
First Author and Second Author and Third Author

Working Paper n. 1/2011
Month 2011

ISSN: 1828-xxx

Daniela Favaretto, Alessandro Marin and
Marco Tolotti

A Data-driven and Risk-
based Prudential
Approach
to Validate the DDMRP
Planning and Control
System

Working Paper n. 9/2021
November 2021

ISSN: 2239-2734



This Working Paper is published under the auspices of the Department of
Management at Università Ca’ Foscari Venezia. Opinions expressed herein are those
of the authors and not those of the Department or the University. The Working Paper
series is designed to divulge preliminary or incomplete work, circulated to favour
discussion and comments. Citation of this paper should consider its provisional
nature.



A data-driven and risk-based prudential approach

to validate the DDMRP planning and control system

Daniela Favaretto Alessandro Marin Marco Tolotti
Department of Management Department of Management Department of Management
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Abstract.

In this paper, we study the single-item dynamic lot-sizing problem in an environment charac-
terized by stochastic demand and lead times. A recent heuristic called Demand Driven MRP,
widely implemented using modern ERP systems, proposes an algorithm that is will effectively
tackle this problem. Our primary goal is to propose a theoretical foundation for such a heuris-
tic approach. To this aim, we develop an optimization model inspired by the main principles
behind the heuristic algorithm. Specifically, controls are of the type (s(t), S(t)) with time-
varying thresholds that react to short-run real orders; in this respect, control is risk-based and
data-driven. We also consider service levels derived as tail risk measures to ensure fulfillment
of realized demand with a predetermined probability; in this respect, our approach is pruden-
tial. Finally, we use our model as a benchmark to theoretically validate and contextualize the
aforementioned heuristic.
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1 Introduction

Managing information flows other than materials along the supply chain, is one of the most
challenging tasks in the daily operations of a firm (Zhao et al. (2002)). In an ideal world,
information disclosure would help each player to construct optimal strategies for inventory
management (Buehler and Halbheer (2011), Christopher (2000), Raghunathan (1999)). In real
life, however, the opposite is often the case: Information is a valuable asset, and partners along
the supply chain, whether downstream or upstream, tend to keep private as much of their
information as possible. In the absence of collaboration, estimates based on experience and
forecasting become crucial in setting long-run (risk-based) policies (Simchi-Levi et al. (2005),
Zhao et al. (2002)). On the other hand, such estimates must be continuously integrated with
actual (real) data to ensure short-run policies and operations adhere to the true reality of
the firm (Ptak and Smith (2016)). Moreover, a lot of care must be taken to avoid unpleasant
phenomena, often detected in practice, such as the bullwhip effect (Lee et al. (1997), Warburton
(2004)).

The main goal of this paper is to propose a practice-oriented model capable of combining
two crucial perspectives: A risk-based approach accomplished using forecasts of future demand
and lead times, and a continuous flow of actual data based on short-term reliable orders.
These factors are integrated to create an optimal control system for inventory management,
consisting primarily of: (i) an original objective function that considers costs referring to an
excess of inventory over a target parameter; (ii) data-driven time-varying double-threshold
optimal control accounting for peaks in demand; (iii) constraints related to minimal service
levels to guarantee customer satisfaction.

To be precise, relying on a probabilistic approach to model both future demand and stochas-
tic lead times, we construct risk measures that are then used to explicitly derive linear con-
straints representing the minimal service levels to satisfy fulfillment of incoming orders with a
predetermined probability. This approach resembles the traditional prudential approach to risk
management (Jorion (1996)), where tail-based risk measures are used to deal with “expected
risks”. Such risks are the basis of ordinary operations; they can be measured and controlled
and, to some extent, managed by partially automatized controls. In contrast, reordering poli-
cies are based on a rolling figure of short-term real demand, referred to as Average Daily Usage
(ADU). Again, such policies are controlled by automated systems that update state variables
and adjust control thresholds by relying on a continuous flow of data. We also account for
eventual peaks of demand, which can be considered to be “unexpected risks”; although they are
not considered directly in the automated setup of thresholds, they contribute to accelerating
the pace of orders. As far as the objective function is concerned, besides traditional costs re-
lated to holding, reordering and stock-out, we also consider an extra holding cost that penalizes
deviations from a target inventory level. This latter cost component aims at preventing overly
prompt reactions to exceptional incoming orders, which break the desired pace of material flow,
reducing the amplification of a bullwhip effect phenomenon. Again, this goal is achieved by
setting semi-automated controls that prevent users from reacting sub-optimally to fluctuating
customer orders.

Our research originates from a problem in inventory management suggested by practice. In
this context, a recent practical approach called Demand Driven MRP (DDMRP) proposes a
heuristic algorithm that is quickly becoming a reference planning and control system (Thürer
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et al. (2020), Villa Hincapie (2018), Shofa and Widyarto (2017), Miclo et al. (2016), Bahu et al.
(2019), Dessevre et al. (2019)). So far, however, little attention has been devoted to it in the
academic literature. Our aim is to fill this gap by addressing the following question: What are
the objectives and the constraints that mathematically represent at best the “philosophy”behind
the DDMRP heuristic? To this aim, we build a model based on the ingredients described
above, which, in turn, are the main qualitative features supposedly focused on by the heuristic.
Second, we derive a mixed linear integer version to numerically identify the optimal solution of
our theoretical model. Finally, we validate ex-post the DDMRP heuristic by means of numerous
numerical experiments, representing different instances of the problem for various values of the
model’s key parameters. Our simulation exercise enables us to show that the algorithm related
to the DDMRP heuristic can be related to a well-posed theoretical model. By contrast, we
also show that our theoretical model has a practical counterpart, in that its main features are
evidently related to the principles guiding the DDMRP approach, widely implemented in recent
ERP systems (Miclo et al. (2016)).

Finally, there is a serious concern in management science that a long-lasting divide exists
between the academic literature and practice (Bennett (2016), Aguinis et al. (2010)). The
former has proposed a number of highly technical and valuable mathematical models to address
inventory management and all related issues. The latter is more concerned with providing
managers on the ground with reliable heuristics to deal with real-life operations. As already
stressed, we believe that our theoretical model is inherently practice-oriented, in that it forms
a bridge to span this academic/practice divide. On the one hand, our model is theoretically
grounded, and complex enough to account for long-run unpredictability and short-run real
orders and peaks. On the other hand, it provides a mathematical foundation for the DDMRP
heuristic developed recently by practice.

This article is organized as follows. In the next subsection, we highlight how our paper is
related to recent literature in inventory management. In Section 2, we present in detail our
model for the single-item dynamic lot-sizing problem; in the process, we focus on the following
goals: To maintain a target inventory; use real (short-period) order data; and establish a
risk-based approach for inventory management. In Section 3, we present and mathematically
describe the DDMRP approach. Section 4 contains all simulations used to validate the DDMRP
heuristic; notably, we show that it satisfactorily approximates optimal control derived in our
setup under several instances of the model’s parameters. Finally, in Section 5 we conclude with
some final comments.

1.1 Related literature

The roots of inventory policies and lot-sizing rules go back more than a century, when Ford
Whitman Harris published the Economic Order Quantity (EOQ) model (Harris (1913)). His
contribution has helped many firms to immediately find the most economical quantity to make
(or order), balancing setup and carrying costs. More recently, this paradigm gave rise to so-
called (R,Q) inventory policies. Despite having emerged a long time ago, the (R,Q) inventory
policy’s variants and real-world applications continue to be studied (Esmaeili et al. (2018)). A
modified version of the previous inventory policy is the (s,S) version, which sets a reorder point
at s and a target inventory level S (Sapna Isotupa and Samanta (2013), Noblesse et al. (2014),
Esmaeili et al. (2018)).
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One of the main drawbacks of many cost-based inventory policies is associated with the
generation of important fluctuations of reorder quantities, and consequently propagation of
instability of demand/orders along the supply chain. According to some authors, this may cause
sunk costs and the generation of phenomena such as the bullwhip effect (Hejazi and Hilmola
(2006), Potter and Disney (2006), Hussain and Drake (2011)). To overcome these issues, a
new heuristic has been proposed under the name of Demand Driven Material Requirements
Planning (DDMRP). This heuristic first appeared as a blueprint in 2011, when Carol Ptak
and Chad Smith wrote the third edition of Orlicky’s Material Requirements Planning and
was introduced officially in 2016, when an entire book was dedicated to it (Ptak and Smith
(2016)). A number of pioneering academic studies related to this new methodology seem to
confirm the heuristic’s goodness (Miclo et al. (2015, 2016), Smith and Smith (2013a)). Miclo
(2016), using data taken from the famous Kanban game, showed that DDMRP can outperform
traditional approaches, exhibiting less working capital and more efficient delivery times. Other
scholars analyzed various case studies in different fields. Shofa and Widyarto (2017) compared
a traditional MRP setting with DDMRP, using a Discrete Event Simulation Approach and
considering both long lead times and uncertain demand. They found an 11% reduction in
inventory, and less inventory fluctuation. Other case studies have been developed: Bahu et al.
(2019) undertook a qualitative study analyzing 30 different real implementations of the DDMRP
approach; Ihme and Stratton (2015) developed a qualitative study to outline various technical
aspects regarding the practical implementation of the DDMRP system. Other ongoing studies
address the standardization of the implementation process (Román Cuadra et al. (2017), Bayard
and Grimaud (2018), Villa Hincapie (2018), Dessevre et al. (2019)).

As said, we consider both stochastic demand and lead times. Our approach to deal with
randomness in demand is similar in spirit to Sox (1997) and Tempelmeier (2007), where a
deterministic model formulation with service level constraints is proposed. Also Sodhi (2005)
proposes deterministic replenishment-and-planning strategies computed under demand uncer-
tainty. Whereas the literature dealing with stochastic demand is rather vast (see Tempelmeier
(2013), Aloulou et al. (2014), Brahimi et al. (2017) for recent surveys on this topic), very few
papers address the problem of stochastic lead times. In Alp et al. (2003), a dynamic lot-
sizing/vehicle-dispatching problem under deterministic demand and stochastic lead times is
analysed. Srivastav and Agrawal (2020) proposes a Gaussian approximation method to deal
with the so-called stochastic lead time demand. Only recently, some first attempts have been
made to link together stochastic lead times and random demand (see Liu et al. (2021)). We ad-
dress this issue relying on a prudential approach, where uncertainty enters into a (deterministic)
optimization scheme via a tail-risk measure expressed as a service level.

Concluding, as testified by this concise literature review, a number of practical studies have
appeared recently, testifying to the good performance of DDMRP. However, a more theoretical
investigation capable of identifying the possible objectives and constraints beyond the philoso-
phy of DDMRP appears to be lacking.

2 The single-item lot-sizing optimization problem

At this stage, our problem could be classified as a single-item dynamic lot-sizing problem
(SIDLS), specifying when and how much to order throughout a prespecified discrete plan-
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ning interval with final time T . We use the following notations for the model’s parameters,
variables and controls.

Parameters:

� `, lead time;

� h, holding cost per unit of time;

� K, reordering cost;

� pUS, penalty cost related to under-stock ;

� pOS, penalty cost related to over-stock, namely, an excessive quantity of inventory;

� d = (dt)t≤T , demand.

Variables:

� x = (xt)t≤T , inventory level (state variable);

� y = (yt)t≤T , on-order quantity (state variable);

� u = (ut)t≤T−`+1, quantity ordered at time t, and made available at time t+ `− 1 (control
variable).

Generally speaking, given a set of predefined parameters θ ∈ Θ, the optimal solution to
the general SIDLS problem can be obtained by specifying a suitable parametric target function
f : R× R+ × R+ ×Θ→ R+, a class of constraints C, and a class of admissible controls U :

min
(x,y)∈C, u∈U

f(x, y, u; θ).

As stated in the introduction, our model must be capable of accounting for standard costs
(holding, reorder, under-stock penalties), while appropriately penalizing an excess of inventory
over a reference level chosen by the decision maker. To this aim, we introduce the term “Average
Daily Usage”(ADU):

ADUt =

∑t−1
s=t−q1 d̃s + sumt−1+q2

s=t d̃s

q1 + q2

. (1)

Here, d̃s is the true demand prevailing at time s, possibly corrected to account for exceptional
peaks; this is possibly done to avoid abrupt and unmotivated changes in the pace of the ADU
itself.1 Integer quantities q1 (or q2) represent the number of periods considered in the past
(future) to compute daily average demand. Specifically, if q1 = 0, we only look at present and
future data. In contrast, if q2 = 0, we rely on a rolling average based on recent past data.

1An explicit formulation for d̃s will be provided when running simulations in Section 4.
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The ADU provides a rough measure of daily demand for a resource, computed as an average
of past and future demand, and approximates a target inventory level. Our objective function
will account for (positive) deviations of the actual stock on-hand from the ADU , namely,
(xt−ADUt)+ = max{xt−ADUt; 0}. The optimal policy, as derived under these assumptions,
is expected to reduce reorder fluctuations by achieving a stable inventory level (Ptak and
Smith (2016), So and Zheng (2003)). There are at least two plausible reasons for explicitly
considering this penalty cost when taking decisions. First, it helps to prevent the creation of
lumpy demand, which could create problems upstream in the supply chain (Hayya et al. (2006),
Gardiner and Blackstone Jr (1995)). Second, we can relate it to financial and accounting issues;
it is recognized that inventory management has a positive effect on financial performance and
impacts general costs; it is also often related to a loss of opportunities for the shareholders of a
company. Put differently, inventory management mediates the relationship between managerial
competence and financial performance: Inventory plays a crucial role in a firm’s performance
and that an out-of-scale inventory results in a net loss of return on equity (Orobia et al. (2020)).

In the remainder of this section, we propose a number of different models characterized by
an increasing level of requirements for the class of admissible controls. Our aim is to set a
model that at best captures the main features of a prudential and proactive approach. Finally,
a linear-integer version of such a model will be presented. This latter linear-integer model will
be used as a starting point for the numerical analysis, and to benchmark the DDMRP heuristic
against our optimal controls.

2.1 Model I - minimal assumptions

Model I presents the target function and the basic minimal requirements for the on-hand
quantities. Given the initial condition x0 ≥ 0, we have

min
T∑
t=0

(
K δ{ut>0} + hx+

t + pUS x
−
t + pOS (xt − ADUt)+

)
, (2)

xt+1 = xt + ut+1−` − dt, ∀t,

ut > 0, ∀t.

The objective function of Model I considers standard reordering and holding costs, and adds
two penalty components for negative inventory and target inventory. The reordering cost K
is paid at time t when an order has been placed. The basic holding cost h refers to the
need for physical staff, workers, standard equipment and operations such as counting and
handling materials. The two penalties pUS and pOS add extra holding costs to negative values
of xt and to values exceeding the daily average usage level, respectively penalization for stock-
out levels is commonly used in the literature (Jing and Chao (2021)). When it comes to
penalization for extra inventory, we indeed consider cost components such as the opportunity
cost of capital, costs related to obsolescence, damage and deterioration, the risk of lost or stolen
goods, insurance costs related to materials (Azzi et al. (2014), Alfares (2007)).

Equality constraints describe the flow equations of the on-hand quantities. At this level, the
lead time is deterministic, and demand dt is supposed to be known to the decision-maker at any
point in time. We will introduce stochastic demand and lead times later in this section. With
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regard to other constraints, Model I entails the broader class of controls: Only non-negativity
is imposed. The next models restrict the class of admissible controls with the aim of bringing
the optimal solution closer to standard approaches used in practice, such as (s, S) controls and
minimal service levels to be satisfied.

2.2 Model II - controls of type (s, S)

In Model II, we assume that controls belong to a traditional (s, S) family

ut =

{
0 if (xt + yt − dt) > st

St − (xt + yt − dt) if (xt + yt − dt) ≤ st
, (3)

where yt denotes the on-order quantity at time t, and where s = (st)t≤T−l+1 and S = (St)t≤T−l+1

are time-varying thresholds to be determined optimally. In contrast to Model I, the state
variables of the optimization are now xt and yt. We need to introduce the law of motion for
the latter variable. To this aim, we set y0 ≥ 0 and, for all 1 ≤ t ≤ T − 1,

yt+1 = yt + ut − ut+`−l. (4)

The optimal control problem related to Model II considers the objective function as in (2),
and shares all the constraints of Model I; moreover, constraints of type (3), and type (4) and
non-negativity constraints for s and S are also added. This then translates the optimal control
into an optimal pair of time-varying thresholds (s, S).

2.3 Model III - prudential approach

We now introduce a stricter constraint on the values for the lower barrier s, which aims at
introducing a prudential approach to the inventory problem. This figure is related to a risk
measure dealing with stochastic future demand and a stochastic lead time L. Let us suppose we
are at date t; we denote by Ds the future stochastic demand prevailing at time s = t+1, . . . , T .
The decision-maker needs to carry out estimations of Ds based on the information he has at time
t. Specifically, we assume that the decision-maker considers future demand to be log-normally
distributed so that ln(Ds) is Gaussian; moreover, he sets its average at the actual (logarithmic)
ADU level as computed in (1), and assumes, for simplicity, a constant standard deviation.2

Summarizing, ln(Ds) ∼ N (ln(ADUs), σD) for some constant risk parameter σD > 0. The idea is
that the decision-maker bases his decision on a short-term rolling estimate of demand, the ADU,
as defined in (1), and on a basic estimation of risks based on a log-normality assumption.The
lead time L is also assumed to be log-normal, so that ln(L) ∼ N (ln(`), σL). Finally, we assume
that demand and the lead time are statistically independent. It is well known that those
assumptions make the product DL log-normal. This latter figure, although slightly different
”lead time demand”, will be crucial for the remainder of the paper. The log-normal nature of
lead time demand is acknowledged by different scholars (see, among others, (A), (B), (C), (D)).
In addition, log-normality will be useful to set a simple (and deterministic) mixed integer linear

2Time-varying standard deviations could also be considered, but this would make notations and derivations
more cumbersome.
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model for the SIDLS problem, based on few basic statistics of such random variables (Schwartz
and Yeh (1982), Das (1983), Tadikamalla (1984), Cobb et al. (2013)).

To account for rare events, we also consider a random variable Ξ modeling a stochastic peak
level, i.e. an event signaling an uneven level of demand in the period {t + 1, . . . , t + 1 + q2},
where q2 is short-term planning horizon as defined in (1). We assume that Ξ is a measurable
function of (short-period) future demand so that Ξ = g(Dt+1, Dt+2, . . . , Dt+1+q2). We denote
by ξt = E[ Ξ |Ft] the best estimate at time t of such a peak.

Our assumption is that all the information used at time t to make any decision about
inventory is based on the aforementioned statistics: First order estimates (ADUt and `); second-
order estimates of risk (σD and σL); and a measure of unexpected demand (ξt). More precisely,
first-order and second-order statistics are used to set time-varying semi-automated thresholds
(s, S). This reflects a prudential attitude to setting safety levels and reorder quantities: The
decision-maker sets thresholds in consideration of intrinsic risks related to the stochastic lead
time and demand. Moreover, given that those thresholds are time-varying, they suggest that
the decision-maker has also a proactive attitude,seeking to track the evolution of demand in
advance to avoid nasty surprises. On the other hand, ξt takes care of the ”unexpected events”
(peaks). Such events, being exceptional in their nature, are not accounted for when setting
(semi-automated) thresholds. Rather, they are tackled directly at the control rule level. To
introduce a prudential attitude, we consider a tail measure of the distribution of the random
variables under consideration, namely, the value at risk at level ε (typically, ε = 0.05 or
ε = 0.01).3 Note that this quantity is inherently related to the decision-maker’s risk perception.
In particular, it may depend on some other parameters of the model, such as the lead time.
When the lead time is long, the decision-maker is willing to accept a higher under-stock risk
to avoid an inventory out of scale. We will address this issue in further detail when running
the simulations. This approach translates into a probabilistic constraint for the threshold st,
which, in turn, determines control u(t). Specifically, for all t ≤ T , we require

P (st ≥ Dt L) ≥ 1− ε. (5)

We now show that, thanks to the probabilistic assumption made, we can rephrase this SIDLS
problem with stochastic demand and the lead time as a deterministic mixed linear integer
program. First of all, we show how to derive a linear constraint on the st threshold, by starting
from (5).

Proposition 1 Consider a stochastic demand such that ln(Dt) ∼ N (ln(ADUt), σD) and a
stochastic lead time L such that ln(L) ∼ N (ln(`), σL). Moreover, assume they are independent.
Then the constraint expressed by (5) translates into the linear constraint

st ≥ `ADUt (1 +RF (ε, σD, σL)), (6)

where
RF (ε, σD, σL) = eΦ−1(1−ε)·

√
σ2
D+σ2

L − 1,

is a suitable risk factor.

3V aRε is defined as the (smallest) quantity x ∈ R such that P(D ≥ x) ≤ ε. The parameter ε can be fixed
considering the decision-maker’s risk aversion; for example, if ε = 0.05, then Φ−1(1 − ε) ≈ 1.64; if ε = 0.01,
Φ−1(1 − ε) ≈ 2.33 (Embrechts et al. (2011)). For example, ε = 0.01 means that an out-of-stock event occurs
with a probability 0.01%.
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Proof. Note that

P (st ≥ Dt L) ≥ 1− ε ⇐⇒ P (ln(Dt) + ln(L) ≤ ln(st)) ≥ 1− ε.

Given that demand and the lead time are independent and log-normal, Z := ln(Dt) + ln(L) is
Gaussian with distribution N (ln(ADUt) + ln(`);

√
σ2
D + σ2

L). Therefore,

P (Z ≤ ln(st)) ≥ 1− ε

is equivalent to

P

(
Z − (ln(ADUt) + ln(`))√

σ2
D + σ2

L

≤ ln(st)− (ln(ADUt) + ln(`))√
σ2
D + σ2

L

)
≥ 1− ε.

Thanks to normality, the latter is equivalent to

ln(st)− ln(ADUt)− ln(`)√
σ2
D + σ2

L

≥ Φ−1(1− ε) ⇐⇒ st ≥ ADUt ` e
Φ−1(1−ε)·

√
σ2
D+σ2

L .

�

Therefore, it seems convenient to express constraint (6) in the form

st ≥ `ADUt (1 + risk factor).

The first term represents a baseline safety stock, whereas the second term is a cushion level
to account for risks related to demand and the lead time. In our notations, this risk factor
depends on the parameters accounting for risks and is denoted by RF (ε, σD, σL).

Constraints as in (6) can also be considered as minimum service levels to be granted to
final customers. Notably, (1−ε) can be considered as the “α-service level”, namely, the desired
probability of not incurring on out-of-stock event (Chen and Krass (2001)). The service level
heavily influences the level of in-house material needed to fulfill demand promptly. As suggested
by the literature (Radasanu et al. (2016)), our approach is capable of depicting the best trade-
off between the stock-out cost (i.e. keeping the customer waiting) and the operational costs
of maintaining a high inventory level. Note also that, in setting the service level, we do not
involve what we call unexpected peaks. As stated above, we deliberately leave them aside
when optimally setting up the semi-automated controls of type (s, S); instead, we consider
them directly in the flow equation by slightly correcting the definition of control in Model
II. Nevertheless, Equation (6) will also become useful when defining the unexpected peaks of
demand.

It is now time to define what we mean by unexpected peaks, which account for exceptional
events exceeding a well-defined safety level set at time t. Recall that Ξ = g(Dt+1, . . . , Dt+1+q2).
As a modeling assumption, we assume that g is time-separable; moreover, since Ξ measures
peaks of demand, we assume there exists a suitable function ht, observable at t, so that

Ξ = g(Dt+1, . . . , Dt+1+q2) =

t+1+q2∑
s=t+1

g̃(Ds) I{Ds>ht}.

For simplicity, we take g̃ to be the identity function, and assume that

ht = h(ADUt, `, RF (ε, σD, σL)) = γ ADUt `RF (ε, σD, σL),
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where γ is a suitable value to be set by the decision-maker. We, therefore, obtain a tractable
definition of the peak estimator ξt, based on Equation (6):

ξt = E[Ξ|Ft] =

t+1+q2∑
s=t+1

ds I{ds>γ ADUt `RF (ε,σD,σL)}. (7)

Therefore, to account for the new peak estimate, we revise the constraints in (3) as follows

ut =

{
St − (xt + yt − (dt + ξt)) if (xt + yt − (dt + ξt)) < st

0 if (xt + yt − (dt + ξt)) ≥ st
(8)

Summarizing, the optimal control problem we seek to solve under Model III shows the
objective functional as in Equation (2), with all the constraints of Model I and the generalized
(s, S) constraints as in (8) to account for peaks, plus the constraints of type (6) to introduce a
minimum service level.

A final remark is due.In some significant situations, we can assume that the risk related to
the lead time dominates the one related to demand. This can happen, for example, if we have
capacity constraints that have a negative effect on supply chain performance (Cannella et al.
(2018)). In this case, we can approximate the constraint as in (6) with a new expression that
disentangles the risks pertaining to the lead time and demand.

Corollary 1 If σD/σL is small, the constraint expressed in (6) can be approximated by

st ≥ `ADUt (1 + α (1 + β)), (9)

where α = Φ−1(1− ε)σL, and β = 0.5 Φ−1(1− ε)σ2
D/σ

2
L.

Proof. We need to show that there exist two positive values α and β such that

1 + α(1 + β) ≈ eΦ−1(1−ε)
√
σ2
D+σ2

L .

To simplify the notations, let us call k = Φ−1(1 − ε). If the term σD/σL is small (meaning
that the risk related to the lead time dominates the one related to demand), the expression

ek
√
σ2
D+σ2

L can be approximated by

e
kσL

(
1+ 1

2

σ2D
σ2
L

)
≈ 1 + kσL + kσL

k

2

σ2
D

σ2
L

.

By putting α = kσL, and β = 0.5 kσ2
D/σ

2
L, we obtain (9).

�

Note that α is related only to the risk pertaining to the lead time. When it comes to β, we
can interpret it as the risk pertaining to demand. However, we place it in relative terms to α,
having assumed that the latter is the predominant one. In the notation of the Proposition 1,
we now have

RF (ε, σD, σL) ≈ α(1 + β).

In the next section, when specifying the final outlook of the model used in simulations, we will
rely on this new form of the constraint, where α and β take care of the risks for the lead time
and demand.
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2.4 Model IV - mixed linear integer optimization problem

Model III can be transformed into a traditional mixed linear integer programming optimization
problem by adding a number of variables and constraints. Specifically, we introduce a constant
M ≥ 0 that is large enough, and the following auxiliary variables

wt =

{
1 if ut > 0
0 if ut = 0

; zt =

{
xt − ADUt if xt − ADUt > 0

0 if xt − ADUt ≤ 0
; δt =

{
1 if zt > 0
0 if zt ≤ 0.

wt and δt are binary variables accounting, respectively, for the presence at time t of an order ut
and for stock exceeding the ADU, as a first approximation. Recall that controls are expressed
in terms of time-varying thresholds (s, S), as explained in Section 2.2, and that x0 ≥ 0 and
y0 ≥ 0 are suitable initial conditions. In this final formulation of the model, we will use the
deterministic demand dt, for t ≤ T as an input. More precisely, (dt)t≤T is a possible realization
of the stochastic demand prevailing on the planning horizon. As stated, randomness of demand
(and the lead time) is accounted for in this model by means of the risk factor and the service
level.

We obtain

min
T∑
t=0

(
K wt + hx+

t + pUS x
−
t + pOS zt

)
(10)

xt+1 = xt + ut+1−l − dt (11)

yt+1 = yt + ut − ut+1−l (12)

xt = x+
t − x−t (13)

st − (xt + yt − (dt + ξt)) ≤Mwt (14)

st − (xt + yt − (dt + ξt)) ≥ −M(1− wt) (15)

ut ≤ St − (xt + yt − (dt + ξt)) (16)

ut ≥ St − (xt + yt − (dt + ξt))−M(1− wt) (17)

ut ≤Mwt (18)

ut ≥ 0 (19)

xt − ADUt ≤Mδt (20)

xt − ADUt ≥ −M(1− δt) (21)

zt ≤ xt − ADUt +M(1− δt) (22)

zt ≥ xt − ADUt −M(1− δt) (23)

zt ≤Mδt (24)

zt ≥ 0 (25)

x+
t ≥ 0, x−t ≥ 0 (26)

st ≥ ` · ADUt · (1 + α (1 + β)). (27)

wt ∈ {0; 1}, δt ∈ {0; 1} (28)
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Model IV shares the same objective function as previous models, albeit re written using
the binary variable zt. It also shares with previous formulations the equality constraints for
the flow equations involving on-hand and on-order quantities. Besides obvious non-negativity
constraints, we use constraints (14) and (15) to set st if wt = 1 (hence, if at time t an order
is switched on). Similarly, constraints (16) and (17) optimally set St. Constraint (18) is
introduced to force ut = 0 when wt = 0. Constraints (20)-(24) are used to set zt depending
on the value of δt, in line with the definitions proposed above. Finally, (27) accounts for the
service-level constraint in the form exploited in Corollary 1.

Before moving to the numerical findings, in the next section we introduce the main concepts
behind the DDMRP heuristic. We will then compare in detail the policy prescribed by such
heuristic with the optimal controls suggested by our model.

3 DDMRP: A proprietary heuristic and its properties

The Demand Driven Material Requirements Planning (DDMRP) was defined by its creators
Ptak and Smith as “a formal multi-echelon planning and execution method to protect and pro-
mote the flow of relevant information and material through the establishment and management
of strategically placed decoupling point stock buffers” (Ptak and Smith (2016)). To promote
and protect the flow of materials, the core idea of the DDMRP approach is to strategically
place buffers (warehouses) along the bill of material (Smith and Smith (2013b), Ptak and
Smith (2016)) and to find their optimal sizing, possibly dynamically to react to change in the
information about demand.

DDMRP consists basically of five nested activities: Strategic decoupling; buffer profile
and levels; dynamic buffer adjustment; demand-driven planning; and visible and collaborative
execution. These activities are all related to the core concept of buffer, and address its role in
the bill of material, its properties and the company’s related reorder policy. In detail, buffers
are quantities of inventory or stock that are designed to decouple demand from supply (Ptak
and Smith (2016)). Each buffer consists of three zones, each of which takes on a different role
and can be identified by a different color. The central yellow zone is used for covering the
average demand over a supply period; the upper green one, is used to dictate the pace of order
generation. Finally, the red zone represents a security cushion that is integrated into the buffer.

Mathematically, we can define the buffer as a triplet of thresholds (KG
t , K

Y
t , K

R
t ), identifying

three different regions: (i) from 0 to KR
t , the red zone; (ii) from KR

t to KY
t , the yellow zone;

(iii) from KY
t to KG

t , the green zone. Therefore, KG
t represents the upper bound of the entire

buffer. The red zone is intended to create the desired inventory cushion level. According to the
methodology, it is computed as the sum of two basic sub-zones. The first level is calculated
as ADUt ` α, where α is a parameter referring to the lead time risk. Note that α plays
exactly the role of the parameter we defined in Corollary 1 to account for lead time risks
in our model. It should now become clear that the reason for developing this corollary was
to enable a comparison of the results of the model and the heuristic. The second sub-zone,
called variability factor, adds a security level related to the variability of demand; it is defined
as ADUt ` α β, where β ∈ [0, 1] is parameterized on the variability of demand. Again, we
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recognize the parameters introduced in Corollary 1. Therefore,

KR
t = ADUt ` α (1 + β).

The yellow zone is inherently characterized by the ADU and the Decoupled Lead Time
(DLT), which is the longest path in the bill of materials between the element under consideration
and the first buffer. In our setting, the DLT plays the role of the lead time implemented in the
previous sections of this paper. The size of the yellow zone is calculated by

KY
t −KR

t = ADUt `. (29)

Finally, the green zone is related to the reorder quantities, and is calculated by

KG
t −KY

t = ADUt ` αG, (30)

where αG ∈ [0, 1] is a parameter that the creators suggest should be calibrated in relation to
the value of the decoupled lead time.4 Specifically, they suggest setting a value close to zero
(low) for αG if the lead time is long; in contrast, for short lead times, they propose a value close
to one (long). As evident from (30), a high value of such parameter increases the reordered
quantity. This could sound counter-intuitive at first glance; however, this policy is based on
the following rationale. In practice, when dealing with short lead times, traditional schemes of
inventory management (as well as DDMRP) require the frequent reordering of a small amount
of material. This has the drawback of breaking the pace of inventory accumulation due to
overly frequent orders. To circumvent this issue, the heuristic suggests topping up the quantity
reordered, which is expressed exactly by the correction when αG is long. In contrast, when
dealing with long lead times, traditional approaches require that big quantities are ordered to
minimize reordering costs. Instead, the DDMRP heuristic has an opposite perspective to the
way in which long lead time parts are traditionally handled, seeking to avoid the persistent
problems and shortages caused by big and infrequent orders. The heuristic forces as frequent
and small orders as possible to reduce the risk of disrupting the entire supply by applying a
small αG as a correction to the green zone. Our simulations we will verify that this requirement
helps to reduce costs in case of short lead times.

Summarizing, the three thresholds turn out to be defined as follows:

KR
t = ADUt ` α (1 + β), (31)

KY
t = ADUt ` (1 + α + αβ), (32)

KG
t = ADUt ` (1 + α + αβ + αG). (33)

A final remark is due on the parameters α and αG. In the DDMRP methodology, they are
imputed as a single parameter α that should be taken high (close to one) if the lead time is
short and close to zero if it is long.

We now explain in detail how the reordering control is set. DDMRP is based on the idea
of controlling the Net Flow Position (NFP) of the material present along the supply chain.

4According to the DDMRP methodology, the green zone can also take into account the presence of minimum
order quantities or order cycles. For more details on these aspects, see Slack et al. (2010) or Jacobs et al. (2011).
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In order to face the problem of supply order generation, a flow-based approach is defined.
Specifically,

NFPt = xt + yt − (dt + ξt), (34)

where x, y, d are as defined in Section 2, and where ξt represents an unexpected peak as defined
in Section 3. In the context of DDMRP, the peak can be further specified in relation to the red
threshold defined above:

ξt =

t+1+q2∑
s=t+1

ds1{ds≥ 0.5·KR
t }.

Finally, DDMRP stipulates the following control policy, based on the buffer levels defined above

ut =

{
KG
t −NFPt if NFPt < KY

t

0 if NFPt ≥ KY
t

. (35)

Note that the control suggested by DDMRP is one particular instance of the admissible
controls of Model III defined in Section 2.3, where (st, St) are expressed in terms of the three
thresholds of the buffer and of the NFP. For example, the threshold level to determine peaks,
0.5KR

t , is obtained in the model by inserting γ = 0.5 in to Equation (7). However, there is still
a huge difference between the optimization model and the heuristic in terms of the information
used to compute the reorder policy. The former is set to find an optimal control over the
entire planning horizon T ; in doing so, it uses all the available information, specifically, the
entire demand vector (dt)t≤T . In contrast, the DDMRP heuristic establishes its reorder policy
relying on the three quantities defined in Equations (31)-(33). Therefore, demand influences
the reorder policy at time t only by means of short-period real orders (either in the past or
in the future). Under this perspective, the heuristic is less powerful in that its information is
limited compared to the theoretical model. In this respect, when comparing the performance
of the reorder policy specified by DDMRP with our optimal control, we also test whether the
DDMRP approach can be considered as a good heuristic approach, based on less information,
to the solution of the proposed optimization model.

4 Validation of the DDMRP heuristic

In this section, we run a number of simulations to compare the optimal solution of our linear-
integer optimization scheme with the heuristic specified by DDMRP. As steted above, the main
objective of these simulations is to validate the algorithm proposed by DDMRP by showing
that it proposes a reordering policy that is in line with the optimal one derived by the model
developed in Section 2.4. Notably, this procedure also emphasises how well our model represents
the original SIDLS problem.

First of all, we specify the exact form of the ADU used in the simulations. For simplicity,
we choose q2 = 0, and q1 = `, where ` is the average lead time. In this way, we compute the
ADU by looking at a short-period rolling average taken over the last ` periods. Under those
assumptions, ADUt is defined as:

ADUt =
1

`

t−1∑
s=t−`

d̃s.
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We now specify the exact formulation of d̃ used in our simulations; we set d̃s = min{ds; 0.5KR
s }.

Note that the value 0.5KR
s corresponds to the threshold used to define the peak in Formula

(7), with γ = 0.5.5 By doing this, we exempt the decision-maker from considering exceptional
values of demand when setting the reference level for inventory.

Concerning the parameters of the model, we set T = 52, mimicking the simulation of one
year of inventory based on weekly periods. We take d0 = 20 as the average demand per period.
In line with the model, we simulate time series of demand by drawing ds : s = 1, . . . , T from
a log-normal distribution such that log(D) ∼ N (d0, σD), where σD = 0.5.6 As for the lead
time, given that, this variable is crucial for discussing the impact of the DDMRP approach, we
consider three different cases: Short (` = 3), medium (` = 12) and long (` = 21) average lead
times.7 Concerning the lead time risk, σL is fixed at the level σL=0.8; note that σL > σD, since
we believe that the risk related to the lead time has a greater impact than the risk related to
the variability of demand. As for the initialization of the state variables, we set y0 = 0 and
x0 = d0 · `.

We now discuss the cost parameters pertaining to the objective function. These have been
fixed arguing on a magnitude scale. We first devote our attention to standard costs ; starting
from the less impacting to the largest impacting costs, we have: the holding cost (h = 1,
expressed in dollar terms per unit of material a per unit of time), the penalty for under-stock
(pUS = 10), and the reordering cost (K = 100, expressed in dollars per single order). The ratio
of 1:100 between holding and reordering costs is in line with the standard literature, especially
when referring to productions that require high set-up costs.8 It remains to discuss the value of
the over-stock penalty, which is crucial in shaping the goodness of the DDMRP heuristic since,
by construction, its goal is to prevent excessive deviation from a reference level of on-hand
materials. We therefore test an instance where we do not consider such a penalty term (i.e.,
pOS = 0), and instead consider two different values for that parameter, one small compared to
pUS but equal to h (i.e., pOS = 1) and the other larger than h but still smaller than pUS (i.e.,
pOS = 5).

The service level considered by the decision-maker, as discussed in Section 3, may depend
on the lead time: When the lead time is long, the decision-maker may be willing to accept a
rather higher under-stock risk to avoid huge orders, which could cause the immobilization of
inventory. To account for this issue, we connect the service level to the lead time as follows: If
the lead time is short, we take a 90% service level, namely, ε = 0.1; for an intermediate lead
time, 80% (ε = 0.2) and for a long lead time 70% (ε = 0.3). As a consequence, relying on
Corollary 1, we derive for each scenario the corresponding values for the risk parameters α and
β. Specifically, we obtain the following specifications: For ε = 0.1, α = 1.03 and β = 0.25;
for ε = 0.2, α = 0.67 and β = 0.16 and for ε = 0.3, α = 0.42 and β = 0.10. We stress that
the possibility of creating a formal connection among the service level, the lead time and the
related risk parameter is possible thanks to the new framework we have developed in Section

5Having set q2 = 0, the computation of the peak involves only one period into the future (see Equation (7)).
6The seed in the numerical simulation is fixed to ensure the comparability of all instances of the different

experiments.
7Depending on the lead time, each simulation is run over a time period defined as T + `. Ex post, we

neglect the first ` periods to reach a stationary behavior of inventory, ensuring the comparability of the three
experiments.

8As an example, consider the production of small components of great precision (such as lenses for personal
devices), requiring ultra precision and micro machining, or high expedition costs for delive (Jáuregui et al.
(2010)).
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2.3. On the other hand, DDMRP recommends relating αG to the lead time, conveying that this
is due to a ”service level” issue. In this respect, our model allows us to elicit this common-sense
through a mathematical dependence as emerging by the practice.

Finally, we briefly discuss the parameters that refer to the DDMRP heuristic. Two among
the three risk parameters, α and β, are in line with that discussed above, and correspond to
what we set for our theoretical model. Concerning αG, the guideline of the DDMRP manifesto
suggests taking values between 0 and 1. In our simulations, we will then consider the two
extreme cases to see how the heuristic behaves.

Summarizing, all fixed parameters of the model are reported in Table 1.

T x0 y0 d0 h K pUS

52 d0 · ` 0 20 1 100 10

Table 1: Values of the parameters are kept fixed.

In contrast, Table 2 contains all varying parameters. Overall, by considering all values
of the varying parameters, we identified nine different and significant specifications of the
optimization problem (three different lead times against three different values for pOS). For
each such specification, we have two alternative parametrizations of DDMRP, depending on
the value of αG.

` pOS αG

{3; 12; 21} {0; 1; 5} {0; 1}

Table 2: Values of the parameters varying across the different experiments.

Finally, Table 3 shows the different values of the service level and the related values of
the risk parameters as a function of the lead time which, as stated, varies across different
experiments.

` ε α β

3 0.1 1.03 0.25
12 0.2 0.67 0.16
21 0.3 0.42 0.10

Table 3: Values of the service level and the related risk parameters depending on the lead time.

In the remainder of this section, we present a number of remarks and facts related to the
strategy proposed by DDMRP and its comparison with the theoretical model described in
Section 2.4.

First: Benchmarking DDMRP with the theoretical model. To benchmark the DDMRP
heuristic with the theoretical model, we first discuss the results in terms of the corresponding
objective functions. These results are presented in Table 4 for the three cases where pOS = 0,
pOS = 1 and pOS = 5. We denote by fopt the objective function of the linear-integer model
evaluated under the optimal strategy and by fDD (αG = 0) and fDD (αG = 1) the total costs
obtained by implementing the heuristic suggested by DDMRP under the two scenarios. To ease
comprehension, the last two columns of Table 4 show the relative difference between fDD and
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fopt in the two cases where αG = 0 and αG = 1, respectively. The smaller the difference, the
better the heuristic in approximating optimal control. A quick glance at this table shows that
for all the parameters displayed, the heuristic with αG = 0 outperforms the one with αG = 1,
and this difference in performance increases with both pOS and `. Specifically, for a short lead
time and penalization cost (first row in the table), we see that the two instances of the heuristic
perform almost equivalently. By increasing either ` or pOS, the performance of the heuristic
with αG = 0 improves. The opposite happens in the case αG = 1: in the last row of the table,
we see that the cost related to such heuristic approximately doubles the optimal cost.

pOS ` fopt (model) (fDD − fopt)/fopt (αG = 0) (fDD − fopt)/fopt (αG = 1)

3 8004 17.64% 18.49%
0 12 14756 8.78% 57.74%

21 30998 0.00% 92.39%

3 12888 8.17% 29.39%
1 12 26809 3.59% 67.92%

21 59652 0.00% 96.18%

3 31401 2.03% 44.73%
5 12 74293 0.48% 77.66%

21 174269 0.00% 98.89%

Table 4: The objective function f computed under the optimal control of Model III and the
relative performances of the policy suggested by DDMRP for different values of pOS and different
lead times.

The same effect can be seen by looking at the corresponding inventory levels. Figure 1
summarise the inventory of optimal control (black line, marked crosses) and the one suggested
by DDMRP (red line, marked by empty dots) under different specifications of the model, in case
pOS = 0. Panels 1a and 1b represent the inventory for a short lead time (` = 3); Panels 1c and
1d show the case of a medium lead time (` = 12) and, finally, Panels 1e and 1f represent the case
of a long lead time (` = 21). Moreover, the inventory of DDMRP in case αG = 0 and αG = 1
is shown on the left and right, respectively. The graphs confirm what was previously stated:
In the case αG = 0 (left panels), the inventory levels related to optimal control and DDMRP
get closer as long as the lead time increases. In contrast, when αG = 1, by increasing the lead
time, we clearly see that the inventory proposed by DDMRP becomes disproportionately large.

Second: A focus on the case with a short lead time and high reordering costs. We now
concentrate on the case of a short lead time (` = 3) and pOS = 0. As noted above, in this case
DDMRP with αG = 1 is closer to optimal control than the other situations. In this respect,
the DDMRP methodology suggests that the parameter αG plays a crucial correction role by
affecting the frequency of orders, especially when the lead time is short and the reorder cost
is high. To substantiate this claim, we now test different values of K in the specific case of
` = 3 and pOS = 0; our goal is to identify the value of K, which makes DDMRP with αG = 1
outperform the case with αG = 0. In Table 5, we report the values of fopt and the relative
differences of the two fDD functions, depending on the value of K. In the two cases where
K = 150 and K = 200, the cost associated with the DDMRP policy with αG = 1 is closer to
the optimal cost compared to the case αG = 0. Moreover, the cost related to these instances
of the model is nearly accurate in approaching the optimal cost. This result confirms the
stipulation of the DDMRP methodology: with a short lead time and a high reordering cost, it
is preferable to place slightly higher orders to diminish their frequency. To our knowledge, this
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is the first time that an explicit link among reorder costs, lead times and pace of inventory is
made through a theoretical model.

K fopt (model) (fDD − fopt)/fopt (αG = 0) (fDD − fopt)/fopt (αG = 1)

100 8004 17.64% 18.49%
150 8875 27.50% 13.62%
200 9531 38.66% 12.10%

Table 5: The objective function f computed under the optimal control of Model III and under
the policy suggested by the DDMRP for different values of K. Here ` = 3 and pOS = 0.

Once more, we can confirm the important role of αG by looking at Panels 1a and 1b of
Figure 1 it is evident that, when the lead time is short, by putting αG = 1 (right top panel),
we increase the ordered quantities and the number of orders decreases, thus keeping a better
pace of inventory. Again, this is desirable only for short lead times and high reordering costs.
Otherwise, for long lead times, a large value of αG would suggest excessive order quantities, as
shown by Panels 2f and 3f, where inventory becomes uselessly huge.

Third: DDMRP as a “good” heuristic for the formal optimization model. Recall that the
reorder policy stipulated by DDMRP is an admissible control for the optimization problem
proposed in Section 2.4. In this respect, our numerical analysis suggests that DDMRP can
be considered, under many instances of the problem, as a valuable heuristic approach to the
solution of the optimization problem. Put differently, in case the decision-maker has the ob-
jectives formalized in (2), he will be satisfied by implementing the DDMRP approach in that
it matches his expectations well in terms of inventory. Furthermore, Table 4 shows that the
costs of optimal control and the one related to the heuristic are closer (if not exactly equal)
for large values of pOS and/or large values of the lead time. Concerning the former, as stated
in Section 3, the DDMRP heuristic promises to guarantee a pace of inventory, keeping close to
the desired reference level and avoiding precipitous orders pushed by prompt reactions to out-
of-scale peaks. This assertion is validated by our experiments: When accounting for a penalty
pOS, the inventory suggested by DDMRP is always very close (if not equal) to optimal control
as suggested by the theoretical model. This can be seen also by looking at the left panels of
Figures 2 and 3. The reason why a longer lead time makes the DDMRP policy closer to the
one suggested by the model is less clear. As stated above, one relevant difference between the
two schemes is that our Model III uses all the information about demand when solving for
optimal control, whereas DDMRP relies only on short-period real orders. In this respect, when
the lead time is long, DDMRP takes advantage of a larger horizon when computing the ADU,
in that, by assumption, q1 = ` and q2 = 0. Put differently, when ` is short, the heuristic uses
less information which cause a less precise solution compared to the full-information optimal
control provided by Model III.

Fourth: On the role of pOS to keep the inventory more stable. By increasing the value of pOS,
the optimal cost increases: the decision-maker adds a penalty due to high values of inventory.
In this regard, we can compare Panel 1a (where pOS = 0) and Panel 3a (where pOS = 5), which
both refer to a short lead time. We can see how both the number of peaks and their value, as
obtained by our model (black line, marked by crosses), are higher in the first case compared to
the latter. We can interpret this fact as a better output in terms of pace of inventory, albeit
requiring a higher cost. The difference between the two optimal costs can be interpreted as the
disclosure of a hidden cost. Since the DDMRP heuristic does not depend on the cost structure,
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Figure 1: Inventory level for optimal control (black line) and the DDMRP heuristic (red dashed
line). The three left panels show the inventory level for DDMRP with αG = 0; the right panels,
for αG = 1. Here, pOS = 0.
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Figure 2: Inventory level for optimal control (black line) and the DDMRP heuristic (red dashed
line). The three left panels show the inventory level for DDMRP with αG = 0; the right panels,
for αG = 1. Here, pOS = 1.
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Figure 3: Inventory level for optimal control (black line) and the DDMRP heuristic (red dashed
line). The three left panels show the inventory level for DDMRP with αG = 0; the right panels,
for αG = 1. Here, pOS = 5.
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the inventory level is exactly the same in both cases (see red line marked by empty dots). In
fact, as stated, DDMRP already includes this dimension in its policy; in some sense, it behaves
as if the penalty pOS has been considered.

5 Conclusions

In this paper, we studied a single-item dynamic lot-sizing problem by considering both stochas-
tic demand and lead times. Our approach was based on a prudential principle aiming at setting
an inventory cushion that proactively reacts to short-horizon real orders and unexpected peaks.
Specifically, our theoretical probabilistic model comprehends: (i) a service level constraint, ex-
pressed as a risk measure and (ii) a penalty cost for large deviations from a reference inventory
level. In doing so, we obtained two significant properties of the optimal policy derived by
implementing the model: (i) the presence of an optimal buffer level s(t) and (ii) a reordering
value S(t), which has been proved to inhibit excessive reorder values, especially when the lead
time is short. These two factors ensure an inventory “pace”, escaping from overly impulsive
reactions to peaks in demand while maintaining a buffer to avoid undesired stock-out. This is
a traditional trade-off between two opposite risks: stock-out and excessive immobilization of
resources.

In addition, our model was developed by taking into consideration the philosophy at the
base of a recent heuristic proposed by practice, referred to as Demand Driven MRP. Despite
its widespread use, this heuristic lacks a theoretical foundation a model capable of providing
evidence on the goodness of the policy prescribed by the algorithm. We ran various experiments
with the aim of benchmarking the policy suggested by the DDMRP heuristic with our optimal
control. By doing so, we validated such a heuristic by showing that, under several specifications
of the model, it matches the optimal policy. To be precise, we saw that by following the
stipulations of the DDMRP approach in terms of the setting of the main parameters, the
heuristic is capable of maintaining an inventory pace for both short and long lead times.

To run the validation exercise, we translated the original SIDLS problem with stochastic
demand and lead times into a mixed linear integer optimization scheme. Despite being de-
terministic, the latter formulation reflects the inherent randomness of the problem through a
short-period time-varying average demand (the ADU); a risk factor related to the variability
of demand and lead times, based on a minimum service level (the Value at Risk of the lead
time demand) and a time-varying measure of future peaks. We showed that such statistics
is sufficient to determine the optimal control of the model, and, in turn, the policy suggested
by the DDMRP heuristic. In this respect, our research seems to suggest that such statistics,
based on real and short-term orders, are key to determining a reorder policy that satisfies for
a decision-maker following the “philosophy”of DDMRP, i.e. decision-makers who consider not
only standard inventory costs, but also sunk-costs related to high inventory fluctuations.
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