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Abstract

Cyber-physical systems (CPSs) are integrated systems engineered to combine computational control algo-

rithms and physical components such as sensors and actuators, effectively using an embedded communication

core. Smart cities can be viewed as large-scale, heterogeneous CPSs that utilise technologies like the Internet

of Things (IoT), surveillance, social media, and others to make informed decisions and drive the innovations

of automation in urban areas. Such systems incorporate multiple layers and complex structure of hardware,

software, analytical algorithms, business knowledge and communication networks, and operate under noisy

and dynamic conditions. Thus, large-scale CPSs are vulnerable to enormous technical and operational chal-

lenges that may compromise the quality of data of their applications and accordingly reduce the quality of

their services. This paper presents a systematic literature review to investigate data quality challenges in

smart-cities large-scale CPSs and to identify the most common techniques used to address these challenges.

This systematic literature review showed that significant work had been conducted to address data qual-

ity management challenges in smart cities, large-scale CPS applications. However, still, more is required

to provide a practical, comprehensive data quality management solution to detect errors in sensor nodes’

measurements associated with the main data quality dimensions of accuracy, timeliness, completeness, and

consistency. No systematic or generic approach was demonstrated for detecting sensor nodes and sensor node

networks failures in large-scale CPS applications. Moreover, further research is required to address the chal-

lenges of ensuring the quality of the spatial and temporal contextual attributes of sensor nodes’ observations.
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1. Introduction

Cyber-physical systems (CPSs) are designed as a network of computational elements that combine phys-

ical input and output mechanisms to interact with the surrounding environment [1]. CPSs can be seen as

the new generation of engineering systems with high computation and communication capabilities that per-

form dedicated functions, typically, according to strict real-time constraints [2] [3]. Data typically circulate5

continuously among the different CPSs components in real-time [4]. CPSs rely on data acquisition from

sensor nodes, data processing in the control (computing) unit(s) and data communication with the actuators

to regulate the physical environment. This data cycle is necessary for the CPSs to meet their operational

requirement and ultimately enables the system’s self-control and awareness, especially in real-time appli-

cations [5], [6], [7]. Therefore, data has a crucial role in the successful operation of CPSs [5], especially10

considering that CPSs may cause severe consequences in the case of providing decisions based on low-quality

data [8], [9], [10].

CPSs might compromise safety constraints and might have life-threatening consequences in cases of receiv-

ing incorrect data, missing time deadlines or missing critical readings from sensors in real-time [11]. Ensuring

the quality of data is an open challenge in large-scale CPSs applications [12], [13], [14], [15], [16], mainly15

because of the large amount of data that these systems exchange at (near) real-time, the vast geographical

area, and the dynamic and noisy conditions where these systems are usually deployed [17].

In response, many studies have been published to address existing data-quality challenges in large-scale,

smart-cities’ CPS applications. Some examples are as listed in the second section of Table 1, where most of

these studies focused on the methods or algorithms used to address a domain-specific data quality challenge.20

Despite the importance of these efforts, there is still a lack of review studies that analyse data quality

challenges in large-scale CPSs in a more multivariate perspective.

Table 1: Cyber-Physical Systems Cross-Domain Applications in the Context of Smart Cities.

CPS applications/systems
Smart

Environment
Smart

Transportation
Smart

Healthcare
Human activity/

Smart spaces
Smart

Governance
Smart utility management [18] [19] [20] [21] [22]
Traffic and road management [23] [24] / [25] [23]
Sensors and sensing technology [26] [27] [28] [29] [30]
Energy management [31] [32] / [33] [34]
Common challenges of large-scale CPS in smart cities
Big Data management [35] [36] [37] [38] [39]
Data quality management [40] [41] [42] [43] [44]

This paper offers a review of data quality challenges in large-scale, smart cities’ CPSs and the most

popular data quality assessment/management methods or techniques adopted to address these challenges.

Furthermore, this review analyses the existing literature to draw meaningful conclusions related to data25

quality challenges in large-scale CPSs to reveal existing research gaps in the field of data quality management

and point towards potential research directions.

The rest of this paper is organised as follows: Section 2 is an introduction to smart cities as large-scale

CPSs, Section 4 provides details of the review process and methodology, Section 5, describes the review
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conduct and primary studies selection processes. Section 6 specifies the leading data quality challenges in30

large-scale CPS applications, Section 7 presents data mining and data quality management in large-scale

CPSs, and Section 8 presents the unaddressed data quality management challenges in large-scale CPSs.

Finally, Section 9 presents the concluding remarks.

2. Smart Cities as Large-Scale CPSs

CPSs are the next generation information systems that integrate communication, computation, and con-35

trol to achieve higher performing buildings and better public services with more energy-efficient operations

and a higher level of automation [45]. CPSs are an active area of research [46], [47], with a significant impor-

tance to the future of smart cities [48]. CPSs are multidisciplinary cross-domain information systems which

bring together different sectors of smart cities’ public services, such as smart transportation management,

smart utility management, smart buildings [49], smart environment management [50] and smart governance,40

Where data sensing, knowledge extraction, and higher automation are critical elements in the future of these

services [51]. The future cities can provide smarter services by utilising IoT solutions that relay on an ex-

tended number of sensors and can provide scalable and interactive functionalities, e.g., the city scale traffic

management solution illustrated in Figure 1, [52]. The smart city traffic management solution detects traffic

Figure 1: A smart city large-scale IoT solution for traffic management [52].

jam in real-time. It controls the traffic while monitoring the air quality to ensure that the traffic jam does45

not affect the environment. Such a system relies on air quality monitoring sensors to measure the ratio of

harmful gases in the air and utilises traffic lights as actuators to reduce the traffic in low air quality areas [52].
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Most of these large-scale CPSs are heterogeneous and multi-model information systems that analyse

massive amount of data collected from various devices provided by different manufacturers [17]. Typically,

smart cities’ large-scale CPS applications are designed to sense, process and react to real-time changes [53].50

These systems rely on hundreds of sensor nodes and other devices which continuously sense and stream

readings of various parameters rendering large volumes of data, which is known as Big Data [54]. The term

Big Data describes a massive volume of complex and different types of structured and unstructured data

that accumulate in a relatively high velocity [55]. Mining and analysing big data has a significant role in

providing a rich source of information about smart cities’ utilities and citizens’ activities, providing more55

efficient management, better services and sustainable development [56].

Ensuring the quality of data in large-scale CPS applications is a critical requirement to guarantee that

their analytical core will make more reliable decisions [57], [58]. The quality of data of CPS applications is

mainly affected by inaccurate observations that do not represent the actual value of measured phenomena [59].

Data quality issues may occur in large-scale CPS applications because of many reasons such as sensor nodes60

malfunctions [60], calibration issues, poor sensor nodes quality, environmental effects, external noise [61],

networks or communication errors, and real-time scheduling problems [8], [58]. Furthermore, limitations in

communication channels may cause observations’ overlook in sensor networks which usually occurs during

data transmission or aggregation processes [17], [62].

The challenge of data quality becomes greater in large-scale CPS applications, e.g. in environmental and65

noise monitoring systems, which rely on various sensors and other devices connected by extended networks

and usually operate under noisy and dynamic conditions [44], [63], [60]. Such applications have enormous

technical challenges because of their multiple layers and complex structure that combines hardware, software,

analytical algorithms, business knowledge and communication infrastructure [57]. CPSs implementations in

different sectors of smart cities, public services are listed in Table 1, which also highlights big data and data70

quality management as common challenges across all of these large-scale CPSs applications.

3. Data Quality Concepts and Terminology

According to the International Standardization Organisation (ISO), quality, in general, is the ”the totality

of characteristics of an entity that bear on its ability to satisfy stated and implied needs” [64]. In comparison,

Data Quality is defined as data fitness for the purpose of the intended use [65, 66] or its conformance to75

requirements [67, 68]. This definition outlines that data which very well meet some predefined expectations,

specifications, or standards are considered to be high-quality data that fit for use in a particular application.

The concept of fitness to use associated with data quality also covers how effectively the data describe

any events, observations or measurements it was created to represent the characteristics of the data that

circulating in the system [69].80

Data quality can be quantified, measured and monitored using a set of context-dependent parameters or

indicators known as Data Quality Characteristics or Dimensions [70, 69]. More than 200 data quality
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dimensions have been introduced since the eighties [71]. However, these dimensions can be categorised

into four core data quality dimensions: accuracy, completeness, timeliness and consistency [69, 71, 72, 73],

which are ,typically, associated with data quality requirements and mapped to define data quality assessment85

criteria [74].

4. Review Process and Methodology

This systematic literature review (SLR) was conducted based on the guidelines proposed by [75], which

provides an organised and repeatable procedure to perform the SLR based on three primary stages: planning,

conducting, and reporting the review results. The overall review of the processes adopted to conduct this90

SLR are illustrated in Figure 2.

Figure 2: A holistic overview of the processes adopted in this systematic literature review.
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4.1. SLR Questions and Objectives

The SLR review questions (RQ) have a significant role in driving the review methodology and identifying

the primary studies. Thus, the analysis and synthesis process of the primary studies must extract the data

in a way that answers the review questions [75]. The SLR review questions are listed in Table 2.95

4.2. SLR Protocol (Strategy)

The Review protocol is the strategy of implementing a set of specified steps to undertake the SLR.

The purpose of the SLR protocol is to narrow down the possibility of researcher bias by pre-defining the

review processes and procedures of selecting and analysing the primary studies that will address the research

questions. The review protocol involves specifying the research terms (keywords), digital libraries, refinement100

terms (synonyms for the main search terms), the quality questionnaire and the data extraction forms [75],

[76], as follows:

Table 2: SLR Review Questions and Objectives.

RQ# SLR Research Question / Objectives

RQ1 What are the most common data quality challenges associated with large-scale CPS applications?

RQ2 Which solutions/methods were adopted to address data quality challenges in large-scale CPS?

RQ3
What is the overall effectiveness of the current solutions/methods used to address data quality
challenges in large-scale CPS?

4.2.1. Identifying Search Terms

Digital libraries must be searched using search terms and keywords to identify the primary studied that

will address the review questions. The search terms typically extracted from the search questions, including105

any possible alternative terms or synonyms as shown in Table 3. The search method is based on incorporating

the keywords and terms from Table 3 using Boolean expressions (OR, AND, NOT...etc) to form Boolean

search string, which used to search the pre-selected digital libraries.

4.2.2. Selecting Digital Libraries

Selecting digital libraries is an essential step for identifying relevant primary studies that will address the110

research questions. It is critical to include many digital libraries in the search process since no single source

Table 3: The SLR Search Terms and Keywords.

Category Search Terms Level of Abstraction

Primary

Quality of data

Title and abstract

Data quality
Quality of information
Information quality

Secondary
Cyber-physical system
Internet of things
Wireless sensors network

Exclusion

Social Media
Fully reviewing
the study

Smart-Wearables
Vehicle Services
Social Sensing
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can comprehensively provide all relevant primary studies and to ensure resource-dependent search to cover

the search topic. Table 4 shows the list of specialised digital libraries selected as the literature source for

identifying relevant primary studies to the research topic.

4.2.3. Defining Inclusion and Exclusion Criteria115

The purpose of the inclusion and exclusion section is to define the criteria of selecting which primary

studies will be approved for further analysis, while excluding other studies that do not satisfy these criteria.

The inclusion and exclusion criteria of this SLR are listed in Table 5.

4.3. SLR Quality Assessment

The purpose of the SLR quality assessment is to evaluate the relevance of primary studies that already120

met the inclusion criteria to the review topic. SLR quality assessment is crucial because it is a further

measure to limit the possibility of researcher bias [77], it presents a repeatable guideline for interpreting

the results, and it provides a quantitative numeric mean to determine how strongly the selected primary

studies are associated with the SLR objectives via a quality score. Typically, the SLR quality assessment

can be implemented by scoring individual primary studies using a quality questionnaire form and based on125

assessment criteria [76].

Table 4: The list of digital libraries used for identifying the SLR primary studies.

ID Digital Library Online Search Interface

1 IEEE Xplore https://ieeexplore.ieee.org

2 ACM Digital Library https://dl.acm.org

3 IET Digital Library https://digital-library.theiet.org

4 Science Direct https://www.sciencedirect.com

Table 5: The SLR Inclusion and Exclusion Criteria.
Inclusion criteria

-
The study is categorised as a peer-reviewed journal and conference paper relevant to the SLR topic
and addresses one or more of its review questions.

- The study is relevant to large-scale CPS or IoT applications.

Exclusion criteria

- The study is an editorial, tutorial, magazine, book, course, poster or it is not a peer-reviewed journal.
- The focus of the study is mobile CPS or IoT.
- The study is written in a different language other than English.
- The full version of the study is not available.
- The study is published before 2014.
- Duplicated studies.

The SLR primary studies were scored based on the quality assessment questions listed in Table 6.

4.4. SLR Data Extraction Form

The data extraction form summarises and extracts information from the primary studies to answer the

review questions. It specifies which primary study addresses which of the SLR review questions, analyses the130
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results and identifies the primary study strengths and weaknesses. The structure of the data extraction form

used in this SLR is as follows:

• References details.

• Study purpose/application.

• Dataset types/details.135

• Targeted data quality dimensions.

• Addressed data quality challenges.

• Proposed solutions/methods.

Table 6: The SLR Quality Assessment Questions (Matrix).

Q# SLR Quality Assessment Questions Q. score
Y P N

Q1 A review or an empirical study? 1 n/a 0.5

Q2 Does the study combine multi-methods techniques to address data quality challenges? 1 0.5 n/a

Q3 Does the study justify the use of these different methods/techniques? 1 n/a 0

Q4 Is there any comparative analysis of the different used methods/techniques? 1 n/a 0

Q5
How many data quality issues associated with the four core data quality dimensions are the
study addressing?

4 3 - 1 n/a

5. Review Conduct and Primary Studies Selection

The SLR review was conducted using the pre-defined structure highlighted in the review process and140

methodology section and based on the three key steps: selecting, evaluating, and summarising the primary

studies as follows:

5.1. Searching Digital Libraries

The first step to implement the SLR processes and methodology was to identify relevant primary studies

by searching the digital libraries listed in Table 4 using search strings developed based on the keywords and145

terms specified in Table 3 as shown in Table 71.

5.2. Applying the Inclusion and Exclusion Criteria

The next step is to determine whether the identified primary studies satisfy all of the pre-defined inclusion

and exclusion criteria, listed in Table 5. The number of the primary studies included in the SLR after applying

the inclusion and exclusion criteria is shown in Table 8.150

1 There are some slight differences among the Boolean search strings used to search different digital libraries, these differences
are related to the design of the search interface of the digital libraries and the availability of the primary studies.
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Table 7: The SLR digital libraries, final search strings and the number of identified primary studies.

ID
Digital
Library

Action Boolean Search Strings (10/10/2020)
No. of
Papers

1
IEEE
Xplore

Search
string

((”Document Title”:”cyber physical system” OR Internet of things” OR ”wireless
sensors network”) AND ”Document Title”:”data quality” OR ”quality of data”
OR ”quality of information”)

376

Filter

Publication Type (Conferences, Journals), Publication Topics (learning (artifi-
cial intelligence) Internet of Things data analysis data mining wireless sensor
networks Big Data decision making pattern classification data handling optimisa-
tion pattern clustering information systems quality of service statistical analysis)
Published between (2014 and 2020)

2 ACM
Search
string

[Publication Title: ”data quality”] OR [Publication Title: ”quality of data”]
OR [Publication Title: ”quality of information”] AND [Publication Date:
(01/01/2014 TO 12/31/2020)]

91

Filter Published between (2014 and 2020)

3 IET
Search
string

( ”data quality” OR ”quality of data” OR ”quality of information” ) AND (
”cyber physical system” OR Internet of things” )

52

Filter Published between (2014 and 2020)

4
Science
Direct

Search
string

Articles with these terms (”cyber physical system” OR Internet of things” OR
”wireless sensors network”) and Title (”data quality” OR ”quality of data” OR
”quality of information”)

23

Filter Review articles, Research articles, published between (2014 and 2020)

Table 8: The final number of primary studies included in the SLR after applying the inclusion and exclusion criteria and fully
reviewing all studies.

Activity \ Digital Library IEEE ACM IET Science Direct Total

Searching digital libraries and applying filters 376 91 52 23 542

Reviewing titles and abstracts 78 26 6 8 118

Fully reviewing all studies 40 13 4 3 60

5.3. Conducting the SLR Quality Assessment

The quality assessment (as highlighted in Section 4.3 ) is a crucial step to evaluate the relevance of primary

studies and scoring them according to the assessment matrix specified in Table 6 where the relationship among

the quality assessment questions is shown in Equation 1.

Quality Score = Q1 + Q2 + Q3 + Q4 + Q5 (1)

The primary studies referencing details and their overall quality assessment score are listed in Ap-155

pendix Appendix A, Table A.9. Although this approach does not answer the review questions, it provides

an opportunity to find the trend of most recent studies, evaluating their impact2 and the geographical distri-

bution of interest in data quality management of large-scale CPSs . The final number of the primary studies

included in the SLR after applying the inclusion and exclusion criteria and after fully reviewing all studies

is detailed in Table 8. Figure 3 shows the trend of the number of SLR primary studies associated with data160

quality challenges in large-scale CPSs by the year of publication.

Figure 4 shows the number of SLR studies associated with data quality challenges in large-scale CPSs by

the country of publication.

2 Using the quality score as a quantitative reference.
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Figure 3: The number of SLR primary studies associated with data quality challenges in large-scale CPSs by the year of
publication, (October 2020).

Figure 4: The number of SLR primary studies associated with data quality challenges in large-scale CPSs by the country of
publication.

5.4. SLR Data Extraction

The purpose of the data extraction process (as highlighted in section 4.4) is to quantitatively summarise165

the information from the primary studies to answer the SLR review questions. Table A.10 shows the results

of the data extraction process.

6. RQ1: Data Quality Challenges in Large-Scale CPS Applications.

This section is to answer the first SLR review question (RQ1) listed in Table 2.

Cyber-Physical Systems are designed as a network of computational elements that combine physical input170

and output mechanisms to interact with the surrounding environment [1]. CPSs are getting more popular

in the context of large-scale, smart cities applications which produce a significant amount of data from

numerous devices raising quality of service concerns mainly related to real-time big data analysis and data

quality management [78], [79], [80]. The quality of data in CPS applications is mainly related to inaccurate

observations that do not represent the actual value of the measured phenomena [59].175
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Data quality issues may occur in large-scale CPSs because of many reasons such as sensor nodes malfunc-

tions [60], calibration issues, poor sensor nodes quality, environmental effects, external noise [61], networks or

communication errors, and real-time scheduling problems [8], [58]. Furthermore, limitations in communica-

tion channels may cause observations’ overlooking in sensor networks during data transmission or aggregation

processes [17], [62]. The challenges of data quality management becomes greater in large-scale CPSs, e.g. in180

environmental and noise monitoring systems, which rely on various sensors and other devices connected by

extended networks and usually operate under noisy and dynamic conditions [44], [63], [60]. Large-scale CPS

applications, such as environmental monitoring systems, typically involve a large number of low-cost sensor

nodes deployed in broad geographical terrains forming a large-scale Wireless Sensors Network (WSN) [61],

[62], [81]. Failures in sensor nodes and sensor networks are an inevitable events in large-scale CPS applica-185

tions, which may cause severe data missing, produce invalid information and potentially reduce the quality of

their service [82]. In general, sensor nodes in WSN’s have limited computing power, limited storage capacity

and limited transmission radius [44], [83]. Therefore, wireless sensor nodes can not send observations to a

remote data destination (the sink) directly. Alternatively, a hub device or other sensor nodes works as a

bridge to transfer other sensor node’s observations. Sensor nodes that are closer to the sink consume more190

power because they support other sensors to transmit their observations and are expected to have more

power failures causing data quality issues [84], [57]. Therefore, sensor nodes may determine the network

lifetime based on their battery capacity and affect the system’s quality of information [85]. Typically, wire-

less sensors-nodes of WSN’s are distributed according to a spatial or geographical logic over the targeted

environment or area of interest [86]. Large-scale applications which exchange geographic information may195

face spatial data quality challenges mainly because of the amount of the delivered data from remote sensing

devices which may directly affect the correctness of related spatial analysis and spatial decision making [87].

Thus, data quality challenges are not only related to observations value attributes but also into mismatches

in sensor nodes temporal and spatial contextual attributes [57], [17].

Based on the SLR data extraction process presented in Table A.10, it is possible to link all of the data200

quality challenges in large-scale CPS applications in to the following categories:

• Errors in sensor nodes measurements.

• Hardware failures in sensor nodes or communication networks.

• Mismatches in sensor nodes spatial and temporal contextual attributes.

Figure 5 shows the main data quality dimensions defined by the SLR data extraction Table A.10 according205

to the ratio of the primary studies addressing data quality challenges associated with these dimensions3.

Figure 6 shows a holistic view of the main data quality management methods, data quality dimensions

and the main unaddressed data quality challenges in large-scale CPSs.

3Descriptive studies were excluded.
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Figure 5: The ratio of the data quality dimensions as addressed by the SLR primary studies.

7. RQ2: Data Mining and Data Quality Management in Large-Scale CPSs.

This section is to answer the second SLR review question (RQ2) listed in Table 2 based on the results of210

the SLR.

Data quality assessment in large-scale CPS applications using traditional methods is no longer efficient

because of the heterogeneous large volume of data that these systems typically exchange [57]. Thus, such

systems, usually rely on numerous sensor nodes that stream large volume of data in real-time which requires

a high-performance, scalable and flexible tools to effectively provide insight real-time data processing and215

analysing mechanisms [80], [44], [59], [88]. Based on the results of the SLR data extraction process illustrated

in Table A.10, many statistical, technical and machine-learning models were proposed, tested and evaluated

mostly for identifying data quality issues, decreasing their occurrence probability and overcoming their impact

on the system. Most of these proposed solutions, methods, or models were developed to enhance the reliability

of a particular system by improving its data quality based on prior knowledge extracted from the data itself,220

a process known as Data Mining. Considering the SLR empirical studies only, it is possible to categorise

all the adopted data quality assessment/management methods, techniques or solutions into three primary

groups:

• Data mining.

• Technical solutions/ models.225

• Mathematical models.

Figure 7 shows the usage ratio of the methods of each of the above groups, indicating that data mining

methods are the most widely used compared to other technical or mathematical techniques.
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Figure 6: A holistic view of the main data quality management methods, data quality dimensions and the main unaddressed
data quality challenges in large-scale CPSs.
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Figure 7: The most popular data quality assessment/management methods or techniques in large-scale CPS applications based
the number of the SLR studies.

Data mining is the process of auto-discovering knowledge, patterns or models from large volumes of data

using advance data analysis methods [89]. Data mining techniques are essential for data analysis in large-scale230

CPS applications which relay on sensor node networks that, typically, stream a continuous flow of spatiotem-

poral4 data at a relatively high-speed and dynamicity [90]. Focusing on the SLR primary studies that adopted

data mining techniques for tackling data quality challenges in large-scale CPS applications reveals that these

methods are mainly divided into statistical and machine-learning based methods. Furthermore, it reveals

that most popular data mining techniques used for data mining in large-scale CPS applications are anomaly235

analysis, predictive analysis and clustering analysis, as shown in Figure 8. Moreover, these three leading data

mining techniques were applied to address various data quality issues associated with the main data quality

dimensions, as shown in Figure 9.

Figure 8: The most popular data mining techniques in large-scale CPS applications based on the No. of the SLR studies.

Figure 10 shows a holistic diagram of the main data quality management/assessment techniques and data

4Spatiotemporal data are sensor nodes observations of events that occur in a given place at a particular time.
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Figure 9: Data mining techniques and the main data quality dimensions in large-scale CPS applications.

quality dimensions based on the SLR results.240

7.1. Anomaly Analysis for Data Quality Management

Anomaly analysis, also called outlier detection, is the process of identifying unusual patterns in datasets

which do not comply with well-established normal behaviour [90]. If the absolute value of the deviation

degree of a sensor node’s observation is higher than a pre-calculated threshold value, then this observation is

an outlier [91]. As shown in Figures 8 and 9, anomaly analysis is a significant research field in the context of245

data quality assessment in large-scale CPSs, which mainly investigated using statistical and machine-learning

based outlier detection techniques. e.g., Deep Neural Networks (DNN) [92], K-Nearest Neighbours algorithm

(KNN) [92], K-means clustering algorithm [93] as machine-learning based outlier detection methods and,

standard deviation, correlation coefficient [94] and DBSCAN [88], [95], [96] as statistical outlier detection

methods.250

Outlier detection relies on the assumption that the values of sensor nodes’ observations are correlated

spatially, temporally or both spatially and temporally. However, these assumptions are not necessarily always

valid, especially in large-scale CPS applications where the correlations between sensor nodes may be affected

by many parameters such as the size of the deployment environment and the geographical distribution of

sensor nodes [97]. For example, the approach of spatial continuity cannot be applied directly to the real-world255

temperature observations collected from the temperature sensor nodes distributed around London because of

a phenomenon known as the Urban Heat Islands 5. According to the Meteorological Office (Met Office), the

phenomenon of heat islands is caused by many associated factors, such as the heat released from industrial,

domestic facilities, concrete and other building material which observe sun heat during the day and release

5https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk
/pdf/research/library-and-archive/library/publications/factsheets/factsheet 14-microclimates.pdf
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Figure 10: A holistic diagram of the main data quality management/assessment methods/techniques and data quality dimensions
based on the SLR results.

it back during the night. The phenomenon of urban heat islands may cause up to 5 degrees (unexpected)260

deviation among sensor nodes observations at the same point in time, which violates the spatial continuity

constrains [98] among sensor nodes observations. The heat profile map of London is shown in Figure 11,

where the temperatures in central London may reach 11 Co while dropped by 6 degrees Co in the suburbs

at the same point in time [98], [99], as shown in Figure 11.

7.1.1. Clustering-Based Outlier Detection265

Clustering-based outlier detection relies on comparing individual correlated sensors’ observations with

the centroid value of their clusters. Therefore, it needs no prior knowledge of the sensor node historical

data. Clustering-based outlier detection can be e.g., implemented using DBSCAN clustering algorithm for

detecting errors, noise and failures outliers in high-speed, non-stationary, large volume WSN’s data, [96],

[88]. However, according to [91], clustering can not be considered as a reliable anomaly detection technique270

in real-world scenarios. It can be used as an outlier filtering mechanism due to challenges in determining

both clusters’ optimum number of sensor nodes and determining their centroid value in each cluster.
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Figure 11: The heat profile map of London highlighting the impact of urban heat islands, [98].

7.1.2. Predictive Analysis Based Outlier Detection

Predictive analysis is the process of mining current and historical data to identify patterns and to forecast

the future values of time series [100], [5]. Predictive analysis might be conducted using statistical or machine275

learning based techniques [101]. For example, machine learning model based on the Random Forest Prediction

(Random Forest Regression) method was adopted by [12] for developing an automated data quality control

mechanism for weather data. Another example based on statistical predictive analysis using the one step-

forward approach, autoregressive moving average (ARMA) model for tackling the inevitable challenge of

sensors and sensor networks failure in power terminals, [82]. Furthermore, some applications required a mixed-280

methods approach, where both machine-learning and statistical methods were adopted to tackle a particular

data quality challenge. For example, [61] investigated the use of artificial neural network and linear regression

for calibrating low-cost environmental monitoring sensors to improve the accuracy of their observations.

Predictive analysis methods rely on predictive models developed using historical data as a training data

set. Therefore, using predictive analysis in real-time (online mode) applications raises performance concerns285

because of the complexity and volume of the required training data set [78], [102]. Using predictive analysis

is a challenge in real-time large-scale CPS applications; thus it may require analysing hundreds of sensor

nodes data streams in a relatively short time [103], [104]. Furthermore, the training process for predictive

analysis requires relatively long and valid (anomaly-free) time series, which cannot be guaranteed in real-world

scenarios [91].290

8. RQ3: Unaddressed Data Quality Management Challenges in Large-Scale CPSs and Research

Gap.

This section is to answer the third SLR review question (RQ3) listed in Table 2.

Data is the bridge between the real physical and the digital worlds where data are used to make intelligent
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decisions in CPS applications [105], [12]. Large-scale CPSs relay on the data gathered by sensors and other295

devices to make intelligent decisions, low-quality data may affect these decisions’ reliability, and compromise

these systems’ quality of services. Ensuring the quality of data in large-scale CPS applications is a challenge

due to the following:

• The heterogeneous nature of their data structures, the scale of data that these systems exchange and

due to their real-time requirements [12], [63].300

• CPS applications are vulnerable to several external and internal factors such as communication network

errors, sensor nodes failures which interrupt data transferring process, compromise the integrity of data

and reduce the performance and reliability of these applications [106]. Failures in wireless sensors and

sensor networks are inevitable events in large-scale CPS applications, and unusually such failures are

unpredictable [82], [107]. Furthermore, there is a high possibility of getting erroneous data from sensor305

node networks due to the limitation in their computing power, storage capacity and communication

capabilities [84], [81], [108].

• There are no standard criteria to define high-quality data which typically diverse in measure attributes

and requirements from application to another [109]. Data quality is a subjective concept that varies

by the purpose or the intended use of the data. Therefore, data quality standards have not been fully310

identified or applied successfully in large-scale CPS applications [16].

The SLR data extraction Table A.10 illustrates many attempts to tackle data quality issues associated

with large-scale CPSs while revealing further emerging data quality challenges in which very little or no

work has been done. Addressing data quality in large-scale CPS applications is still an open challenge that

is not fully enclosed yet [13], [16], [12], [14], [15], [110] which offers new research opportunities and higher315

possibilities for having more attention in the future. Following is a list of these data quality management

issues that the SLR did not resolve:

8.1. Sensor Nodes’ Measurement Errors Detection

SLR primary studies which adopted prediction analysis models as data accuracy assessment techniques

are sharing the following limitations:320

1. All of the proposed prediction analysis models were based on an assumption that data accuracy issues

occur for a short interval of time (point outliers). None of the SLR primary studies proposed a solution

to address data accuracy issues associated with long outliers. Long outliers change the time-series’

pattern, so the inaccurate observations appear as the standard. In case, a time-series with long outliers

is used as the predictive model training dataset. It will compromise the modes’ ability to detect data325

accuracy issues correctly.

2. No systematic method or approach was demonstrated by any of the SLR empirical primary studies on

how it was possible to ensure the quality of real-world dataset used to train or calibrate the predictive

analysis model.
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3. None of the SLR primary studies provided a comparison or a justification for why a particular predictive330

analysis technique was chosen over another. For example, it is not clear when to apply deep learning

neural networks as a predictive technique [111] instead of linear regression [61].

4. SLR primary studies that investigated anomaly analysis as a solution to evaluate the accuracy of sensor

nodes measurements by comparing their observations with different sensor nodes or to a pre-calculated

threshold value were based on the assumption that these sensor nodes are spatially correlated. However,335

this assumption is not necessarily always valid in large-scale CPS applications. The spatial continuity

among sensor nodes in large-scale CPS applications might be compromised because of the vast distance

separating these devices or other factors that disrupt the spatial continuity constraints, as detailed in

section 7.1.

8.2. Sensor Nodes’ and Sensors Networks’ Failures Detection340

The SLR primary studies provided no systematic method or a generic approach for detecting sensor nodes

and sensor node networks hardware failures in large-scale CPS applications. All proposed failure detection

mechanisms were mainly domain-specific solutions. For example, signal processing techniques were explicitly

utilised for monitoring the hardware status of a Chinese network of weather radars by [57] which can not be

applied as a generic solution for hardware failures detection in sensor node networks of large-scale CPSs.345

8.3. Ensures the Quality of Observations’ Spatial and Temporal Contextual Attributes

The SLR primary studies revealed that further research is required to address the challenge of ensuring the

quality of sensor nodes’ spatial and temporal contextual attributes. Spatial data quality issues (sensor nodes

location) may affect the validity of any related spatial analysis. Furthermore, very limited or no research

has practically investigated the possibility of using observations timestamp analysis techniques as a potential350

solution to improve the quality of sensor nodes’ spatial contextual attributes.

9. Conclusion

CPSs are multidisciplinary cross-domain information systems that bring together different smart cities’

public services. Data sensing, knowledge extraction, and higher automation are critical elements in these

services’ future. Ensuring data quality in smart cities large-scale CPS applications is a critical requirement355

to guarantee their service quality. Although a significant effort was conducted to address data quality man-

agement challenges large-scale CPS applications using advanced statistical and machine-learning techniques,

data quality management in large-scale CPSs is still an open challenge. This study concluded that more work

is required to provide a practical, comprehensive data quality management solution to detect sensor nodes

measurement errors associated with the main data quality dimensions of accuracy, timeliness, completeness,360

and consistency. No systematic or generic approach was demonstrated for sensor nodes and sensor node

networks hardware failure detection in large-scale CPS applications. Moreover, further research is required
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to address the challenge of ensuring the quality of the spatial and temporal contextual attributes of sensor

nodes observations.
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Appendix A. Primary Studies Referencing Details

Table A.9: Primary Studies Referencing Details and their Overall Quality

Assessment Score.

Ref. Study Identifier Year Research type Approach Q1 Q2 Q3 Q4 Q5 Score
S1 - [12] IEEE Conferences 2018 Solution proposal Framework 1 0.5 1 1 3.5
S2 - [82] IEEE Conferences 2019 Solution proposal Method 1 0.5 1 1 1 4.5
S3 - [105] IEEE Conferences 2015 Review Guideline 0.5 0.5 1 2
S4 - [13] IEEE Conferences 2019 Solution proposal Framework 1 0.5 1 2.5
S5 - [109] IEEE Conferences 2016 Solution proposal Framework 1 2 3
S6 - [80] IEEE Journals 2019 Solution proposal Model 0.5 0.5
S7 - [84] IEEE Conferences 2019 Solution proposal Method 1 1 2
S8 - [16] IEEE Conferences 2018 Solution proposal Framework 0.5 0.5
S9 - [107] IEEE Conferences 2014 Solution proposal Model 0.5 0.5 1 3 5
S10 - [85] IEEE Journals 2016 Solution proposal Algorithm 1 1 2
S11 - [102] IEEE Journals 2018 Solution proposal Framework 1 2 3
S12 - [44] IEEE Conferences 2016 Solution proposal Framework 1 0.5 4 5.5
S13 - [63] IEEE Journals 2014 Solution proposal Framework 1 0.5 2 3.5
S14 - [58] IEEE Conferences 2016 Solution proposal Model 1 0.5 1 2.5
S15 - [57] IEEE Conferences 2019 Solution proposal Framework 1 0.5 1 1 3.5
S16 - [112] IEEE Conferences 2019 Solution proposal Tool 1 0.5 1 1 3.5
S17 - [113] IEEE Conferences 2017 Review Guideline 0.5 1 1.5
S18 - [104] IEEE Conferences 2016 Solution proposal Tool 1 1 2
S19 - [114] IEEE Journals 2016 Solution proposal Model 1 0.5 1 2.5
S20 - [87] IEEE Conferences 2015 Solution proposal Framework 0.5 1 1.5
S21 - [115] IEEE Conferences 2017 Review Guideline 0.5 0.5
S22 - [14] IEEE Conferences 2016 Review Guideline 0.5 0.5
S23 - [116] IEEE Journals 2020 Solution proposal Model 1 1 2
S24 - [83] IEEE Journals 2017 Solution proposal Method 1 0.5 1 2.5
S25 - [108] IEEE Conferences 2019 Review Survey 0.5 1 1.5
S26 - [111] IEEE Conferences 2018 Solution proposal Tool 1 0.5 3 4.5
S27 - [106] IEEE Conferences 2019 Solution proposal Algorithm 1 0.5 1 1 3.5
S28 - [94] IEEE Conferences 2019 Solution proposal System 1 0.5 2 3.5
S29 - [88] IEEE Conferences 2016 Review Guideline 0.5 0.5 1 2
S30 - [86] IEEE Conferences 2017 Solution proposal Model 0.5 0.5
S31 - [103] IEEE Conferences 2019 Solution proposal Tool 1 0.5 1 2.5
S32 - [117] IEEE Conferences 2018 Evaluation research Guideline 1 0.5 1 2.5
S33 - [81] IEEE Conferences 2015 Solution proposal Tool 1 0.5 1 2.5
S34 - [118] IEEE Conferences 2015 Solution proposal Method 1 1 1 1 1 5
S35 - [119] IEEE Conferences 2018 Solution proposal Model 1 1 2
S36 - [120] IEEE Conferences 2019 Solution proposal Tool 1 1 2
S37 - [92] IEEE Conferences 2016 Solution proposal Method 1 0.5 1 1 3.5
S38 - [121] IEEE Journals 2016 Solution proposal Framework 1 1
S39 - [122] IEEE Conferences 2018 Solution proposal Method 1 1 2
S40 - [95] IET Journals 2017 Solution proposal Method 1 0.5 1 2.5
S41 - [78] IEEE Conferences 2019 Solution proposal Model 0.5 0.5
S42 - [96] IEEE Conferences 2018 Solution proposal Framework 1 0.5 1 2.5
S43 - [17] ACM Journals 2015 Review Guideline 0.5 3 3.5
S44 - [123] ACM journals 2018 Solution proposal System 1 0.5 3 4.5
S45 - [8] ACM Journals 2015 Review Guideline 0.5 0.5
S46 - [60] ACM Journals 2017 Review Guideline 0.5 0.5
S47 - [124] ACM Journals 2014 Review Guideline 0.5 0.5

20



Table A.9 continued from previous page
Ref. Study Identifier Year Research type Approach Q1 Q2 Q3 Q4 Q5 Score
S48 - [59] ACM Journals 2016 Solution proposal Framework 1 0.5 1.5
S49 - [125] ACM Conference 2020 Review Survey 0.5 0.5
S50 - [126] ACM Conference 2019 Solution proposal Method 1 1
S51 - [127] ACM Conference 2018 Solution proposal Model 1 1 2
S52 - [93] ACM Conference 2019 Solution proposal Model 1 0.5 2 3.5
S53 - [128] ACM Conference 2019 Solution proposal Method 1 0.5 1 2.5
S54 - [62] ACM Journals 2019 Solution proposal Method 1 1
S55 - [15] IET Journals 2016 Review Guideline 1 0.5 1 2.5
S56 - [129] IET Journals 2017 Review Guideline 0.5 2 2.5
S57 - [130] IET Journals 2020 Solution proposal Method 1 0.5 1 1 3.5
S58 - [79] SD Journals 2020 Solution proposal Method 1 1 2
S59 - [131] SD Journals 2017 Solution proposal Model 1 1
S60 - [61] SD Journals 2020 Solution proposal Model 1 1 1 1 1 5
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Table A.10: Results of the SLR data extraction process addressing data quality
main challenges and the proposed solutions in large-scale CPS.

Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S1 - [12]
Weather data quality con-
trol.

Accuracy
Automatic verification of data quality, data in-
tegrity and scalability in weather data.

Improving the accuracy of data using machine learning models
based on the Random Forest Prediction method (Random Forest
Regression), which reduces overfitting without increasing the ratio
of error.

S2 - [82]
Data quality enhancement
in power terminals.

Completeness
Sensors and sensor networks failures are in-
evitable events in power IoT systems, which
may cause severe data missing.

A one-step forward forecasting model based on the
autoregressive–moving-average (ARMA) algorithm was imple-
mented for detecting and mitigating the impact of missing
data.

S3 - [105]
An overview of data out-
liers detection process.

Accuracy
Improving data quality, focusing on data ac-
curacy in the context of IoT applications.

Outlier detection for enhancing the quality of data more efficiently
and systematically in IoT environments.

S4 - [13]

An anomaly analysis plat-
form to monitor the qual-
ity of data in ubiquitous
power IoT.

Accuracy

Monitoring the quality of data of ubiquitous
power IoT platform considering its high data
exchanging rate, diversity of components and
the absence of any effective data management
mechanism.

Anomaly detection based on the isolated forests integrated unsu-
pervised machine-learning algorithm. For training the ML model,
the historical data was reconstructed to form a time series using the
sliding time window model.

S5 - [109]
A data quality reporting
framework using graphical
editors and models.

Accuracy,
Completeness

Data quality is a subjective concept that varies
by the purpose or the intended use of the data.
There are no standard criteria to define high-
quality data which typically diverse in mea-
sure attributes and requirements.

A Model-Driven Architecture (MDA) framework developed by Ob-
ject Management Group (OMG) for software development. It ini-
tially developed for data quality management in the context of web
applications.

S6 - [80]

A process-centric frame-
work to improve the qual-
ity of
streamed sensors data.

-
Improving the quality of data in IoT applica-
tions which rely on real-time data streaming
sensors and have different data structures.

A proposed data quality management framework based on the Pro-
cess Reference Model (PRM) which only suitable for offline appli-
cations with a well-defined process.

S7 - [84]

A mechanism to optimise
data collection process in
WSN while maintaining
the level of the quality of
information (IoT).

Timeliness

Improving the quality of information by reduc-
ing observations delay and enhance the data
lifetime in WSN networks. Improving the re-
liability of WSN and extending its lifetime by
reducing its power consumption rates.

A proposed data transmission path planning mechanism named the
Energy Harvesting Path Planning Strategy. It manages observa-
tions travel path from sensor nodes to the network sink.

S8 - [16]

A framework for manag-
ing data quality in smart
connected product (SCP)
/ IoT environments.

-

The open challenges in SCP/ IoT applications
are: data quality standardisation, data quality
management especially for applications that
collect a significant volume of data from dif-
ferent sources.

A guideline for improving data quality management in SCP envi-
ronments aligned with ISO/IEC 25012 characteristics and proposed
an IoT model based on ISO 8000–62 including the processes of part
8000–61.

S9 - [107]
A computational model
for clinical data quality as-
sessment.

Accuracy,
Timeliness,
Consistency

(Dependability)

Improving telemedicine systems technological
context to become data quality-aware systems.

A computational model to assess the quality of context data based
on optimising the end-to-end resource configuration chain.

S10 - [85]
An algorithm to improve
the QoI in WSNs

Accuracy
Improving the lifetime of WSNs, enhancing its
data transmission rate while maintaining the
quality of information (QoI).

Using the proximal optimisation approach (algorithms), which en-
hances the performance metrics of WSNs.

S11 - [102]
A QoI framework for
WSNs, focusing on com-
pleteness and timeliness.

Completeness ,
Timeliness

Scalability and performance prediction in
WSNs concerning the QoI requirements.

Top-K algorithm was adopted for evaluating data completeness
metric. Top-k is an image selection algorithm which was imple-
mented to address the non-linear relationship of data completeness
with throughput.
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Table A.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S12 - [44]

A cloud-service framework
for optimising the quality
of data streams in real-
time WSNs.

Accuracy,
Timeliness,

Completeness,
Consistency

Investigating the quality of data of remote en-
vironmental sensors data streams in relation
to energy efficiency in WSNs.

A cloud-service framework for optimising the quality of data
streams in WSNs while assessing their energy efficiency in real-time.
The proposed framework dynamically modify and regulate sensors
to maintain data quality and energy-efficient operation in WSN.

S13 - [63]

Energy management of en-
vironmental sensors while
maintaining the QoI con-
straints.

Accuracy, Timeliness
(latency)

Efficient energy management of environmen-
tal monitoring sensors while maintaining the
quality-of-information (QoI) in a multitask-
oriented environment.

An energy management service compatible with sensors lower layer
protocols and over-arching applications, based on signal propaga-
tion and processing latency modelling.

S14 - [58]
Enhancing the quality of
the information in real-
time decisions-based IoT.

Accuracy (value)

To enhance the quality of the information
in real-time decisions-based IoT applications
which bring many safety and security chal-
lenges related to real-time scheduling prob-
lems comparing to traditional applications, es-
pecially in data processing and smart devices
management.

A scheduling model was proposed to enhance the quality of the
information in applications that need multiple data items to make
decisions based on quality adjustment algorithms and scheduling
policies.

S15 - [57]
Data quality assurance in
IoT applications

Accuracy (value)

Providing higher data quality assurance in
regards to data completeness (availability)
and consistency(integrity) of IoT sensors data,
which usually affected by sensors failures.

Anomaly detection using the Local Outlier Factor algorithm to iden-
tify sensors failures and mismatch in sensors spatial contextual in-
formation.

S16 - [112]
Data quality advisor solu-
tion for large-scale IoT.

Accuracy (value)
Developing an interactive, large-scale sensors
data quality advisor for large-scale, IoT Ap-
plications.

A data quality framework that automatically performs data vali-
dations. The core of the framework is based on the Direct Acyclic
Graph(DAG) model for data quality checks and Scalable Execution
Engine (SEE) for executing the validation function.

S17 - [113]
A data quality assessment
framework for heteroge-
neous data resources.

Accuracy

Meeting the expectations of data accuracy and
reliability in large sensor networks is a signifi-
cant challenge due to the heterogeneous nature
of engineering data.

Data quality of sensors observations which form long time series
can be examined using outlier detection and trend analysis. How-
ever, this approach does not address the challenges of checking and
analysing a system of sensors network or a realm of heterogeneous
time series simultaneously.

S18 - [104]
QoI assessment as a ser-
vice platform for smart
cities applications.

Accuracy, Timeliness

Developing an autonomic, collaborative, ex-
tensible and configurable solution to cope with
the challenge of QoI assessment within smart
cities sensing platforms.

The study proposes an Information Quality Assessment solution
as a Service (iQAS) based on measuring data attributes such as
accuracy and timeliness using filtering and prediction mechanisms
for a given application.

S19 - [114]
Energy efficiency and data
quality improvement in
large-scale WSNs.

Accuracy
Increasing energy efficiency in WSNs without
sacrificing the quality of data.

The study proposes a model for enhancing energy-efficiency in large-
scale WSNs by controlling the number of sensors transmissions us-
ing the second-order data coupled clustering (SODCC) and the com-
pressive projections principal component analysis (CPPCA) algo-
rithms.

S20 - [87]
Addressing spatial data
quality concerns.

Consistency
Addressing spatial geometric inconsistency
and topological inconsistencies in geographic
information systems.

A proposed framework for correcting the inconsistency in spatial
data based on the Triangular Pyramid Framework for spatial anal-
ysis.

S21 - [115]

An overview of the chal-
lenges of sensor streams
in large-scale IoT applica-
tions.

-
Addressing the Quality of Observation (QoO)
challenges between IoT sensors and their ob-
servations destination.

The study proposes a cloud-based IoT platform for collecting, pro-
cessing and delivering sensors observations.

S22 - [14]
A review of data quality
issues in WSNs.

-

The study specified four data quality chal-
lenges in WSNs; synchronisation issues, inef-
ficient testing of algorithms, energy manage-
ment and the lack of novel mathematical mod-
elling.

The study discussed the existing data quality and fault tolerance
techniques in WSNs.
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Table A.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S23 - [116]
Sensors data trust in IoT
applications using tempo-
ral correlation.

Accuracy
Assessing the trust of sensors data in large-
scale IoT applications.

A model for assessing trust in large-scale IoT sensors data using
a temporal correlation-based approach and adopting Deep Neural
Networks (DNN).

S24 - [83]
Data quality of event-
sensitive monitoring in vi-
bration sensor networks.

Accuracy (value)

Ensuring the quality of data in vibration data-
intensive monitoring applications which must
deliver high-resolution observations accurately
and continuously to the system processing
core.

A decentralised control and data reduction algorithm utilising the
Goetzel algorithm to address data quality challenges in event sen-
sitive WVSN applications.

S25 - [108]
A review of outlier detec-
tion techniques in WSNs
in IoT frameworks.

- Addressing data quality checking techniques
in wireless sensors networks.

The quality of data in large-scale IoT frameworks can be examined
using machine learningtechniques such as neural Networks, cluster-
ing and classification for being powerful methods to detect outliers
in sensors data.

S26 - [111]
IoT reliability in sensors
networks systems.

Accuracy,
Consistency,
Reliability

Optimising sensors coverage and reducing en-
ergy consumption in IoT sensing networks.

The study proposes a model which uses the minimum set cover theo-
rem for identifying reliable sensor nodes with more extended sensing
sequence of observations, higher accuracy rate and consistency per
sensing region to facilitate optimal coverage.

S27 - [106]
Addressing the issue of
missing data in medical
IoT applications.

Accuracy
Developing a prediction model for imputing
missing data in IoT applications.

The study proposed a prediction model for detecting and estimat-
ing missing data in IoT applications using deep learning neural net-
works.

S28 - [94]
Data quality control of the
Chinese wind radars’ net-
work.

Accuracy,
Completeness

Ensuring data accuracy and conventional
functionality of a large-scale wind radars’ net-
work.

The data quality evaluation and detection mechanisms are mainly
based on statistical techniques such as standard deviation, correla-
tion coefficient and data acquisition rate of the observation collected
from the wind profile radar network.

S29 - [88]

Reviewing different clus-
tering techniques for de-
tecting outliers in data
streams.

Accuracy

Outliers detection in streamed data due to its
high-speed, non-stationary, large volume, and
attributes diversity comparing to static data
sets.

The study concluded that clustering has a fundamental role in data
streams mining possess for outliers detection, especially the basic
density-based clustering (DBSCAN) algorithms.

S30 - [86]
Improving the quality of
data of WSNs semantic in-
formation.

-
Improving the quality of semantic row data
in WSNs, and improving sensors spatial and
temporal ontology.

A model for providing semantic sensor data through a Semantic
Sensor Web (SSW) services to enhance the quality of sensors se-
mantic data using data integration and fusion techniques.

S31 - [103]
A big data accuracy as-
sessment tool.

Accuracy Developing a big data quality assessment tool.
The study proposes a data accuracy assessment tool based on ma-
chine learning (K-Nearest Neighbors, Logistic Regression and Deci-
sion Trees) and Apache Spark for handling large-scale datasets.

S32 - [117]

Inconsistency analysis in
large-scale, non-stationary
and inconsistent time se-
ries.

Consistency
Interpolation of missing/insufficient data in
real-world, large time-series.

The study outlined four different time-series interpolation/ predic-
tions methods for short-term statistical time-series analysis using
the one step ahead prediction and the moving data window ap-
proach.

S33 - [81]
Anomaly detection based
on spatial distribution
data in WSNs.

Accuracy of spatial
attributes

Detecting abnormalities based on spatial dis-
tribution data of sensor nodes and using nu-
merical data outlier detectors in WSNs.

K-nearest neighbours algorithm (KNN) and Euclidian distance were
adopted to detect abnormalities from the spatial distribution of
data and depending on WSNs Low Energy Adaptive Clustering
Hierarchy protocol (LEACH).

S34 - [118]
Controlling the quality of
data in large-scale water-
level monitoring system.

Accuracy

Developing a solution to replace (DBSCAN)
(Density-Based Spatial Clustering of Applica-
tions with Noise) with a more efficient higher
performance clustering algorithm.

A linear-clustering algorithm was developed to replace DBSCAN
for data quality control in a large-scale, water-level monitoring sys-
tem. The experimental results indicated that the performance of
the proposed domain-specific outlier detection algorithm is higher
than DBSCAN.

S35 - [119]
Missing data estima-
tion/replication in indus-
trial WSNs.

Availability
Enhancing data availability in the presence
of sensor nodes failures in industrial WSNs
(IWSNs).

The proposed solution is based on utilising sensor nodes memory
space to save measurements from their neighbouring nodes and
carry the last observation forward to estimate missing data. This
approach is limited to time series with stable trend.
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Table A.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S36 - [120]
A monitoring system
for large-scale sensors
networks.

-

Automatically monitoring the infrastructure
of large-scale sensors networks (124 stations)
deployed over vast geographical terrain (20 sq.
km).

The proposed solution is based on a rule engine which reads the sys-
tem’s parameters and compares them against pre-calculated thresh-
old values.

S37 - [92]
Duplicate records detec-
tion in real-world applica-
tions.

Duplication
Detecting and cleaning duplicated records to
ensures the quality of data and maintains ap-
plications performance.

A genetic neural network-based approach for detecting duplicated
records.

S38 - [121]
QoI framework for smart
cities applications.

- Meeting information quality requirements for
smart cities scale data analysis applications.

The study proposes a large-scale data analysis framework to provide
near real-time machine-interpretable data for smart cities applica-
tions. The proposed framework considered many quality measures
and fault recovery techniques to enable quality-aware and up-to-
date smart city applications.

S39 - [122]
Evaluating the QoI in IoT
as a service in a smart
cities scale applications.

Accuracy
Enhancing public information assets using ad-
vanced methods to support public administra-
tions services.

The study proposes a quality of information evaluation strategy
based on Multiple Criteria Decision Making (MCDM) methods in
the context of evaluating the quality of public data and related
metadata in the scale of smart cities applications.

S40 - [95]
Outliers detection in
WSNs.

Accuracy
Ensuring the quality of data through outlier
detection for identifying intrusion, errors and
noise in wireless sensor networks applications.

Density-based outlier detection technique was evaluated using (DB-
SCAN) as outlier detection technique for systems with expected
normal behaviour.

S41 - [78]
Data quality evaluation in
a large-scale transporta-
tion system.

-
Addressing the problem of real-time data anal-
ysis and handling imperfections in sensors
data of smart cities IoT applications.

Proposing a data integration platform from different sources to in-
terpret the information certainty level using an evidential database
based on the evidence theory.

S42 - [96]
Density-based clustering
for outlier detection in
WSNs.

Accuracy
Improving the quality of information via out-
lier measurements, mainly by detecting errors,
noise and failures in wireless sensor networks.

A modified density-based spatial clustering of applications with
noise (DBSCAN)-OD algorithm was developed based DBSCAN al-
gorithm in order to detect computing and spatial-temporal param-
eters to identify outliers from standard sensors.

S43 - [17]
A guideline for data qual-
ity challenges in smart
cities.

-

Identifying the main data quality challenges in
smart cities applications especially issues re-
lated to wireless networks energy restrictions,
sensors bandwidth or connectivity limitations
or for challenges associated with the large data
volumes, high data velocity, dynamicity or di-
versity of types and structures.

The study classified data quality issues in smart cities scale ap-
plications into three main types: measurements or precision errors
in sensor nodes, external noise or network communication errors
and integrity of sensors observations in both spatial and temporal
dimensions.

S44 - [123]
Automating large-scale
data quality verification.

Accuracy,
Consistency,

Completeness

Verifying the quality of data against missing
or incorrect information.

The study proposes an automated data quality verifications sys-
tem. The proposed system adopts a declarative API to combine
standard data quality constraints with user pre-defined validation
rules and leverages machine learning for anomaly detection using
data predictability approach based on historical time series.

S45 - [8]
A guideline to the main
data quality challenges in
CPSs.

- The most significant challenge in CPSs is iden-
tifying and filtering faulty data.

The study highlights the need for developing novel algorithms and
protocols that can effectively detect and filter erroneous data in
CPS applications such as faulty data and information loss mod-
els, localized algorithm and the lightweight secure data storage and
transmission protocols.

S46 - [60]
An introduction to dy-
namic data quality chal-
lenges.

Accuracy

Ensuring the quality of dynamic data in
IoT applications which typically generated by
multi-vendors devices, micro services, auto-
mated processes and different types of sensors.

The study highlights that maintaining the quality of dynamic data
in IoT applications is an open challenge which provides new research
opportunities.

S47 - [124]
A review of process-driven
data quality management.

-
Developing a broadly applicable process-based
model for improving and sustaining the qual-
ity of data.

The study concludes that further representational analysis is re-
quired to enhanced process modelling language for process-driven
data quality management (PDDQM) modelling.
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Table A.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S48 - [59]
Data quality management
for data streams.

-
Maintaining the quality of the data stream
without affecting the real-time performance of
the system.

The study proposes an ontology-based data quality monitoring
framework based on the characteristics of relational data stream
management to observe data quality values and take counteractions
to balance the performance.

S49 - [125]
A survey about the impor-
tance of high-quality data
for machine learning.

-
Enhancing the performance and accuracy of
machine learning models by ensuring the qual-
ity of their training dataset.

The study concluded that researches were focusing on improving
the quality of machine learning models. In contrast, insufficient
works were conducted to improve the quality of data in the context
of its value for machine learning applications.

S50 - [126]
Distributed data mining
for identifying data qual-
ity issues.

- Facilitating data quality analysis of data in
their distributed state.

The study proposed a data quality issues identifier based on the
knowledge extracted from pre-clustering data in its distributed sta-
tus. The experimental results showed comparable results with those
conducted on the integrated warehoused data.

S51 - [127]
Data quality challenges
in large industrial envi-
ronment.

Consistency
Addressing the challenge of data inconsistency
to enhance the quality of data in large indus-
trial data environment.

A proposed mathematical data quality assessment and monitoring
model based on data cleaning, duplicated records detection and
traditional data sorting and merging methods.

S52 - [93]
Data quality assessment
for electrical data.

Accuracy,
Completeness

To address the challenge of data quality as-
sessment for electricity consumption big data.

The study proposes a model that addresses six data quality as-
sessment indexes including accuracy, completeness and comprehen-
siveness using time-relevant k-means to detect outliers in voltage
curves.

S53 - [128]
Data quality control for
weather data.

Completeness
(missing values)

Improving the accuracy of weather data which
can be degraded by missing sensors readings.

The study evaluated five strategies for detecting failed sensors and
statistically identifying anomalies; Mean imputation, MAP imputa-
tion, Reduction, Marginalization and Proportional distribution and
concluded that missing values handling algorithms can significantly
enhance the reliability of weather systems.

S54 - [62]
Data quality assessment in
smart sensor networks.

-

Smart Sensor Networks (SSNs) rely on sensors
with limited resources and usually deployed in
remote and harsh environments which impose
data quality challenges in IoT applications.

The study proposes a mechanism to reduce memory and network
communication overhead and to impose networks delay.

S55 - [15]

A review of the challenges
associated with designing
large-scale CPS/IoT ap-
plications.

Timeliness

Five main challenges oppose the development
of CPS/IoT applications in smart cities ap-
plications; middleware development, compu-
tation models, fault tolerance, data quality
management, and a virtual run-time environ-
ment.

The study examined a correlation model among sensors using read-
ings from different sensors to calibrate or verify another sensor’s
observations when the data are missing.

S56 - [129]
A survey about the qual-
ity of observations within
sensors web systems.

Accuracy, Timeliness

Addressing the challenge of ensuring the qual-
ity of observations in sensors webs which rep-
resent the middleware layer between sensors
and applications.

The study identified essential requirements for developing the fu-
ture adaptive quality of observations aware sensor web solutions
including standardisation, the need for a layer-based architecture,
mediation, adaptation and reconfiguration.

S57 - [130]
Enhancing situation
awareness in renewable
power systems.

Accuracy

Developing situation awareness system for
power systems, that can accurately detect
anomalies and robust against multiple data
corruptions.

This study tackles two primary challenges faced by conventional sit-
uation awareness in power systems: 1) accurately detect anomalies
using aggregation of random matrix and long short-term memory
network. 2)To be robust against multiple data corruptions using a
dedicated workflow designed to decrease the impact of data corrup-
tions.

S58 - [79]
Faulty data detection in
cyber-physical systems.

Timeliness
Detecting and filtering faulty data efficiently
to improve the quality of the collected data
from a system’s perspective.

The study proposes an automatic reliability improvement frame-
work of three data quality assessment stages performed on the sys-
tem input, output and feedback data using machine learning, and
operator in the loop approach for detecting faulty-data and improv-
ing the reliability of the system.
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S59 - [131]
Data quality management
for manufacturing cyber-
physical systems.

-

Developing effective managerial policies for
controlling the quality of the data generated
by improper operations of physical and cyber
components of a service-oriented manufactur-
ing CPS.

The study proposes a two-stage optimization model for data qual-
ity management of service-oriented manufacturing CPS (SMCPS).
Formal semantics of workflow nets (WF-nets) algorithm together
with a two-stage optimization model were used to find the optimal
policies that balance the system’s objectives.

S60 - [61]

Improving the quality of
data of low-cost IoT envi-
ronmental monitoring net-
works.

Accuracy
Identifying the main factors that affect the
data quality (accuracy) of low-cost IoT sen-
sors in environmental monitoring networks.

The study investigated the use of artificial neural network and linear
regression for calibrating low-cost environmental monitoring sensors
to improve the accuracy of their readings. These devices are vul-
nerable to environmental factors such as temperature and humidity;
therefore, it is necessary to take these parameters into account when
developing the calibration model. The results demonstrated the im-
portance of feature selection process in optimising multi-parameter
calibration models.
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