as the type becomes “more concentrated”. We say that agent i has a strong
preference for concentration (SPC for short) if limn ηi(F n)/ω(F n) =∞ for every
sequence (F n) of intervals such that ω(F n) > 0 for all n ∈ N and limn ω(F n) = 0.

We can now formalize the main result.

Theorem 6. If ω is non-atomic and at least an agent has a strong preference
for concentration, then for every k ∈ N there exists an equilibrium supported by a
classification with k intervals.

The two hypotheses are: a) the measure ω is non-atomic, and b) there is an
agent with SPC. The next two examples show that neither assumption can be
easily dropped. A third example shows that they are not necessary.

Example 8 (A society where ω is non-atomic but no agent has SPC). There are
n agents and ω is the Lebesgue measure. Every agent i has an evaluation function
defined by:

ηi(F ) =
∫
F
ui dω.

for some strictly increasing, integrable function ui. Because each ηi is additive,
no agent exhibits SPC. We claim that no classification based on k ≥ 2 intervals
can support an equilibrium.

Take any classification π = (B1, . . . , Bk) and let 0 = θ0 < θ1 < · · · < θk = 1
be such that θj−1 and θj are the extreme points of the interval Bj. An agent i
maximizes the utility Vi(π, x) by demanding positive amounts only for the tradable
commodities Bj for which the ratio

ηi(Bj)
ω(Bj)

=
∫ θj

θj−1
ui dω

(θj − θj−1)
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is maximized. On the other hand, because ui is an increasing function, the map
t 7→

∫ t
0 ui dω is convex and so:∫ θk

θk−1
ui dω

(θk − θk−1) >
∫ θk−1
θk−2

ui dω

(θk−1 − θk−2) > · · · >
∫ θ1
θ0
ui dω

(θ1 − θ0) .

Because every agent demands exclusively the same k-th tradable commodity, there
is a positive excess of demand under any classification π with k ≥ 2. We conclude
that no such classification can support an equilibrium.

In Example 8 agents have additive evaluations: their demands are not affected
by the width of the intervals in the classification π. This no longer holds if a
consumer exhibits SPC, because that consumer is attracted to sufficiently smaller
cells.
Example 9 (A society where every agent has SPC but ω is atomic). Consider an
economy where half of the total amount of goods correspond to the point 0 and the
other half correspond to 1. Using the notation for Dirac measures, the measure ω
assigns to each F ⊆ I the value

ω(F ) = 1
2δ{0}(F ) + 1

2δ{1}(F )

There are n agents, who all have the same evaluation function ηi(F ) = δ{1}(F ).
By construction, ω has two atoms and every agent exhibits SPC. We claim that
no classification based on k ≥ 2 intervals can support an equilibrium.

Given any classification π, every agent prefers the cell B containing 1 over
any other cell and therefore demands only this commodity. This implies a positive
excess of demand for B, and the conclusion follows.

Example 9 shows how the presence of large chunks of identical goods can
make agents’ demands insensitive to changes in the classification. This cannot
occur when the measure ω is non-atomic, because the amount of goods labelled
with the same t ∈ I is negligible.

Our third example shows that the two sufficient assumptions in Theorem 6
are not necessary.
Example 10 (A society where ω is atomic and no agent has SPC, but equilibrium
exists). There are three agents. The measure ω is defined by

ω(F ) = λ
(
F ∩

[
0, 2

3

])
+ 1

3δ{1}(F ),

where λ denotes the standard Lebesgue measure. Assume that the three agents
have the following evaluation functions:

η1(F ) =
∫
F

2t dt, η2(F ) = η3(F ) =
∫
F

2(1− t) dt.

Note that ω has the atom {1} and that no agent has SPC because all the evaluation
functions are additive.

Consider the classification π = {[0, 2/3], (2/3, 1]}. Then agent 1 demands
the π-bundle x1 = (0, 1), while agents 2 and 3 demand the π-bundle x2 = x3 =
(1/2, 0). Because 〈π, (xa)〉 is an allocation, we conclude that π supports an equi-
librium.
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5.2 Further extensions

We can relax some assumptions on the model without compromising the main
existence result of Theorem 6. We illustrate two extensions under which one can
prove the existence of equilibria in slightly more general settings.

Measure space for the goods’ characteristics. Our model assumes that the
space of goods’ characteristics is a totally ordered set and that commodities are
defined as intervals. This can be relaxed to an abstract measure space for the
goods’ characteristics, where commodities are defined by measurable subsets. We
sketch the main features of this more general approach.

Let a measurable space (X,Σ) denote the set of goods’ characteristics. Sim-
ilarly to our framework, every t ∈ X corresponds to a complete description of a
single good and each F ∈ Σ is a type of good. A normalized measure ω : Σ→ [0, 1]
describes the availability of goods. We define a classification of goods as a par-
tition π of X formed by finitely many sets in Σ with positive ω-measure. The
definitions of π-bundles, of agents’ evaluations and of equilibrium are naturally
adapted to this new setup.

Even in this broader setting, there exists a non-trivial classification supporting
an equilibrium if ω is non-atomic and at least an agent has SPC. In fact, one
can define a specific family of classifications with properties so similar to those
of classifications formed by intervals of I that the proofs are almost identical.
The idea is to choose an increasing family of sets, then mimic a “moving-knife
procedure” to define a class of partitions similar to those formed by intervals in
I.

Formally, let C = {Ct : t ∈ I} ⊆ Σ be a monotone chain such that ω(Ct) = t
for all t ∈ I. Such a chain always exists by the non-atomicity of ω. A set J is a
C-interval if there exists t < s in I such that J = Cs \Ct. Let ΠC(k) be the set of
classifications formed by at least a number k ≥ 2 of C-intervals. One may extend
the proof of Theorem 6 with respect to C-intervals in X instead of intervals in I.

It is worth observing that in this more general setting the class of possible
classifications is much larger than the one described by using I as space of goods’
characteristics. Therefore, while it is easy to prove an equilibrium exists, some
results from the other sections may no longer hold. As a way of illustration, the
proof that there exists a configuration that is Pareto-optimal within the set of
competitive configurations cannot be directly extended to this broader environ-
ment.

Weaker form of SPC. The assumption that at least an agent has SPC is
restrictive, because it requires that there is an agent that will drastically change
his choice whenever he is offered a sufficiently concentrated commodity. From
a technical viewpoint, however, this assumption is used only to show that the
aggregate demand correspondence meets some standard boundary conditions.

The assumption can be relaxed into a local requirement: if the interval defining
a commodity is sufficiently small, then there is at least one consumer who prefers
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it to all the other commodities. Using the notation above, we formalize this as a
condition of distributed SPC :

If πn = (Bn
1 , . . . , B

n
i , . . . B

n
k ) is a sequence of classifications in Π(k) and

ω(Bn
i ) → 0 as n → ∞, then there exists an agent whose demand for

commodity Bn
i goes to infinity as n→∞.

Under distributed SPC, the proof of Theorem 6 holds unchanged.
It may be useful to compare the import of SPC versus distributed SPC to ap-

preciate the greater realism of this latter. Concerning the explanatory example in
the introduction, SPC requires that there is an agent who, given any classification,
might change his choice if he is offered another type of wine using a purer selection
of grapes; distributed SPC requires only that, for any classification, there is some
agent willing to. Similarly, concerning the example of the academic calendar, SPC
requires that a professor would accept to teach in any moment of the year as long
as his course is sufficiently concentrated, while distributed SPD is satisfied if, for
any calendar, one can find a professor who is willing to.

A Appendix

A.1 Non-existence of Pareto-optimal configurations

The next example describes a society with two agents, where every configuration
can be improved both from a Paretian and an utilitarian point of view with a
suitable refinement of the underlying classification.

Example 11. Consider an economy where ω is the Lebesgue measure and there
are two agents with identical claims. Let S ⊂ I denote the Smith-Volterra-Cantor
set (SVC set for short), which is a measurable set of size 1

2 with the property that
every non-null interval in I contains a non-null interval disjoint from S; see the
ε-Cantor set in Aliprantis Burkinshaw (1981, p. 141). Agents’ of each group have
preferences derived from the following evaluation measures:

ν1(F ) = 2ω(F ∩ S), ν2(F ) = 2ω(F \ S).

We claim that the only Pareto-optimal configurations assign the 0 bundle to all
agents of group 1.

Let 〈π, (xi)〉 be a configuration and let the interval B ∈ π be a commodity such
that x1

B > 0. By the properties of the SVC set S, there exists an interval C ⊆ B
such that C ∩ S = ∅, and so ν1(C) = 0 and ν2(C) = 2ω(C). If we label C as a
new commodity, we obtain a finer classification ρ under which one can transfer
all goods of type C previously assigned to 1 to agent 2, while leaving the rest of the
allocation unchanged. But this benefits agent 2 without causing harm to 1 (because
her evaluation of C is null), proving that 〈π, (xi)〉 is Pareto-dominated.

Formally, let B1 and B2 be the two (possibly, empty) intervals obtained by
removing C from B. Let ρ be a refinement of the classification π, where the
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commodity B has been replaced with B1, B2 and C. Consider a new allocation
(yi) in E(ρ) where the bundle assigned to agent 1 is

y1
A = ω(A)

ω(B)x
1
B if A ∈ {B1, B2}, y1

C = 0, y1
A = x1

A otherwise;

and the bundle assigned to agent 2 is:

y2
A = ω(A)

ω(B)x
2
B if A ∈ {B1, B2}, y2

C = ω(C)
ω(B)x

2
B + ω(C)

ω(B)x
1
B, y2

A = x2
A otherwise.

Computations shows that (yi) is a feasible allocation in E(ρ) that agent 1 finds
equivalent to (xi), while agent 2 strictly prefers it to (xi). Standard arguments
based on the continuity and monotonicity of the function Vi(ρ, ·) prove that one
can modify (yi) into a new allocation that every agent strictly prefers to (xi).

Clearly, Example 11 relies crucially on the assumption that agents’ evaluations
of goods are expressed through extremely elaborated subsets of I (such as the SVC
set) while commodities can only be defined as intervals. If we allow commodities
to be arbitrary subsets of I, then the classification π = {S, Sc} would generate
a Pareto-optimal configuration where all goods of type S are assigned to agent 1
and the rest to agent 2. This suggests that the stronger the exogenous constraints
on the classification of goods into commodities, the further agents may be from
reaching optimal allocations.

A.2 Refinements may reduce the utilitarian welfare even without atoms.

It is possible to adapt Example 5 and obtain slightly weaker results under the
additional assumption that all commodities can be refined, i.e. that the measure
ω is atomless. The following example describes a society with two commodities
A and B, where splitting A into smaller and smaller intervals keeps reducing the
social welfare, while splitting B leaves it unchanged.

Example 12. Let ω be the Lebesgue measure and let there be 2n agents with
identical claims, arranged in two groups of equal size. Agents in type 1 and 2 have
preferences derived respectively from the evaluation measures:

ν1(F ) = 2ω
(
F ∩

[
0, 1

2

))
, and

ν2(F ) = 1
2ω

(
F ∩

[
0, 1

4

))
+ 3

2

(
F ∩

[1
4 ,

1
2

))
+ ω

(
F ∩

[1
2 , 1

])
.

Consider the classification π = {A,B} where A =
[
0, 1

2

)
and B =

[
1
2 , 1

]
. In E(π)

an equilibrium occurs when the commodities have identical prices and each agent
i consumes 1

2n units of commodity A or B if she is in group 1 or in group 2,
respectively.

This situation is almost identical to Example 5, except for the fact that the
atom in 5 is replaces by the refinable commodity B. We claim that no refinement
of π can improve the utilitarian social welfare, although some may reduce it.
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Let ρ � π be a refinement of any size. If ρ is obtained by splitting B in two
commodities B1 and B2, then agents of either group 2 remain indifferent between
B1 and B2. The equilibrium remains essentially unaltered and the utilitarian
welfare does not change. Differently, if ρ is obtained by splitting A in any number
of commodities, then the same arguments in Example 5 show that the utilitarian
welfare decreases.

We conclude that the refinements that do not cause a decrease in the utilitarian
social welfare must split only commodity B in smaller commodities.

In Example 12, if one defines ρ by randomly adding a new threshold to the
partition that defines the classification π, then the probability that the utilitarian
welfare decreases is equal to the probability that the new threshold refines com-
modity B. When this threshold is chosen according to a uniform distribution on
I, there is a 50% chance that the utilitarian social welfare decreases. Therefore,
a social planner that selects a sequence of refinements (πn) at random will al-
most surely cause a loss in the utilitarian social welfare, as long as the thresholds
defining each πn+1 are uniformly distributed on I.

A.3 Proofs

Proposition 1. (Π(k), dω) is a compact space where two classifications have zero-
distance if and only if they coincide up to negligible sets.

Proof. Let J be the set of all intervals in I and h the pseudo-metric h(F,G) =
ω(F4G). Then dω(π, ρ) is the Hausdorff distance between the algebras σ(π) and
σ(ρ), seen as subsets of (J , h). Therefore, dω(π, ρ) = 0 if and only if σ(π) and
σ(ρ) have the same closure in (J , h) (see Lemma 3.72, Aliprantis and Border,
2006), i.e. if every B ∈ σ(π) coincides with a B′ ∈ σ(ρ) up to null sets. Because
σ(π) and σ(ρ) are finite, this holds if and only if the sets of generators for the two
algebras (i.e. the classifications π and ρ) coincide up to null sets.

As per the compactness of Π(k), if we identify intervals with zero-distance,
then the function ω maps isometrically J0 = {F ∈ J : 0 ∈ F} into a closed and
bounded subset of I, so that (J0, h) is itself compact. This implies that Π(k) is
compact, because it is the image of the compact product space J k−1

0 under the
continuous function

ϕ(F1, . . . , Fk−1) = {Fi+1 \ Fi : ω(Fi+1) > ω(Fi) and Fk = I} .

�

Theorem 2. The competitive equilibrium-correspondence W is upper-hemicon-
tinuous on the compact space (Π(k), dω).

Proof. We associate every π ∈ Π(k) with an auxiliary exchange economy Ẽ(π)
with commodity space Rk

+ and with the property that W(π) is the continuous
image of the set W̃(π) of competitive outcomes in Ẽ(π). This way, it is sufficient
to prove that the correspondence W̃ is upper-hemicontinuous.
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For any classification π = (B1, . . . , Bm) with m ≤ k, let Ẽ(π) = E(π) if m = k.
Otherwise, if m < k, for each agent i define his endowment in Ẽ(π) as

ẽi(π) = κi
(
ω(B1), . . . , ω(Bm−1), ω(Bm)

k −m
, . . . ,

ω(Bm)
k −m

)

and his utility from the vector x ∈ Rk
+ as

Ṽi(π, x) =
m−1∑
j=1

xj
ω(Bj)

νi(Bj) +
k∑

j=m

xj
ω(Bm)νi(Bm).

Because the economies Ẽ(π) satisfy all the assumptions of the main Theorem in
Hildebrand and Mertens (1972), the equilibrium-set correspondence Ẽ(π) 7→ W̃(π)
is upper-hemicontinuous. The map π 7→ Ẽ(π) is also continuous, as ẽi(π) and
Ṽ i(π, ·) change continuously with π. Then the whole correspondence W̃ is upper-
hemicontinuous.

To conclude the proof, notice that an allocation (x̃i) in Ẽ(π) is competitive
if and only if the vectors xi = (x̃i1, . . . , x̃im−1,

∑k
j=m x̃

i
j) constitute a competitive

allocation in E(π). Thus, W(π) is the continuous image of W̃(π). �

Corollary 3. The function Ψi is continuous on the compact space (Π(k), dω).

Proof. Because every two allocations inW(π) yield the same utility profiles, Ψi(π)
is the composition Vi(π,W(π)) and its continuity derives from that of the functions
Vi and W . �

Theorem 4. The set of competitive configurations based on classifications in Π(k)
has a Pareto-optimal configuration.

Proof. Because the Ψi’s are continuous functions on the compact space (Π(k), dω),
there exists π∗ ∈ Π(k) that maximizes ∑Ψi(π). Let (xi) ∈ W(π∗) and observe
that a competitive configuration 〈π, (yi)〉 Pareto-dominates 〈π∗, (xi)〉 if and only
if ∑Vi(π, yi) >

∑
Vi(π∗, xi), violating the maximality of π∗. We conclude that

〈π∗, (xi)〉 is Pareto-optimal. �

Proposition 5. If 〈π, (xi)〉 is a feasible Pareto-optimal configuration such that
xiB > 0 for every i and every B in π, then one can redefine agents’ claims so that
〈π, (xi)〉 is competitive.

Proof. The second Welfare Theorem applied to the allocations in the exchange
economy E(π) implies that there exists a price system p ∈ Rπ

+ that supports the
allocation (xi). Then 〈π, (xi)〉 is a competitive configuration once we redefine
agents’ claim as:

κi =
∑

pB
xiB
ω(B) .

�

Theorem 6. The competitive equilibrium-correspondenceW is upper-hemicontinuous
on the compact space (Π(k), dω).
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Proof. Let Π[k] ⊂ Π(k) denote the set of classifications formed by exactly k
commodities, whereas Π(k) is the set of classification formed by at most k com-
modities. We may rearrange each π in Π[k] in a string of intervals π = (F1, . . . , Fk)
where i < j if and only if s < t for every s ∈ Fi and t ∈ Fj. This associates each
classification π in Π[k] with a vector ω(π) ∈ Rk

+ defined by:

ω(π) = (ω(F1), . . . , ω(Fk)) .

Since the measures of every cell in π is positive, ω(π) lies in the set ∆◦ of all
strictly positive vectors in Rk

+ whose components sum up to one.
When ω is atomless, for every p ∈ ∆◦ there exists a classification πp ∈ Π(k)∗

such that ω(πp) = p, and πp is unique up to null sets. Thus, the map π 7→ ω(π)
identifies Π[k] with ∆◦ up to null differences.

Standard arguments prove that all the following properties hold:

1. Â : p 7→ A(πp) is a continuous correspondence with convex and compact
values.

2. For every i, the function V̂i : ∆◦×Rk
+ → R+ defined by V̂i(p, x) = Vi(πp, x) is

continuous and linear in the second coordinate. Therefore, D̂i : p 7→ Di(πp)
is a upper-hemicontinuous correspondence with convex and compact values.

3. For every i, p ∈ ∆◦ and x ∈ D̂i(p) imply p · x = κi.

4. Suppose that a sequence (pn) ⊂ ∆◦ converges to some p∗ /∈ ∆◦ and let
I∗ = {j ≤ k : p∗j = 0}. If an agent i∗ has SPC and xn ∈ D̂i∗(pn) for every
n, then ∑j∈I∗ x

n
j →∞.

Define the excess of demand correspondence Z : ∆◦ � Rk by

Z(p) =
(∑

D̂i(p)
)
− p, for every p ∈ ∆◦.

Then the properties above imply: (i) Z is an upper-hemicontinuous correspon-
dence with convex and compact values; (ii) Z is bounded from below; (iii) p ·z = 0
for every p ∈ ∆◦ and z ∈ Z(p); and (iv) limn inf Z(pn) =∞ whenever (pn) ⊂ ∆◦
is a sequence that converges to some p /∈ ∆◦. The Gale-Debreu-Nikaidô Lemma
applies to Z and so there must be a p∗ such that 0 ∈ Z(p∗).

Let πp∗ ∈ Π[k] be such that ω(πp∗) = p∗. By construction, Di(πp∗) = D̂i(p∗)
for every i, which implies that ω(πp∗) ∈

∑
iDi(πp∗). Thus we can select a π-bundle

xi ∈ Di(πp∗) for every i with the property that ∑i x
i
B = ω(B) for every B ∈ π.

But then 〈πp∗ , (xi)〉 is an equilibrium. �
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