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Abstract Obfuscation is a common technique used to protect software against mali-
cious reverse engineering. Obfuscators manipulate the source code to make it harder
to analyze and more difficult to understand for the attacker. Although different obfus-
cation algorithms and implementations are available, they have never been directly
compared in a large scale study. This paper aims at evaluating and quantifying the
effect of several different obfuscation implementations (both open source and commer-
cial), to help developers and project managers to decide which algorithms to use. In
this study we applied 44 obfuscations to 18 subject applications covering a total of 4
millions lines of code. The effectiveness of these source code obfuscations has been
measured using 10 code metrics, considering modularity, size and complexity of code.
Results show that some of the considered obfuscations are effective in making code
metrics change substantially from original to obfuscated code, although this change
(called potency of the obfuscation) is different on different metrics. In the paper we
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recommend which obfuscations to select, given the security requirements of the software to
be protected.

1 Introduction

Software protection is increasingly becoming an important requirement for industrial soft-
ware development. Historically, software protection first appeared as attempts at adding
license-checking code to computer games, followed by algorithms for white-box cryp-
tography (Wyseur 2009) used for digital media piracy protection. Every software vendor
should be aware of the potential for man-at-the-end (MATE) attacks against their prod-
ucts and the techniques available to mitigate these attacks. MATE attacks take many
forms; they can be achieved through tampering, reverse engineering and cloning. In
a tampering attack, the user breaks the integrity of a piece of software, by modify-
ing it in ways not intended by the software vendor. In a malicious reverse engineering
attack, the attacker violates the confidentiality rights of the vendor by extracting intellec-
tual property contained in the software, such as algorithms. Finally, in a cloning attack,
copyright laws are violated by cracking and distributing illegal copies of the software.
Methods for protecting against MATE attacks are variously known as software protection
(Falcarin et al. 2011).

The software protection problem is fundamentally harder than other security problems.
The reason is the wide attack model that software protection researchers and practitioners
must compete with; one has to assume an almighty adversary who has full access to the cho-
sen software and hardware and can examine, probe, and modify it at will. For this reason, no
piece of software, however well protected, is expected to survive intact “in the wild” for a
long period of time. An example of a very common form of protection against reverse engi-
neering attacks is obfuscation which modifies a program to make it harder for the adversary
to analyze or comprehend (Collberg and Thomborson 2002).

Code obfuscation was first discussed by Cohen (1993) as a technique for automati-
cally creating multiple versions of the same program, thereby making each version a more
difficult target for malware to analyze and modify. Typical code obfuscation techniques
(Collberg and Thomborson 2002) include splitting code into smaller pieces, merging pieces
of unrelated code, randomizing code placement and instruction selection, breaking abstrac-
tion boundaries, mapping initially clean data structures to mangled ones, and flattening or
introducing bogus control flow.

Essentially, obfuscation aims to work in the opposite direction to refactoring; code obfus-
cators should work against the understandability of the code. Given that metrics have been
proposed to interpret and guide the refactoring effort, for instance in the presence of bad
smells (Simon et al. 2001), the obfuscation tools should attempt to increase the same metrics
that the refactoring tools are designed to decrease. For instance, the broad aim of refactor-
ing is to “decrease the complexity of the code”, hence the code obfuscators should provide
algorithms to increase code complexity. This aspect and the fact that there are currently no
practical security metrics to measure the quality of the protection poses the three following
questions:

1. What is the effectiveness of different obfuscation algorithms?
2. What is impact of obfuscation on the code?
3. What protections should be chosen when securing a software system?
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This paper studies the effect of 44 obfuscation algorithms contained in three obfusca-
tion packages: the Sandmark tool (Collberg et al. 2003), the Allatori suite and the Zelix
Klassmaster™toolkit. Obfuscations are applied on 18 applications covering a total of 4 mil-
lions lines of Java code. The aim is to produce a set of obfuscated classes and to compare
the algorithms in terms of code metrics (on modularity, size and complexity).

The remainder of this paper is structured into further sections. Section 2 discusses the
related work in software protection metrics. Section 3 illustrates the obfuscation algorithms
applied in this study and Section 4 presents the experimental design adopted in the study.
Then Sections 5, 6 and 7 show the comparison results of the obfuscation algorithms. Section
8 discusses the implications and outlines the threats to validity, while Section 9 concludes
the paper.

2 Related Work

With sufficient effort, most obfuscation techniques can be defeated. All of the information
needed to break a software system is present in the executable or bytecode, and these can be
controlled by the attacker. Assessing software protections means to estimate the extra delay
the most sophisticated attacker would incur due to a particular protection technique used on
a given application.

The evaluation of the increased strength introduced by obfuscation techniques has been
mainly addressed by using code metrics (Anckaert et al. 2007; Linn and Debray 2003; Goto
et al. 2000; Karnick et al. 2006; Heffner and Collberg 2004; Jakubowski et al. 2009). Even
if metrics are based on reasonable assumptions about the expected problems that an attacker
would face to defeat code protection, they just estimate and approximate a specific level of
security that the underlying application should receive.

Experimental evidence suggested that metrics correlate to the actual difficulty of
performing attacks (Sutherland et al. 2006; Ceccato et al. 2008, 2009, 2013).

Despite the benefits of experimental investigation, in the security literature only a few
works are based on attacks performed by human subjects on binary code (Sutherland
et al. 2006) and even fewer works (Ceccato et al. 2008, 2009) on applied empirical
approaches, because they are expensive and time consuming. As an example, the com-
parison of just two obfuscation techniques and maintainability by users took a long
time (Ceccato et al. 2013). In this paper we adopt a different perspective; instead of
comparing obfuscations in terms of how long attackers take to break them, we have
measured the effects of the obfuscation by quantifying the changes occurred to source
code in terms of modularity, complexity and size. In order to provide a replicable study,
we have provided a statistically sound evaluation of several obfuscations with a wide
set of metrics on a set of subject applications for a total of 4 millions lines of code
analyzed.

Many authors have chosen just a few particular metrics with the assumption that
these were good indicators of software complexity and ensure a harder task for the
attacker when (s)he tries to break the code. For example, Anckaert et al. (2007) eval-
uate the obfuscation efficacy by using a specific set of metrics for control-flow and
data-flow complexity. Linn and Debray (2003) define the confusion factor as the per-
centage of assembly instructions in the binary code that cannot be correctly disassembled
by the disassembler, assuming that the difficulty of static code analysis will increase
with this metrics, even if it strongly depends on the disassembly tools and algorithms
used.
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A more high-level approach has been proposed by Collberg and Thomborson (2002)
when they defined the concept of potency of an obfuscation as the ratio between the com-
plexity (measured with any metric) of the obfuscated code and the complexity of the
original source code, and the concept of resilience, i.e. how difficult is to automatically de-
obfuscate the protected code. In our research we use a similar approach when performing
the correlation analysis of the variance of the chosen metrics.

More recently, Karnick et al. (2006) defined more precise metrics for potency (combining
nesting, control-flow and variable complexities), resilience (as the number of errors gener-
ated decompiling obfuscated code) and cost (as an increment of memory usage). Heffner
and Collberg (2004) used metrics for obfuscation potency and performance degradation as
they aimed at finding the optimal sequence of obfuscations to be applied to different parts of
the code in order to maximize complexity and reduce performance overhead. With a similar
goal, Jakubowski et al. (2009) presented a framework for iteratively combining and apply-
ing protection primitives to code; they also used code size, cyclomatic number and knot
count metrics to evaluate the code complexity. Our work is in the same line of research, and
brings the added value of replicating the experiment on a very large scale, and comparing
44 obfuscating algorithms.

Alternatively, tools have been used to assess the resilience of code obfuscations. For
instance, Sutherland et al. (2006) relied on a program binary instrumentation tool to measure
the fraction of the obfuscating transformations that the attackers can undo automatically.
Goto et al. (2000) proposed the depth of parse trees as a measure of source code complexity.
Udupa et al. (2005) measured the resilience of an obfuscation by using the amount of time
required to perform the automatic de-obfuscation to evaluate the effectiveness of control
flow flattening obfuscation, relying on a combination of static and dynamic analysis. Our
approach measures one obfuscation at a time. As a development of our research, it would
be very relevant to study the application of a series of obfuscation algorithms on the same
code, and analyze whether the resilience increases as compared to when a single obfuscation
algorithm is applied.

Finally, Visaggio et al. (2013) used the code entropy and size to detect obfuscated mal-
ware code in Javascript; their goal and metrics are different from ours but they also analyze
the difference between metrics values obtained from obfuscated code and non-obfuscated
code. Zeng et al. (2011) analyzed different obfuscations to discover which ones can break
different types of watermarks hidden in the code.

3 Obfuscation Algorithms

In this study we compare the effects of several obfuscation transformations on Java code.
We have selected three of the most prominent and used tools: the Sandmark obfuscating
toolset (Collberg and Thomborson 2002)!, the Allatori Java obfuscating toolset? (version
4.1) and the Zelix Klassmaster™Java obfuscator® (version 5.5.0), for a total of 44 different
atomic obfuscation algorithms.

Thttp://sandmark.cs.arizona.edu/downloads.html
2http://www.allatori.com/
3http://www.zelix.com/Klassmaster/
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The first (Sandmark) has been selected because it provides levels of flexibility, cus-
tomization and openness that other obfuscation tools lack?; the second (Allatori) has been
selected because it provides an all-in-one suite for obfuscating Java classes, and it provides
a free toolkit; and the third (Klassmaster™) because it represents the state-of-the-art obfus-
cation toolkit, albeit at a licensing price. Below we detail how each tool has been used,
together with the options that have been activated to produce the obfuscated outputs.

3.1 Sandmark

The Sandmark software tool can perform obfuscations, as well as statically and dynami-
cally watermarking the source code and the binaries of Java systems. Being open-source, it
also provides a full list of obfuscators, grouped in three categories: application-, class- and
method-level. Method- and class-level obfuscations are more configurable as they allow
developers to select which methods (or classes) to obfuscate; all other algorithms are consid-
ered application-level obfuscations. Such selections of partial obfuscation might be useful
to prevent some methods from being obfuscated for the sake of performance and reliability;
for example, obfuscation of reflective code can break the application (i.e. not preserving pro-
gram semantics) while some obfuscations can penalize performance. Table 1, Table 2 and
Table 3 summarize the characteristics of all the 40 algorithms used in this study, dividing
them respectively in APP (application-), CL (class-) and MET (method-) level obfuscation
algorithms. These descriptions are taken from the manual provided with the toolkit.

3.2 Allatori

The second obfuscation tool used, Allatori, can also be streamlined and activated via a com-
mand line interface. It provides methods to obfuscate and watermark the Java classes. The
command line invocation requires an xml configuration file to activate the options for the
obfuscation and watermarking. Since we were only interested in obfuscation, the options
for the watermarking have been disabled. Browsing the documentation provided with the
toolkit, we concluded that only 2 configurations are appropriate. Therefore two configu-
rations have been created and analyzed, one with the control flow obfuscation activated
(termed cfo)

and another “light” configuration, without control-flow obfuscations, but with the
renaming of the local variables (termed /vo), as summarised in Table 4.

3.3 Zelix Klassmaster™

The third obfuscation tool used, Zelix Klassmaster™, is also a commercial tool that provides
several activation points for the obfuscation of the Java classes under study. It also provides
a way to preserve methods, classes and packages from obfuscation, in order to focus very
carefully the effects of the obfuscation algorithms. The tool can be streamlined by the use
of scripts, which make it very powerful and automatisable.

Analyzing the documentation of the toolkit, it is evident that more control on the output
obfuscation is given by Zelix than Allatori, albeit less than with Sandmark. Therefore, we
have created two configuration files (“aggressive” and “light” obfuscation scenarios) which

4On the downside, Sandmark is quite old and it cannot handle the newest Java constructs, from Java version
1.5 onwards.
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Table 1 Sandmark — Description application level obfuscation algorithms (APP)

Name

Description

Array Folding

Array Splitting

BLOAT

Block Marker

Class Encrypter

Constant Pool Reorder

Dynamic Inliner

False refactoring

Integer Array Splitting

Interleave Methods

Overload Names

Parameter Alias

Rename Registers
Split Classes

APP-af

APP-as

APP-bl

APP-bm

APP-ce

APP-cpr

APP-di

APP-fr

APP-ias

APP-im

APP-on

APP-pa

APP-1r
APP-sc

takes a one-dimensional array and folds it into a multi-
dimensional array.

takes a one-dimensional array field and splits it into 2
arrays by adding another field of the same type: one array
will contain the first half of the elements and the other
array will contain the second half

BLOAT is a Java bytecode optimizer performing many
traditional program optimizations such as constant-copy
propagation, constant folding, dead code elimination,
and peephole optimizations (Hosking et al. 2001).

randomly marks all basic bytecode blocks in the program
with either O or 1, to be used to hide a watermark or
slightly diversify the bytecode.

encrypts class files and causes them to be decrypted at
runtime.

reorders the constants in the bytecode constant pool and
assigns random indices to them: there is no change in
code as a result of this obfuscation.

inlines methods at runtime using instanceof
checks.

it is performed on two classes that have no common be-
havior. If both classes have instance variables of the same
type, these can be moved into a new parent class, whose
methods can be buggy versions of some of the methods
from the original classes.

splits a single array of integers into two arrays and based
on some encoding method, the elements are put in either
of the two arrays.

finds pairs of methods in the input application and inter-
leaves them into one method. It selects pairs such that
both methods have the same signature and are not Java
library’s methods (e.g. toString()).

obfuscates methods so that as many methods as possi-
ble have the same name. Method overriding relationships
remain intact, whereas existing overloaded methods may
be destroyed, and new ones created.

looks at each class and tries to find a (non-initializer,
non-abstract, non-native) method that takes some ob-
ject type as a parameter. It then aliases that parameter
within the method using ThreadLocal class.

renames local variables to random identifiers.

obfuscates a class file by splitting a node into two, i.e.
some of the fields from the class are moved into a newly
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Table 1 (continued)

Name Description

created class and all references to those fields in the given
class are modified to reflect the changes.

String Encoder APP-se obfuscates the literal strings of a program. Each string is
obfuscated and any string reference is replaced by a call

to a method that de-obfuscates it.

by activating switches can be used to affect the control flow attributes in more or less depth’
as described in Table 5.

To try and understand more practically the meaning and effect of these switches, we tried
different values of the same switch on a small Java class and we compared the results. Our
observations are reported on the last column of Table 5.

4 Experimental Setup

This section reports the definition, design and settings of the experiments in a structured
way, following the template and guidelines by Wohlin et al. (2000).

4.1 Research Questions

The research questions that we intend to investigate in this study are the following:

RQ; What is the potency of code obfuscation?
RQ> Do different obfuscations have a different impact on source code?
RQ3 Does the initial quality of clear code influence the obfuscation potency?

4.2 Experimental Definition

The goal of this study is to analyze the effect of a source code obfuscation with the purpose
of evaluating its effectiveness in defactoring source code. The quality focus considers how
obfuscations impact the code with respect to complexity, modularity and size.

Results of this study can be interpreted from multiple perspectives as follows:

a researcher interested to empirically assess obfuscation; and

a software developer or project manager, who wants to ensure high resilience to attacks
to subsystems of a sensitive applications running in an untrusted environment, before
delivering it to the clients.

The context of the experiment consists of 18 Java subject applications, which have been
subjected to code obfuscation.

SMost of these switches are self-explanatory, but http://www.zelix.com/Klassmaster/docs/obfuscate
Statement.html provides a full description.
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Table 2 Sandmark — Description of class level obfuscation algorithms(CL)

Name Description

Class Splitter CL-cs adds several spurious classes by splitting the original,
non-obfuscated ones into several obfuscated ones. It
works at class-level, instead of at system level.

Field Assignment CL-fa obfuscates a class by inserting a bogus field into a class
and then making assignments to that field in specific
locations throughout the code. The specific locations are

determined by the random selection of a “sibling” field.

Method Merger CL-mm merges all of the public static methods that have the
same signature in each class into one large master
method.

Objectify CL-ob takes a class and replaces all the fields with fields of the

same name that have type Object; the algorithm runs
through the entire application and fixes the proper
references to the modified fields.

Publicize Fields CL-pf Makes the fields of a class public.

Simple Opaque Predicates CL-sop implements simple boolean identities and adds them to
the code. Opaquely true constructs are embedded in the
code, e.g. some constructs based on algebraic properties
and known facts in mathematics.

Static Method Bodies CL-smb splits all of the non-static methods into a static helper

method and a non-static stub that calls it.

4.3 Context: Subject Applications

In order to perform the experiment in realistic settings, we have considered the most active
Java projects hosted in one of the largest Open Source portal (SourceForge?).

A summary of the characteristics and the domains of the selected systems is available in
Table 6. The applications vary both in terms of topic and size. At the time of writing (July
2012) 10 of them are among the 25 most downloaded and active projects on SourceForge’ .
The complete application set consists of 18 applications, including approximately 100k
methods and almost 10k classes, giving a total of more than 4 millions lines of code.

4.4 Metrics

As stated in the research questions, different obfuscation techniques may have different
impacts on the source code. For instance an obfuscation approach could focus on chang-
ing a specific aspect of the code (e.g., complexity) at the cost of overlooking others (e.g.,
modularity and size). As suggested by Collberg and Thomborson in their seminal work

Shttp://sourceforge.net

7As provided in the “Recently updated” section of the Java applications, http://sourceforge.net/directory/
language:java/os:linux/freshness:recently-updated/.
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Table 3 Sandmark — Description of method level obfuscation algorithms(MET)

Name

Description

Bludgeon Signatures
Boolean Splitter
Branch Inverter

Buggy code

Duplicate Registers

Inliner

Insert Opaque Predicate

Irreducibility

Merge Local Integers

Opaque Branch Insertion

Promotion Primitive Registers

Primitive Promoter

Random Dead Code

Reorder Instructions

@ Springer

MET-bs

MET-bsp

MET-bi

MET-bc

MET-dr

MET-il

MET-iop

MET-ir

MET-mli

MET-obi
MET-ppt

MET-pp

MET-rdc

MET-ri

converts all methods to take Object[] parameter and re-

turn Object.

detects boolean variables and arrays and modifies their
uses and definitions, by splitting each into 2.

exchanges the ”if” and the “else” part of an if-else statement.
It also negates the if condition so that the semantics is preserved.

selects a random method from the class file, and a
random basic block in the method: a copy of the basic block
is made and some additional bug codes are also introduced
in this new basic block which changes the local variable
values. This basic block is bypassed from execution

creates an additional variable that has its value changed
according to an original local variable. Each reference to
that variable value may have been changed to reference
the new variable instead.

inlines static method bodies throughout the code replacing
method invocations.

inserts an opaque predicate into every boolean expression
The boolean expressions are all relational operators that
compare integers, so the opaque predicates will simply
add an opaquely false value (i.e. value==0) to one of the
integer operands.

adds conditional branches to a method via opaque predicates
so that the control flow graph of the resulting method is
irreducible.

combines two int variables into a single long variable,
making access to either more confusing.

randomly inserts branches into a method.

replaces all the local int variables in a function with local
java.lang.Integer. This is possible through byte code
manipulation of the all of the instructions that depend
on retrieving and storing int values.

changes all primitives in every method into instances of
the respective wrapper classes.

adds bogus statements onto the end of a Java method.
The appended code may include a variety of other
instructions including return instructions. Methods not
ending in a return statements will impede reverse
engineering tools.

tries to reorder the instructions within each basic block
of a method. The algorithm first creates a list of expression
trees within each block. Once the dependency graph
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Table 3  (continued)

Name Description

is obtained it writes out the instruction by doing a topo-
logical sort of the nodes in the dependency graph.
Parameter Reorderer MET-pr shuffles the argument orders for all methods.
Transparent Branch Insertion MET-tbi randomly inserts branches into a method. The branch
will test to see if an Object field of the class is null, and
if so it will branch.
Variable Reassigner MET-vr reallocates the local variables in a method, in order to

minimize the number of local variable slots used.

(Collberg et al. 2003), we consider several software engineering code metrics to quantify
the measurable effect of code obfuscation, in terms of the complexity, the modularity and
the size of obfuscated code.

Complexity Metrics Code complexity is measured using the McCabe cyclomatic complex-
ity index (McCabe 1976). Even though this metric was initially proposed for procedural
code (e.g., C, ADA, etc.), its adoption in object oriented languages has been often discussed
and partially validated by other authors (Vasa and Schneider 2003; Lv et al. 2005).

As this metric is computed on the source code, we need to decompile obfuscated code.
To achieve this aim, we use the jad decompiler (Kouznetsov 2006), and the resultant source
code has been analyzed with scitool® in to compute the McCabe cyclomatic complexity.

Modularity Metrics The Chidamber and Kemerer (C&K) object-oriented metrics frame-
work (Chidamber and Kemerer 1994) is a suite of metrics for OO design, and is composed
of the following modularity metrics:

—  Weighted Methods Per Class (WMC),

—  Depth of Inheritance Tree (DIT),

—  Number of Children (NOC),

—  Coupling Between Object Classes (CBO),
— Response For a Class (RFC), and

—  Lack of Cohesion in Methods (LCOM).

These metrics have been used extensively by researchers in the past few years, and they
have been validated for OO languages (Basili et al. 1996).

The C&K metrics are computed by the ckjm tool® (Jureczko and Spinellis 2010). Ckjm
calculates the C&K metrics by processing directly the bytecode of compiled Java files. This
tool also calculates (for each class) the Number of Afferent Couplings (Ca), and the Number
of Public Methods (NPM).

Size Metrics The size of the code is determined by counting the Lines of Code. Lines are
counted using the linux wc utility on the java code obtained after decompiling the bytecode.

8http://www.scitools.com/
9 Available at http://www.spinellis.gr/sw/ckjm/
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Table 4 Configuration of the two alternative versions of Allatori

Switch name cfo Ivo Description
control-flow- enabled disabled With this switch Allatori alters the control flow
obfuscation of the methods. The documentation explains that

“it will not change the application behaviour at
run-time, but will make the decompilation
process much harder.”

variables renaming disabled enabled With this switch Allatori renames the local

variables found in the source code.

http://www.allatori.com/doc.html#property- control-flow-obfuscation

Potency Eventually, we quantify the effect of obfuscation by comparing complexity, mod-
ularity and size before and after obfuscation. To achieve this aim we adopt the notion of
obfuscation Potency, originally proposed by Collberg et al. (1997). For each metric M Let
M (P) be the complexity of the clear program P, and M (P’) the complexity of the program
P’ obfuscated with the transformation 7'. Potency of T with respect to the program P and

metriC M iS defined as:
pot ’ M(P)

However, metrics are computed per class and not per program, so metrics do not provide
a single value for a program but a set of values. In order to turn potency into an operative
metric, we have to rely on the average values M of the metric M computed on all the classes
of the program P and P’. The operative definition of potency used in our study is:

ot M(P')
Tpor (P, M) & —— 7
pot ( ) (P

@)

4.5 Experimental Procedure

An overview of the toolchain adopted to prepare the code for the experiment is shown in
Fig. 1. First of all, the three obfuscation tools are applied to the original code, in order
to obtain the obfuscated version. As mentioned above, the three obfuscation tools produce
bytecode as an output. While modularization metrics can be computed directly on the byte-
code, in order to measure complexity and size, it is necessary to decompile the classes to
obtain Java source code. Invocations to the jad decompiler are piped after the production of
the obfuscated bytecode, and the resultant source code is analyzed.

4.6 Sanity Check

In the real world software systems may vary considerably in terms of code quality metrics.
Before using the subject applications in our study, we have to perform a sanity check on
the subject applications to exclude the possibility that they are too similar each other and
bias the study. For the the purpose of the sanity check, we formulate the subsequent null
hypothesis:

Hy; : There is no difference among applications in terms of the quality of source code.
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Table 5 Configuration of the two alternative versions of Klassmaster™

Switch name

Aggressive

Light

Description

aggressive-
Method-

Renaming

keepInnerClass-
Info

keepGenerics-
Info

obfuscateFlow

encryptString-
Literals

exception-
Obfuscation
autoReflection-

Handling

lineNumbers

local Variables

randomize

true

false

false

aggressive

aggressive

heavy

normal

scramble

delete

true

false

true

true

light

light

light

none

scramble

delete

false

This option has an effect only on the way in which
the names are produced in the obfuscated code.
The level of such aggressive renaming can be ei-
ther “true” or “false”.

This option has an effect on whether Klassmaster
keeps track of inner classes (i.e., the switch is
“true”) or not (i.e., the switch is “false”). This
information is maintained in case the names of
the inner classes have not been obfuscated (i.e.,
the switch is “ifNameNotObfuscated”).

As for inner classes, Klassmaster can keep track
of generics (i.e., the switch is “true”) or not (i.e.,
the switch is “false”).

Klassmaster allows an obfuscation to act on
the control flow. Its levels can be disabled (i.e.
“none”), or having an increasing amount of
obfuscation on control flow related statements, such
selection constructs (if...else) and loop constructs
(while, for):“light”, “normal” and “aggressive”
are the levels provided in this switch.

This option allows the obfuscation of string literals
and at various levels of obfuscation, from “none”,
to “normal”, “aggressive” and “flowObfuscate”
(i.e., using a flow obfuscated decrypt method)

This option perform a flow obfuscation which
involves exceptions: by selecting “heavy” or “light”,
the obfuscation will be more or less aggressive.

With this option, Klassmaster can handle the
Java Reflection API calls which access classes,
fields or methods. This switch can be off (i.e,
“none”), or on (i.e., “normal”).

With this option, Klassmaster can maintain (i.e.,
the switch is “keep”), erase (i.e., “delete”) and
mix-up (i.e., the switch is “scramble”) the map
of bytecode instructions to source code line
numbers.

With this option, Klassmaster can maintain (i.e.,
the switch is “keep”) or erase (i.e., “delete”) the
local variable tables in the bytecode that store
the local variable names in the source code.

With this option, KlassMaster can generate (i.e.,

the switch is “true”) or not (i.e., the swith is

@ Springer



1498 Empir Software Eng (2015) 20:1486-1524

Table 5 (continued)

Switch name Aggressive Light Description

“false ) new obfuscated names for methods and
classes in a random fashion.
allClasses- true true When this option is set to “true”, it means that
Opened all the classes have been opened for obfuscation.
If the option is “false”, a mapping of all the un-

opened classes has to be provided.

derive- false false When set to “false”, KlassMaster automatically
Groupings- determines how to group classes to obfuscate the
FromInput- original structure.
ChangeLog

To understand if the considered subject applications convey an adequate diversification, first
of all we have measured their code qualities (i.e., complexity, modularity and size) and then
we have studied their variance.

To achieve this objective, i.e., the test of hypotheses Hyg, we use the Analysis of Variance
(ANOVA). Although ANOVA is a parametric test, it is considered quite robust also for
non-normal and non-interval scale variables.

Table 6 Summary of subject applications

System Methods Classes LoC
CarC 214 26 1,712
Azureus2 36,578 3,252 1,163,809
Carserver 52 30 766
ChatC 144 26 1438
Chatserver 57 7 1,665
Freemind 4,804 405 129,394
GCS 2,468 199 68,060
Hfsx 2,843 344 144,599
Im4java 1,614 86 62,582
Ipscan 6,901 422 215,728
Jboss 7,679 710 244,461
Jml 1,893 236 39,395
Lwijgl 8,145 456 159,482
SQuirrel 5,410 395 101,347
SweetHome3D 3,812 177 151,144
Triplea 18,939 1,699 679,057
Tuxguitar 4,549 477 148,720
Weka 16,417 1,038 752,652
Total 122,519 9,985 4,066,011
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Obfuscated code

Zelix Klassmater

Decompilation (jad) Decompiled code

Fig. 1 Overview of the toolchain used

For each metric, we compute the ANOVA table of metric by Subject Application, and we
report the results in Table 7 (p-values only). With the only exception of Number of Children
(noc), for all other metrics we observe statistical significance. In these cases, we can reject
the null hypothesis Hos and formulate the subsequent alternative hypotheses:

—  Subject applications are different in terms of (McCabe cyclomatic) complexity;

—  Subject applications are different in terms of modularity (with respect to wmec, dit, cbo,
rfc, lcom, ca and npm); and

—  Subject applications are different in terms of size (with respect to LoC).

Thus, applications are quite diversified'” in terms of complexity, modularity and size, so
they represent an adequate set of subject applications to study the effect of code obfuscation.

5 RQq: Obfuscation Potency

This section reports on the analysis on obfuscation potency, i.e. the difference between clear
and obfuscated code with respect to code metrics.
For the first research question we formulate the subsequent null hypotheses:

Hpi. : There is no difference in the complexity of clear and obfuscated code;
Hp1,  : There is no difference in the modularity of clear and obfuscated code; and
Hpis  : There is no difference in the size of classes on clear and obfuscated code.

The three null hypotheses are two-tailed, because we are interested in analyzing the effect
of obfuscation in both directions, i.e. its increase and reduction. In fact, different obfuscation
techniques may have different impacts on the source code. For instance, an approach could
focus on changing a specific aspect of the code (e.g., complexity) at the cost of overlooking
others (e.g., modularity and size). Where the analysis allows us to reject a null hypothesis,
an alternative hypothesis will be formulated.

5.1 Overall Analysis

First of all, we measure the complexity, modularity and size of the classes from clear code.
Then, we apply each obfuscation to each case study application, thus obtaining 44 versions
of the 4 Mloc (one version per obfuscation). Finally, we measure the same metrics on the
obfuscated classes.

Before approaching a detailed analysis, we mean to perform an overall analysis, to see if
the considered metrics capture any difference among all the treatments (i.e., obfuscations).

10Detailed analysis not reported for reason of space shows that the majority of them are different each other.
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Table 7 Analysis of variance of subject applications by metric

Metric P-value
McCabe <0.01
wmc <0.01
dit <0.01
noc 0.05
cbo <0.01
rfc <0.01
Icom 0.04
ca <0.01
npm <0.01
LoC <0.01

Thus, we use the ANOVA test. This test can be used to decide whether to reject the null
hypothesis that the distribution of a given the metric (e.g., Lines of Code) is the same across
treatments (i.e., all the obfuscated code and clear code).

A distinct one-way ANOVA test is run for each metric, thus ANOVA is run 10 times.
Table 8 reports the Analysis of Variance of Metric by Treatment, a different metric per line.
Statistical significance is assumed when the p-value is <0.05 (we assume significance at a
95% confidence level, «=0.05), significant cases are highlighted in boldface. As can be seen
in the table, for almost all the metrics we can reject the null hypothesis of no difference,
with the only exception of noc. So we can formulate the alternative hypothesis that there
is some difference between obfuscated and clear code with respect to all the remaining
metrics.

Based on the experimental data, we can reject the null hypotheses Hoic, Ho1m and Hojs.
Thus, we can formulate the subsequent alternative hypotheses:

Table 8 Analysis of variance of Metric by Treatment

Relation tested p-value
McCabe <0.01
wmc <0.01
dit <0.01
noc 0.84
cbo <0.01
rfc <0.01
Icom <0.01
ca <0.01
npm <0.01
LoC <0.01
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Table 9 Mann-Whitney test of McCabe cyclomatic complexity (with Holm correction) and potency

Obfuscation mean sd p.value Potency
Clear 2.54 4.90

allatori-cfo 242 4.60 <0.01 -0.05
allatori-lvn 241 4.58 <0.01 -0.05
klass-grr 4.89 12.14 <0.01 0.93
klass-light 332 7.15 <0.01 0.31
APP-bm 2.53 4.87 0.09

APP-ce 1.93 1.47 0.03

APP-fr 2.53 4.87 0.09

APP-1r 2.53 4.87 0.09

APP-af 2.45 2.45 <0.01 -0.04
APP-as 2.33 2.01 <0.01 -0.08
APP-BL 2.19 1.91 <0.01 -0.14
APP-cpr 2.13 2.79 <0.01 -0.16
APP-di 3.15 3.54 <0.01 0.24
APP-ias 2.55 4.09 <0.01 0.01
APP-im 4.27 6.11 <0.01 0.68
APP-on 243 5.75 <0.01 -0.04
APP-pa 2.75 431 <0.01 0.09
APP-sc 2.38 2.80 <0.01 -0.06
APP-se 2.25 2.08 <0.01 -0.11
CL-cs 1.92 2.47 <0.01 -0.24
CL-ob 2.84 4.45 <0.01 0.12
CL-sop 3.61 8.00 <0.01 0.42
CL-fa 2.53 4.87 0.09

CL-mm 2.54 4.90 0.09

CL-pf 2.52 4.85 0.35

CL-smb 1.90 3.73 <0.01 -0.25
MET-bs 2.42 5.60 <0.01 -0.05
MET-bsp 2.13 2.79 <0.01 -0.16
MET-il 2.76 4.04 <0.01 0.09
MET-iop 2.14 2.80 <0.01 -0.16
MET-ir 2.45 3.08 <0.01 -0.03
MET-ppt 242 5.60 <0.01 -0.05
MET-ri 2.13 2.79 <0.01 -0.16
MET-rp 2.44 5.62 <0.01 -0.04
MET-vr 2.46 3.95 <0.01 -0.03
MET-bc 3.04 2.89 <0.01 0.20
MET-bi 2.38 4.49 <0.01 -0.06
MET-dr 2.53 4.84 0.06

MET-mli 2.53 4.84 0.06

MET-obi 2.97 7.14 <0.01 0.17
MET-ppr 2.51 4.79 0.43
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Table 9 (continued)

Obfuscation mean sd p.value Potency
MET-rdc 2.53 4.84 0.06
MET-tbi 2.64 5.10 <0.01 0.04

—  The complexity of obfuscated code is different than complexity of clear code, and the
magnitude of this difference is expressed by the potency!'! shown in Table 9;

—  The modularity of obfuscated code is different than modularity of clear code, with
respect to wmc, dit, cbo, rfc, Icom, ca and npm. The magnitude of this difference is
expressed by the potency shown in Table 10; and

— The size of obfuscated classes is different than size of classes from clear code, and the
magnitude of this difference is expressed by the potency shown in Table 11.

In the rest of this section, post-hoc tests will be used to determine which obfuscation
algorithms do in fact improve or degrade obfuscated code compared to clear code.

5.2 Analysis of Complexity

We start by considering the McCabe cyclomatic complexity of the clear code and the
obfuscated code. Figure 2 shows the boxplots of the McCabe cyclomatic complexity. Obfus-
cations are sorted by ascending order of the average McCabe complexity (smaller averages
on the left-hand side, higher averages on the right-hand side). The reference value of clear
code is highlighted in red. By visual inspection, we can note that most obfuscations report
a complexity similar to the clear code, i.e. with a mean of 1. Only a few cases show higher
values of complexity, on the right hand side of the plot.

To see if the observations formulated in the graph are statistically significant, we com-
pare the complexity of the clear code and the with the unpaired (two-tailed) Mann-Whitney
test (Sheskin 2007). This test is non-parametric, so it does not make any assumptions on the
normal distribution of the experimental data. Given the experimental settings, it is not pos-
sible to use a paired test. In fact some obfuscations rename or split classes and methods in
a way that makes it hard to map obfuscated methods back to the original ones.

When multiple pairwise comparisons are performed with overlapping data, however, the
number of hypotheses in a test increases and so does the likelihood of witnessing a rare
event. Hence, the chance to reject true null hypotheses may also increase (type I error). To
control this problem, we adopt the Holm correction which is more complex but also more
powerful than the Bonferroni correction. The Holm correction consists of using different
significance levels on different tests. P-values from the n dependent hypotheses are sorted
in ascending order. Then, on each ordered p-value;, a decreasing correction factor n —i + 1
is used, i.e., an increasing significance level «/(n — i 4+ 1). We reject the null hypotheses
until the minimum index & for which the null hypothesis cannot be rejected is encountered
(p-valuey > a/(n—k+1)). All subsequent hypotheses cannot be rejected (p-value; :i > k).

While the statistical test allows for checking the presence of significant differences, it
does not provide any information about the magnitude of such a difference. This is par-
ticularly relevant in our study, since we are interested to investigate to what extent the use

1T As suggested by Collberg et al. (1997), we use the potency to measure the magnitude of the difference of
a specific metric between clear and obfuscated code.
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Table 10 Mann-Whitney test of Chidamber and Kemerer object-oriented metrics (with Holm correction)
and potency

Obfuscation Potency

wmc dit noc cbo rfc Icom ca npm
allatori-cfo -0.40 -0.03 -0.15 -0.35 -0.52 -0.42
allatori-lvn -0.40 -0.03 -0.15 -0.35 -0.52 -0.42
klass-grr -0.19 -0.11 -0.15 -0.76 -0.23
klass-light 0.09 0.15 0.09 -0.62 0.14 0.01
APP-bm
APP-ce 1.02 -1.00 -1.00
APP-fr
APP-1r
APP-af 0.59 -0.73 -0.96
APP-as 0.58 -0.73 -0.97
APP-BL 0.60 -0.73 -0.97
APP-cpr -0.09 0.24 0.03
APP-di 0.21 -0.57 -0.97
APP-ias 0.14 0.10 0.28 -0.06 0.18 -0.57 -0.03 0.28
APP-im -0.34 -0.44 -0.37 -0.93
APP-on 0.37 -0.41 -0.12 9.43 -0.28 0.24
APP-pa 0.05 -0.28 0.09 2.98 0.07
APP-sc -0.50 -0.49 -0.59 0.18 -0.39 -0.34
APP-se 0.56 -0.69 -0.97
CL-cs -0.42 -0.30 1.09 -0.37 -0.41 -0.84 -0.33 -0.22
CL-ob 0.23 -0.27 -0.38 -0.16 3.99 -0.25 0.14
CL-sop 0.03 0.11 -0.52 0.01 0.05
CL-fa
CL-mm
CL-pf
CL-smb 0.78 0.27 2.78
MET-bs 0.23 -0.27 -0.40 -0.16 3.99 -0.28 0.14
MET-bsp -0.09 0.24 0.03
MET-il -0.14 0.25 0.14 0.22
MET-iop -0.09 0.24 0.03
MET-ir -0.09 0.24 0.03
MET-ppt 0.23 -0.27 -0.38 -0.09 3.99 -0.25 0.14
MET-ri -0.09 0.24 0.03
MET-rp 0.23 -0.27 -0.38 -0.16 3.99 -0.25 0.14
MET-vr 0.10 0.07 0.09 0.19 -0.53 0.16
MET-bc -0.11 0.27 0.04
MET-bi
MET-dr
MET-mli
MET-obi
MET-ppr 0.05
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Table 10  (continued)

Obfuscation Potency

wmc dit noc cbo rfc lcom ca npm

MET-rdc
MET-tbi

of obfuscation changes the complexity of source code. To this aim we adopt the notion of
obfuscation Potency, as defined in equation (2).

For each obfuscation, Table 9 reports descriptive statistics (mean and standard deviation)
of the complexity of clear code and obfuscated code (second and third columns), the p-
value resulting from the Mann-Whitney test and the potency of the obfuscation (fourth and
fifth columns). Values of the original clear code are reported on the first line (mean McCabe
complexity = 2.54). For those cases where difference in the McCabe cyclomatic complexity
of clear code and obfuscated code is statistically significant, p-values

are highlighted in boldface (Holm correction is used). To avoiding misleading interpre-
tations, potency is reported only on those cases where statistical significance is observed.
Moreover, the highest potencies are highlighted in boldface and the lowest potencies are
underlined, to evidence those obfuscations that reported the most relevant change in the
code.

While allatori reduced the McCabe complexity of the obfuscated code with respect to
clear code (potency<0), KlassMater increased it considerably.

Among the application level obfuscations, the code obfuscated with Array Folding (APP-
af), Array Splitting (APP-as), Bloat (APP-BL), Constant Pool Reorder (APP-cpr), Overload
Names (APP-on), Split Classes (APP-sc), String Encoder (APP-se) achieves a signifi-
cant reduction of the complexity (potency<0), while Dynamic Inliner (APP-di), Integer
Array Splitting (APP-ias), Interleave Methods(APP-im),Parameter Alias (APP-pa) make
complexity increase. The other application level obfuscations do not achieve statistical sig-
nificance for McCabe complexity. Among class level obfuscations there are two cases that
make complexity decrease (Class Splitter and Static Method Bodies), while just two increase
complexity (Objectify, Simple Opaque Predicates). Eventually, when considering method
level obfuscations, many significant cases are reported that make complexity either increase
or decrease.

5.3 Analysis of Modularity

In a similar way we have analyzed the metrics related to modularity. Figure 3 shows the
boxplot of the wmc metric (Weighted Method per Class) for the considered obfuscations. As
in the previous case, the values for the original, non-obfuscated clear code are in red. From a
visual inspection, we see that the clear code is in the middle of the spectrum and nearly half
of the obfuscations make wmc decrease, while in other half of the cases wmc increases with
respect to clear code. Unlike from the previous case, the modularity values are not always
similar to the cases of the clear code. For reason of space, we omit the boxplots of the other
modularity metrics, but we present the results of the statistical analysis for all the metrics.
All the boxplots are available in a technical report (Ceccato et al. 2013).

Table 10 reports the results of the statistical analysis for all the modularity metrics. To
achieve a compact representation, the table does not report all the p-values (with the Holm
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Table 11 Mann-Whitney test of lines of code (with Holm correction) and potency

Obfuscation mean sd p-value Potency
Clear 33.19 122.29

allatori-cfo 33.60 118.47 <0.01 0.01
allatori-lvn 32.68 114.79 <0.01 -0.02
klass-grr 48.42 289.44 <0.01 0.46
klass-light 39.32 139.58 <0.01 0.18
APP-bm 33.34 121.78 <0.01 0.00
APP-ce 12.03 17.57 <0.01 -0.64
APP-fr 33.33 121.76 <0.01 0.00
APP-1r 33.33 121.76 <0.01 0.00
APP-af 13.72 14.10 <0.01 -0.59
APP-as 13.40 13.47 0.01

APP-BL 13.39 14.08 <0.01 -0.60
APP-cpr 26.99 78.57 <0.01 -0.19
APP-di 29.59 39.38 <0.01 -0.11
APP-ias 35.38 88.29 <0.01 0.07
APP-im 59.05 122.22 <0.01 0.78
APP-on 24.29 71.29 <0.01 -0.27
APP-pa 30.74 82.52 <0.01 -0.07
APP-sc 20.31 30.80 0.13

APP-se 13.17 13.74 <0.01 -0.60
CL-cs 18.85 42.61 <0.01 -0.43
CL-ob 28.43 73.10 <0.01 -0.14
CL-sop 48.20 129.58 <0.01 0.45
CL-fa 33.33 121.76 <0.01 0.00
CL-mm 33.39 121.97 <0.01 0.01
CL-pf 32.84 120.98 <0.01 -0.01
CL-smb 18.94 84.76 <0.01 -0.43
MET-bs 28.79 80.77 <0.01 -0.13
MET-bsp 27.68 79.22 <0.01 -0.17
MET-il 36.50 153.48 <0.01 0.10
MET-iop 32.82 92.36 <0.01 -0.01
MET-ir 31.36 82.02 <0.01 -0.05
MET-ppt 44.60 119.93 <0.01 0.34
MET-ri 26.99 78.57 <0.01 -0.19
MET-rp 26.90 74.00 0.03

MET-vr 33.59 92.06 0.68

MET-bc 53.52 82.72 <0.01 0.61
MET-bi 30.64 116.75 <0.01 -0.08
MET-dr 3291 121.22 <0.01 -0.01
MET-mli 35.99 130.19 <0.01 0.08
MET-obi 45.37 162.61 <0.01 0.37
MET-ppr 39.48 149.55 <0.01 0.19
MET-rdc 37.28 121.54 <0.01 0.12
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Table 11  (continued)

Obfuscation mean sd p.value Potency

MET-tbi 33.43 103.35 <0.01 0.01

correction). Only in the statistically relevant cases does the table report the potency of
the obfuscation in the line, with respect to the metric in the column. For each metric, we
highlighted in boldface the highest and the lowest values of potency.

Inspecting the table row-wise, it is interesting to note that, when statistically significant,
the potency of allatori-cfo, allatori-lvn, klass-grr is always negative, while the other obfus-
cations report positive potency on some metrics and negative potency on other metrics.
Looking at the table column-wise, there is no consistent trend amongst the metrics. In fact,
for each metric, there are obfuscations that report a positive potency, and obfuscations that
report a negative potency.

With some obfuscations, the obfuscated code is not significantly different from the clear
code with respect to any modularity metrics. These obfuscations are Block Marker (APP-
bm), False refactoring (APP-fr), Rename Registers (APP-rr), Field Assignment (CL-fa),
Method Merger (CL-mm), Publicize Fields (CL-pf), Branch Inverter (MET-bi), Duplicate
Registers (MET-dr), Merge local Integers (MET-mli), Opaque Branch Insertion (MET-obi),
Random Dead Code (MET-rdc), Transparent Branch Insertion (MET-tbi).

5.4 Analysis of Class Size

Eventually, we analyze how obfuscation affects the size of the code. Figure 4 shows the
boxplots of Lines of Code case studies applications. While only few cases make this metric
decrease, a relevant number of obfuscations makes the Lines of Code increase on the right-
hand side of the graph.

As can be seen in Table 11, in many cases the size is significantly different from that
of the clear code. The table reports the mean and standard deviation of Lines of Code for
clear code and obfuscated code, together with the p-value of the Mann-Whitney test and the
potency. Only a few cases are not statistically significant. For the significant cases, potency
is sometime positive (size increases), sometime negative (size decreases).
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Considering the observed results, additional research hypotheses can be formulated. First
of all, some of the obfuscations considered in this study include non-deterministic decisions
on how to obfuscate the code. For instance, there could be multiple ways of generating
opaque predicates or splitting classes, and the obfuscator may rely on a random number
generator to decide which alternative approach to take.

We are interested in studying if non-deterministic behaviour influences these metrics.

Secondarily, in this study Zelix Klassmaster and Allatory have been involved that applied
a combination of obfuscations, while Sandmark has been used only with individual obfus-
cations separately. So we are interested in studying if, when combining many obfuscations
obfuscations together, the effect of the single obfuscations reinforce each other in the
combination. So, we formulate these additional null hypotheses:

: The non determinism of code obfuscation transformations does not influence
complexity, modularity and size of obfuscated code; and

Hopi1»  : When applying different obfuscations in combination, different obfuscations do
not reinforce each other.

Hotna

5.5 Analysis of Non-Deterministic Behaviour

In this subsection we study the impact of non-determinism on obfuscation potency. Among
the case studies we have selected CarRace because no obfuscator fails in (i.e., crashes when)
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obfuscating it. We have generated 500 instances of CarRace obfuscated with the same obfus-
cation, and we repeated the process for all the obfuscation, for a total of 500%44=22,000
distinct versions of CarRace.

To analyse the interaction of two or more factors we use two-way Analysis of Variance
(ANOVA). We chose to use ANOVA because compared to its non-parametric alternatives
(such as the Kruskal-Wallis test), ANOVA allows us to test for the presence of interactions
between factors, i.e. it allows a two-way analysis to be performed. Although ANOVA is
a parametric test, it is considered quite robust also for non-normal and non-interval scale
variables.

To study if the variation in the source code is due to non-determinism, we have applied
the two-way Analysis of Variance (ANOVA) 10 times, once per metric.

For this analysis, only obfuscated code is considered, so clear code is not considered
here.

The results are summarized in Table 12, a distinct metric per row. The first row,
for instance, reports the p-values of the Analysis of variance of McCabe complexity
by Obfuscation and Iteration. For each metric (first column), the results of the test
(p-values) should be interpreted as the source of the variation in the metrics (e.g.,
complexity) due to the fact that a different obfuscation is used (second column), due
to the different iterations for each obfuscation (third column), or if variation in the
metric is due an interaction (dependency) between the obfuscation and the iteration
(last column).

The variation in the complexity due to the different obfuscation is statistically
significant (in second column p-value <0.05), while the variation of complexity
due to the 500 iterations with the same obfuscation is not significant (in the
third column p-value is not <0.05). Eventually the obfuscation does not interact
with the iteration to influence the complexity of the code (in the last column p-
value is not <0.05). Exactly the same pattern occurs for the modularity and size
metrics

All in all, while obfuscation influences complexity, modularity and size of code (see
above in this section), we cannot reject the null hypothesis Hp1,g that non-determinism
potentially involved in some obfuscating transformations does not influence the final
result.

Table 12 Analysis of variance of metric by obfuscation and iteration

Metric Obfuscation Iteration Obfuscation:Iteration
McCane <0.01 1.00 1.00
wmc <0.01 0.98 1.00
dit <0.01 0.99 1.00
noc <0.01 0.98 1.00
cbo <0.01 0.99 1.00
rfc <0.01 1.00 1.00
Icom <0.01 0.99 1.00
ca <0.01 0.99 1.00
npm <0.01 0.98 1.00
Lines of Code <0.01 1.00 1.00

@ Springer



Empir Software Eng (2015) 20:1486-1524 1509

5.6 Analysis of Reinforcement

In the previous experiments, we considered combined obfuscation algorithms, applied with
Allatori and Zelix Klassmaster tools. Allatory supports only two configurations of combined
obfuscations (see Table 4) and individual obfuscations cannot be applied separately. How-
ever, Zelix Klassmaster allows a more fine grained configuration, and single obfuscations
can be applied separately.

Thus, in the following, we study the effect of individual obfuscations of Zelix Klassmas-
ter, and we compare them with the two combined obfuscation configurations considered
previously (i.e., klass-grr and klass-light). In detail, each combined configurations is
compared with the single obfuscations that participate in the combination.

The effect of each obfuscation is assessed by comparing complexity, modularity and
size of clear code and obfuscated code, using unpaired (two-tailed) Mann-Whitney test,
with Holm correction (correction required because of multiple pairwise comparisons with
overlapping data). While the statistical test allows for checking the presence of significant
differences, it does not provide any information about the magnitude of such a difference.
To achieve this aim we adopt the notion of obfuscation Potency, as we have done previously
in work described earlier in this section.

Table 13 reports the comparison for the more aggressive configuration (i.e., klass-grr),
while Table 14 for the light configuration (i.e., klass-light). Obfuscations are reported in
rows and metrics in columns. These tables report the effect of obfuscations as their Potency.
However, to avoid misleading interpretations, Potency is reported only when the difference
between clear and obfuscated code is statistically significant (according to the Mann-
Whitney test with Holm correction). For example, the difference between code obfuscated
with klass-grr and clear code measured as ca is not statistically significant, so no ca-potency
is reported on the table for klass-grr. To help readability, for each metric, the highest value
of potency is highlighted in boldface, while the lowest value is underlined.

Table 13 reports the comparison of the combined configuration klass-grr (first row)
with the individual obfuscations composing it. Considering the code complexity (column
McCabe) we see that potency of the compound obfuscation (0.93) is higher than most of the
individual obfuscations, however the highest potency is scored by an individual obfuscation
(1.15 for obfuscateFlow-aggressive).

This can be interpreted as an average reinforcement effect among individual obfusca-
tions. Different strategies to make code more complex can be combined to make code even
more complex. However, very elaborated strategies to achieve this objective can be com-
bined at the cost of losing effectiveness, for example because specific classes could be
targeted instead of all.

Considering modularity, we can observe a reinforcement effect on coupling with respect
to wme, cbo, rfc and npm, where the potency of the combination is higher than the potency
of all the individual obfuscations. Negative reinforcement is observed on cohesion, because
the lcom potency of the combination is lower than the single obfuscations. For the remain-
ing metrics, noc potency of the combination is comparable to the value of individual
obfuscations, while for dit and ca statistical significance is not observed.

The contrasting effect on coupling and cohesion could be interpreted as a deliberate
strategy of the developers of Zelix Klassmaster to privilege the effect on coupling rather
than on cohesion to make the code more hard to understand (apparently, this strategy cannot
be disabled by the configuration file).

Eventually, for the size we observe reinforcement, as the LoC potency of the combination
(klass-grr) is much higher than the potency of single obfuscations.
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Similar to the aggressive case, Table 14 analyses the reinforcement effect of obfusca-
tions for the light configuration of Zelix Klassmaster. Different from the previous case,
no relevant reinforcement is observed on complexity (McCabe potency) and size (Loc
potency). In fact, the potency of the combination is quite low with respect to the potency
of individual obfuscations. However, the trend on modularity is confirmed, as the rein-
forcement is positive on coupling (wmc, cbo, rfc, ca, npm) and negative on cohesion
(Icom).

All in all, we can reject the null hypothesis Hpj, and formulate these alternative
hypotheses:

—  When applying a combined obfuscation in Zelix Klassmaster, individual obfuscations
reinforce each other to increase coupling potency (with respect to wmc, cbo, rfc and
npm) and to decrease cohesion (with respect to lcom); and

—  When applying a combined obfuscation in Zelix Klassmaster, individual obfuscations
reinforce each other to increase (McCabe) complexity potency and (Loc) size potency,
but only when combining the more aggressive variant of obfuscations (i.e., klass-grr).

6 RQ;: Obfuscation Impact

In the previous section we were interested in a detailed analysis of the consequences of
obfuscation on code quality. In this section we mean to analyze the impact of obfuscation
in the broader sense, but to achieve this objective we have to keep the level of the analysis
less detailed.

For the second research question we formulate the subsequent null hypothesis:

Hpy; @ There is no difference in the impact of different obfuscations on the quality of
source code.

Due to the large amount of data and p-values, it is not possible to show all detailed results
segmented by obfuscation, by metric and by application, as has been done in Section 5
(however, detailed analyses are available in the technical report Ceccato et al. 2013).

Aggregated data are reported in Table 15, where obfuscations are displayed in rows
and metrics are shown in columns. A cell reports the number of subject applications in
which the Mann-Whitney test with Holm correction yields a statistically significant differ-
ence between clear code and code obfuscated with the obfuscation in the row, with respect
to a metric in the column (non-zero values are reported in boldface to help readability).
For example, the McCabe cyclomatic complexity (second column) of code obfuscated with
Allatori cfo (first row) is statistically significantly different compared to the complexity
of clear code in seven out of eighteen applications. Due to some implementation limits of
the considered obfuscation tools, not all the obfuscations could be applied to all the appli-
cations. The number of applications where each obfuscation could be applied is shown
in the “success” column. In this case, Allatori cfo could be applied on all the 18 sub-
ject applications, but others could not, for example klass-grr could be applied just on 13
applications.

The last column of the table summarizes the impact of the obfuscation as the number
of metrics for which the obfuscation has shown a significant difference with respect to
clear code. Allatori cfo reports an impact of 10 because obfuscated code was found to be
significantly different than clear code in all the 10 considered metrics.
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The obfuscations with higher impact are Allatori-cfo, Allatory-lvn, as they reported a
significant difference with respect to clear code in all the 10 metrics. Another notable case
is Split Classes (APP-sc) as it was significant with respect to 7 metrics.

Obfuscations Klass-light, String Encoder (APP-se) and Static Method Bodies (CL-
smb) have been shown to be effective in causing significant differences in 5 metrics and
Klass-grr, Class Encrypter (APP-ce) and Array Folding (APP-af) has an impact on 3
metrics.

All the remaining obfuscations have reported significant differences on 2 or less metrics,
some of them did not significantly affect any metric.

All in all we can reject the null hypothesis Hpy; and formulate the subsequent alternative
hypothesis:

— Different obfuscations have different impact on the quality of source code. In particular,
almost all the obfuscation transformations have an impact on (LoC) size and (McCabe)
complexity and few obfuscations also have an impact on modularity as shown in
Table 15.

7 RQj3: Influence of Initial Quality

For the final research question concerning whether the initial quality of clear code influence
the quality of obfuscated code, we formulate the subsequent null hypothesis:

Hpzg;  : the potency of the obfuscation is not correlated with the quality of clear code.
7.1 Analysis of Correlation

To study the relation between the initial quality of the clear code the obfuscation potency,
we use the Pearson correlation test. This test computes the correlation coefficient r, a sym-
metric, scale-invariant measure of association between two random variables. It ranges from
—1to +1, where the extremes indicate perfect (positive or negative) correlation and 0 means
no correlation.

For each pair of metrics A and B, we compute the value of first metric in the clear code
(i.e. A(P)) and the potency with respect to second metric (i.e., Tpo (B, P)). We repeated
the same process for all the obfuscations 7' and all the programs P.

Finally, for each obfuscation we apply the Pearson correlation test to study if there
is a correlation between A(P) and T, (B, P) across all the case study programs,
to study the influence on the initial value of metric A to the B potency due to
obfuscation T'.

For each obfuscation, we have tested the correlation between all the possible pairs metric-
potency. Considering that the study involves 10 metrics, the complete pairwise correlation
involve 100 pairs, so an appropriate correction factor is required. To this achieve this, we
used the Holm correction factor.

Table 16 presents the results of the Pearson correlation with Holm correction, only sta-
tistically significant cases are reported. Three correlations are statistically significant for
obfuscation Klass-grr, reported in the first three lines of the tables. For this obfuscation noc,
McCabe complexity and number of Lines of Code are highly correlated with the potency
computed as the increase of McCabe complexity of the obfuscated code. This means that
Klass-grr is a potent obfuscation because it makes the complexity of code increase, but
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Table 15 Mann-Whitney test (with Holm correction) between clear and obfuscated code, and impact of

obfuscation

wmc dit noc cbo rfc Icom ca npm success impact

LoC

McCabe

Obfuscation

10
10

18
18
13
13
18
18
18
18

11 11
11 11

10
10

11

13
13

7
7

allatori-cfo

11

allatori-lvn

klass-grr

1
1
2
1

klass-light
APP-bm
APP-ce

APP-fr

APP-rr

APP-af
APP-as

1
2
1
3

APP-BL

APP-cpr
APP-di

APP-ias

APP-im

APP-on
APP-pa
APP-sc

0
1

APP-se

CL-cs

CL-ob

13
18
18
18
18

CL-sop

CL-fa

CL-mm

1

CL-pf

13

18 17
1

1
0

CL-smb

MET-bs

MET-bsp
MET-il

MET-iop
MET-ir

1

MET-ppt
MET-ri

1
1
1
5
1
1
3
1

MET-p

12

MET-vr

MET-bc

18
17
17
17
17

11

MET-bi

MET-dr

MET-mli

15
12

MET-obi

MET-ppr
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Table 15  (continued)

Obfuscation McCabe LoC wmc dit noc cbo rfc Ilcom ca npm success impact

MET-rdc 1 14 0 0 0 0 0 0 0 0 17
MET-tbi 7 8 0 0 0 0 0 0 0 0 17

the increment in complexity depends on the initial quality of clear code. Added complex-
ity is higher when the classes in the clear code have high coupling (noc), high (McCabe)
complexity and large size (LoC).

Obfuscation Dynamic Inliner (APP-di) presents three cases with significant corre-
lation with the cbo potency (i.e. potency computed on cbo). However, while correla-
tion between dit and cbo potency is positive, the correlation between wmc/npm and
cbo potency is negative. This means that this obfuscation scores higher cbo potency
on those applications whose classes present high values of dit, but low values of
wmc/npm.

Other obfuscations whose potency is correlated with modularity and size of classes in
clear code are Interleave Methods (APP-im), Overload Names (APP-on), Split Classes
(APP-sc), String Encoder (APP-se), Static Method Bodies (CL-smb) and Bludgeon Signa-
tures (MET-bs).

Overall, many cases of significant correlation between the initial quality of clear code
and the potency of obfuscating transformations can be observed. Thus, we can reject the
null hypothesis Hoz; and formulate the following alternative hypothesis:

— The potency of obfuscating transformations is correlated with the quality of clear code
for the cases shown in Table 16.

Table 16 Pearson correlation test between initial metric and potency (with Holm correction)

Obfuscation Metric Potency Correlation
klass-grr noc Pot_McCabe 0.67
klass-grr McCabe Pot_McCabe 0.82
klass-grr LoC Pot_McCabe 0.86
APP-di wmc Pot_cbo -1.00
APP-di dit Pot_cbo 0.99
APP-di npm Pot_cbo -1.00
APP-im noc Pot_cbo 0.95
APP-im noc Pot_ca 0.95
APP-on npm Pot_cbo 0.97
APP-on npm Pot_ca 0.98
APP-sc noc Pot_dit 0.98
APP-sc Icom Pot_lcom 1.00
APP-se LoC Pot_wmc -0.97
CL-smb npm Pot_rfc 0.73
MET-bs noc Pot_ca -0.99
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8 Discussion

Here we report our main findings and we elaborate on some implications for developers
and project managers who want to use code obfuscation and who need to decide on which
particular algorithms to adopt.

8.1 Findings
The main findings of this research are as follows:

—  Opposite obfuscation strategies for complexity: even if the intended purpose of source
code obfuscation should be to make code more complex to understand and attack, this
objective does not map straightforward to one specific code complexity metric (such as
McCabe cyclomatic complexity). As a matter of fact, different obfuscating transforma-
tions take opposite strategies with code complexity to make it hard to understand. Some
obfuscations increase the cyclomatic complexity of code, while other ones decrease it,
probably with the final purpose of obstructing understanding in other ways (see RQj,
analysis of complexity). For example, Klass-grr increases the cyclomatic complexity of
obfuscated code, while Class Splitter makes the cyclomatic complexity decrease.

—  Cohesion Vs coupling: the results here are similar to what has been observed for code
complexity, also when considering modularity an opposite effect is expected on cohe-
sion and coupling. In fact, to make the code harder to understand, intuitively cohesion
should be low and coupling should be high. However, we observed that many obfus-
cations were able to decrease cohesion (Icom increased), but just few transformations
had a high coupling potency (see RQj, analysis of modularity). Moreover, some cases
worked well on different directions on different coupling metrics. For example, Class
Splitter has high number of children (noc) coupling potency, but low coupling potency
on all the other coupling metrics.

—  Contrasting effect of code size: Code size metrics measure the amount of code that an
attacker should consider to perpetrate an attack. We observed that obfuscation might
either increase or decrease the size of obfuscated classes to make code harder to under-
stand (see RQq, analysis of size). Probably, the effect of size reduction is just a side
effect of a transformation that aims at working on other aspects relevant to code under-
standing. This is the case of Class Encrypter, whose objective is to encrypt classes and
remove useful information, thus achieving also size reduction. However, size reduction
in this case is not expected to bring major benefits to understanding.

—  Obfuscation could reinforce each other: when combining different obfuscations to
protect the code, the effect is not a straightforward reinforcement of each other trans-
formation. In fact, in Zelix Klassmater we observed that combined obfuscations helps
in increasing coupling, at the cost of higher cohesion (lower lcom). Instead, the effect
on complexity and size really depends on the composition configuration. As a matter of
fact, we observed contrasting reinforcement effects on complexity and size on different
composition configurations (See RQ1, analysis of reinforcement).

—  Impact of commercial tools depends on the configuration: tools can be complex to use
and developers should be quite familiar with them to obtain satisfying results. In fact,
even if commercial tools guarantee high impacts, their performance highly depends
on configuration parameters. As a matter of fact, the impact of Zelix Klassmaster
almost doubles, increasing from 3 to 6 when moving from a light to a more aggressive
configuration (see RQy, analysis of impact).
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— Initial quality of clear code affects obfuscation potency: Different developers adopt
different programming styles, so distinct programs vary considerably in terms of code
metrics (see QRj, analysis of diversification among subject applications). Additionally,
the capability of obfuscation in altering code is not an absolute measure, but it may
depend on the properties of the code being obfuscated.

For instance, the presence of a particular feature in the clear code may influence
the potency of an obfuscation that relies on such a feature. In particular, if the clear
code contains few string variables, then the effect of the String Encoder obfuscation is
expected to be relatively marginal, when compared to the effect of the same obfuscation
on another program that processes many strings. Similarly, if the code does not contain
generics or arrays, the obfuscations relying on these features will not be very effective.

Moreover, if the original code is already obscure, because of high complexity, tan-
gled modularity and large size classes, and the obfuscation is able increase even more
the complexity, then the final complexity can be huge, even if the measured potency
(difference between clear and obfuscated) might not be so high. Conversely, if the orig-
inal code is not so complex and the obfuscation is able to add complexity, the measured
potency could be higher than the previous case, even if the absolute complexity of the
result is lower than the previous case.

In particular, the measurable effect of code obfuscation depends on the initial size
and complexity of the clear code (see QR3, analysis of correlation). Thus, to maximize
obscurity, project managers should carefully evaluate which obfuscations to adopt, by
considering what are the programming features currently adopted by the developer
team.

8.2 Recommendations

Based on these results, we can formulate some recommendations for developers who have to
decide which obfuscation transformation to adopt. First of all, a developer should carefully
elicit the security requirements of the application to be protected. This involves thinking of
the assets to protect (e.g., secret keys or critical functionalities) and modelling the attack’s
behavior.

In the case where the attack requires substantial code understanding, code obfuscation
could be an effective way to delay such a human-intensive process. But the obfuscation to
deploy should be selected carefully, depending on the qualities of the code that are important
to change. In this study we observed the effect of obfuscation on complexity, modularity
and size, so our results support the choice of obfuscation with respect to these dimensions.

8.2.1 Complexity Potency

When a developer is interested in delivering obfuscated code that is very complex (with
respect to cyclomatic complexity), obfuscations with high complexity potency should
be selected. Luckily, many of the considered obfuscating transformations have positive
potency, they increase the McCabe cyclomatic complexity of the obfuscated code. In partic-
ular, three obfuscations report a potency >0.33, they are Klass-grr with a potency of 0.93,
Interleave Methods (APP-im) with 0.68 and Simple Opaque Predicates (CL-sop) with 0.42.
So these three obfuscations should be selected to make obfuscated code more complex.
However, a developer should keep in mind that the complexity potency of Klass-grr
is very sensitive to the initial quality of clear code. To produce very complex obfuscated
code when using this transformation, the clear code should have high (noc) coupling, a
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large (Loc) size and already be quite complex, i.e. with a high value of McCabe cyclomatic
complexity. Moreover, Klass-grr has also relevant effects on size (size potency=0.46) but
not on modularity, because it makes coupling decrease and modularity increase.

It is interesting to note that the reduced effectiveness of Klass-light, i.e. the less aggres-
sive variant of Kalss-grr, can be quantified with a reduction of 66% in complexity potency,
from 0.93 to 0.31.

Similarly, also Interleave Methods (APP-im) is effective on size but not on modularity.

Conversely, Simple Opaque Predicates (CL-sop) is effective on size and on modularity,
but limited to coupling (cohesion potency is still a problem).

8.2.2 Modularity Potency

In the case where the code needs to be protected by resorting to degraded modularity,
those obfuscation with positive coupling potency and positive cohesion potency (measure
on lcom) should be selected.

Some obfuscations present a relevant coupling potency, because they make obfuscated
classes much more coupled than in the clear code, with the aim of obstructing code com-
prehension. However, coupling is measured by multiple metrics. If we consider wmc, the
most relevant positive case is Static Methods Bodies (CL-smb) with a potency of 0.78. This
obfuscation also has good values for cohesion (potency=2.78) but the drawback is in com-
plexity and size where the potency is negative. Thus, Static Method Bodies should be used
when modularity is the main objective. Finally, the coupling potency (with respect to rcf) of
this obfuscation is highly correlated with the npm of the clear code.

A relevant case of dit potency for Class Encrypter (APP-ce, potency=1.02) has been
observed, but the potency is negative when considering other coupling metrics, such as cbo
and ca coupling. Additionally size potency for Class Encrypter is negative.

Moving to noc coupling (i.e., Number of Children), Class Splitter (CL-cs) shows high
potency (1.09), but the potency for all the other metrics is negative (including modularity,
complexity and size). So, this obfuscation is recommended where the developer’s objective
is to complicate the inheritance relation among classes.

For cbo, rfc, ca, and npm, the potency with higher absolute values are all negatives. For
cbo coupling, they are Class Encoder (APP-ce) with a potency of -1 and Array Folding
(APP-af), Array Splitting (APP-as) and Bloat (APP-bl) with a potency of -0.73. Whereas,
for rfc coupling highest absolute potency values are observed on Allatori-cfo, Allatori-lvm,
Interleave Methods (APP-im) and Class Splitter (CL-cs) with values respectively of -0.35,
-0.35, -0.37 and -0.41. Ca coupling has a high negative potency on Class Encrypter (APP-
ce, ca potency=-1.00), and npm coupling has a high negative potency on Allatori-cfo and
Allatori-lvm, where the values reached -0.42.

Considering (Icom) cohesion, we have to observe that lcom has an inverse meaning. In
fact, Lack of Cohesion in Methods is high when cohesion is low, so a high value of this
metric is expected to correspond to code to that is more difficult to understand. Some obfus-
cations show a very high cohesion potency, Overload Names (APP-on) has a lcom potency
of 9.43, while Objectify (CL-ob), Bludgeon Signatures (MET-bs) Promotion Primitive Reg-
isters (MET-ppt) and Reorder Parameters (MET-rp) reported a lcom potency between 3 and
4. For Parameter Alias (APP-pa) and Static method Bodies (CL-smb) the lcom potency is
between 2 and 3.

Among these, Overload Names (APP-on) is the only one that shows poor potency on all
the other considered metrics, so this obfuscation should be used when cohesion is the only
protection goal.
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Among the other obfuscation with high lcom potency, Objectify (CL-ob), Parame-
ter Alias (APP-pa) and Promotion Primitive Registers (MET-ppt) have positive but small
potency on size, wmc and npm coupling, while Reorder Parameters (MET-rp) and Bludgeon
Signatures (MET-bs) have positive potency only on wmc and npm. Static method Bodies
(CL-smb) shows high potency on rfc wmc.

Only two obfuscations are able to significantly affect all the modularity metrics, they are
Integer Array Splitting (App-ias) and Class Splitter (CL-cs). However, different coupling
metrics are affected in different directions, some increases and other decreases.

8.2.3 Size Potency

Only a few obfuscations are not effective with respect to changing of the size of classes
from clear code to obfuscated code. A large increase in the size (positive potency) is scored
by Interleave Methods (APP-im, potency=0.78) and Buggy Code (MET-bc, potency=0.61),
because these obfuscation add code to make program understanding harder, so they should
be adopted when increased code size is among the objectives of the developer. Interleave
Methods also has complexity potency, but negative potency when considering modularity.
To some extent, Buggy Code represents a better choice, because its complexity potency is
high as well, but additionally it shows reasonable values of rfc and cbo potency.

Conversely, a significant size reduction is observed when obfuscating code with Class
Encrypter (CL-ce), Bloat (APP-bl), String Encoder (APP-se) and Array Folding (APP-af)
respectively with potency of -0.61, -0.60, -0.60 and -0.59. So these obfuscations should
not be used when aiming for size increases. However, all these obfuscations involve size
reduction because they aim at removing relevant information from the code, information
that an attacker may use in an attempt to reverse engineer the program.

Size potency is never significantly influenced by the size, complexity nor modularity of
the clear code. In fact, extra code can always be added to increase classes size. Moreover, the
possibility of optimizing code and reducing size may depend on code qualities not captured
by modularity and complexity metrics, and result in reduced class sizes.

8.3 Threats to Validity

For an experiment not involving human participants, there are two types of threats to valid-
ity to consider, and they are the internal (whether confounding factors can influence the
findings) and the external validity aspects (whether results can be generalized).

Regarding the internal validity, we have had to make certain that when a relationship
is observed between two variables, it is due to a causal relationship, and not caused by
an external factor that is not controlled, controllable or measured. To achieve this objec-
tive, we have considered many code metrics, devoted to measuring different aspects of the
quality of code (complexity, modularity and size). Moreover, the conclusions have been
drawn based on objective statistical tests. When possible, we have adopted non-parametric
tests (such as Mann-Whitney) that do no make assumptions on the normal distribution of
data. Furthermore, we have used the ANOVA test which, although parametric, is consid-
ered robust against deviations from normality. In all the cases where multiple pairwise
comparisons are performed with overlapping data, we control the increase probability
of committing type I error (i.e. rejecting a true null hypothesis) by adopting the Holm
correction.

Moreover, while obfuscators works on compiled bytecode, to compute source-level met-
rics we have had to decompile obfuscated code. This process might alter the structure of

@ Springer



1520 Empir Software Eng (2015) 20:1486-1524

obfuscated bytecode, however this is a process that an attacker would probably also need to
undertake.

Regarding the external validity, we have had to consider whether the observed causal
relationships can be generalized outside the scope of the experiment. We have designed this
experiment as objectively and generally as possible, involving 44 different obfuscation algo-
rithms and source code from different domains, counting up for more than 4 million lines
of code. Moreover, applications have been selected from different repositories, including
also the 10 of the most popular applications from Source-Forge. Nonetheless, only further
experiment with other obfuscator tools!'? and more subject applications can confirm our
findings.

9 Conclusion and Further Work

Code obfuscation has measurable and visible effects. This paper presents the results of a
large scale study to quantify the effects of various obfuscation techniques, as measured by
several metrics on Java code. We have considered 44 algorithms for source code obfusca-
tion. 40 of them are implementation from Sandmark, an open source tool. Furthermore 4
implementations are from commercial tools: 2 configurations are produced by the Allatori
toolset and 2 configurations by Zelix Klassmaster. The consequences of code obfuscation
have been measured using 10 different metrics, considering the modularity, the size and the
complexity dimension. The study has involved more that 4 millions lines of code of Java.

Our findings show that code obfuscation impacts all the considered metrics, however
different algorithms have different effects. Moreover, the initial quality of clear code to be
obfuscated influences the results of obfuscation. The present paper is meant to shed some
light on what are the features of the available obfuscating transformations. Project managers
and developers should evaluate them carefully, when they have to decide which algorithm
to adopt to obfuscate Java code.

As future work, we intend to study combinations of obfuscations also from different
tools, and compare the effect of the combination with the single effect of the composing
obfuscation tools.

Moreover, we plan to define new metrics more related to the attacker behavior; for exam-
ple as method calls to java libraries (like GUI, network) cannot be obfuscated, and these are
a good indicator of how many starting points are available to the attacker to analyze code,
thus a metric can be defined to measure such “weakness” in the original code and how the
obfuscation can reduce it. On the other hand collusion attacks are also an important strand
to be researched: subsequent versions of a program are often used to find differences in
code versions (to detect the location of vulnerabilities in the old version, patched in the new
version), or detecting similarities between versions that can be used to spot relevant code
to be used as starting point for analysis. Diversity of software obfuscations has become
important to mitigate such attacks, but metrics must be identified or created to evaluate the
effectiveness of obfuscation throughout time by measuring the effective diversity between
versions.

Moreover, we plan to involve programmers in controlled experiments, to validate the
extent that the metrics considered in this study are correlated to the effort required to
understand and attack Java code.

12 Available obfuscation tools are ProGuard, yGuard, JODE, JavaGuard, RetroGuard, jarg, etc
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