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Software protection techniques are used to protect valuable software assets against man-at-the-end at-
tacks. Those attacks include reverse engineering to steal confidential assets, and tampering to break the
software’s integrity in unauthorized ways. While their ultimate aims are the original assets, attackers
also target the protections along their attack path. To allow both humans and tools to reason about the
strength of available protections (and combinations thereof) against potential attacks on concrete appli-
cations and their assets, i.e., to assess the true strength of layered protections, all relevant and available
knowledge on the relations between the relevant aspects of protections, attacks, applications, and assets
need to be collected, structured, and formalized. This paper presents a software protection meta-model
that can be instantiated to construct a formal knowledge base that holds precisely that information. The
presented meta-model is validated against existing models and taxonomies in the domain of software
protection, and by means of prototype tools that we developed to help non-modelling-expert software
defenders with populating a knowledge base and with extracting and inferring practically useful infor-
mation from it. All discussed tools are available as open source, and we evaluate their use as part of a

software protection work flow on an open source application and industrial use cases.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In so-called man-at-the-end (MATE) software attacks, attack-
ers target assets embedded in software. By means of reverse en-
gineering they try to steal confidential information, such as em-
bedded cryptographic keys or intellectual property in the form
of algorithms (Falcarin et al., 2011). They also use reverse engi-
neering techniques as a preparatory step towards tampering with
the software to break its integrity, e.g., to break license checks.
MATE attackers can mount sophisticated attacks, as they can tam-
per with software and data in their labs, where they have all
kinds of software aids, such as debuggers, tracers, emulators, and
customized operating systems; and hardware aids such as devel-
oper boards with (JTAG-based) hardware debuggers. The latest BSA
Global Software Piracy Study! states that 39% of software installed
on computers worldwide is not licensed, amounting to $52 billion
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in losses; in particular, 98% of mobile apps lack binary code pro-
tection and they can be easily reverse engineered and tampered
with?.

Software protection techniques transform code and inject new
code to hamper reverse engineering and tampering. Perfect pro-
tection being impossible (Barak et al., 2001), the techniques aim
to raise the cost for attackers and the time needed to perform the
MATE attacks. When they attack protected software, attackers not
only target the original assets in the code, but also the protections
themselves. To undo, overcome, bypass, and work around them,
they reverse engineer the protections and they tamper with them.
From the perspective of the defender, the protections become as-
sets as well.

Recently, some critical steps have been set in modelling the
behaviour of MATE attackers (Ceccato et al., 2017; 2018), includ-
ing how they reason about code under attack, about protections
they encounter, about assets they target, and about attack steps
they conduct. There also exist formal models such as attack graphs
(Sheyner et al, 2002) and Petri Nets to model concrete attack

2 State of Application Security: https://www.arxan.com/resources/
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paths on concrete assets (Wang et al., 2013b; Chen et al., 2011).
We are still lacking overall models, however, that allow the repre-
sentation of the relevant relations between (i) assets, (ii) the soft-
ware those assets are embedded in, (iii) deployed protections, (iv)
individual attack steps and tools and methods to perform attacks
on those protections and on the assets, (v) possible paths of attack
that start from scratch and through which attackers can reach their
ultimate reverse-engineering end goal, i.e., stealing the original as-
set. Moreover, these models must support an inferential system
that allows reasoning about the data represented with the model.
That is, we need to build a Knowledge Base (KB), which is essential
to perform a complete risk analysis of software applications and to
decide on protections to mitigate reverse-engineering and tamper-
ing risks.

In related fields, such as network security, models exist that
are consistently used in practice to assess the overall level of pro-
tection. Some models, like the Common Vulnerability Scoring Sys-
tem (CVSS) (Mell et al., 2007), Common Weaknesses Enumeration
(CWE)?, and Common Vulnerability Exposure (CVE) (Mann and
Christey, 1999), are used to model software weaknesses and vul-
nerabilities, attacks against them (exploit), as well as estimation
of likelihood, expertise needed by hackers, and ease of repli-
cation on a large scale (severity). Others depict the landscape
where attacks may exploit vulnerabilities, like Common Config-
uration Enumeration (CCE).* These models are used in a more
complex ecosystem where defenders can perform their assess-
ment, implement their mitigations, and have a precise snapshot
of the system to protect with ad hoc tool and language sup-
port, e.g., with the Open Vulnerability and Assessment Language
(OVAL) (Wojcik et al., 2003) or Security Content Automation Pro-
tocol (SCAP) (Radack and Kuhn, 2011) and Open Checklist Inter-
active Language (OCIL) (Waltermire et al., 2011). Researchers have
also defined KBs, as OWL ontologies, that represent relations be-
tween network vulnerabilities and attacks and have been used to
assess attacks against corporate assets. Moreover, there are tools
that can automate attack replication, like Metasploit. Clearly, the
complexity of the network security scenario is limited compared
to the target of this paper, i.e.,, the MATE context, where building
the landscape also requires to dig into the semantics and internals
of the software to protect.

In the domain of software protection, we also desperately need
such models and similar levels of standardization to collect knowl-
edge. The reason is simple: deploying protections is highly com-
plex. All protections come with overhead in different forms (band-
width, throughput, size, performance, real-time behavior, ...) and
with different levels of expected effectiveness. All protections af-
fect the software development life cycle in different ways (debug-
ging capabilities, testing needs, integration issues, updatability, ...).
Furthermore, multiple assets with different security requirements
often need to be protected within the same application. Finally,
combining multiple protections as needed to build a layered de-
fence against all possible attacks, is hampered by both fundamen-
tal and practical composability issues. As a result, defenders face
the difficult task of selecting the best combinations of protections
to protect their software assets.

To help them in making the right decisions, a modelling frame-
work, an inferential system, and a toolbox (i.e., a KB) are necessary
that cover all of the relations between software, assets, protections,
and MATE attacks. Such a KB has wider value however. It can also
help researchers to identify those areas where more research is
needed because satisfactory protections are still missing, and they
can help software architects to identify which types of assets and

3 See http://cwe.mitre.org.
4 See https://cce.mitre.org/.

related security requirements are safe in certain deployment sce-
narios, and which are not. Risk assessment and methodologies for
evaluating protection strength are other interesting research areas
that can benefit from the definition of appropriate meta-models.
An additional long term objective would be developing an auto-
matic decision support system for software protection, i.e., an ex-
pert system that may help software developers with limited ex-
pertise in software protection to select the best way to protect the
assets embedded in their applications without the need of a team
devoted to this task. A KB represents facts about a particular do-
main (e.g. software protection and reverse engineering), while an
expert system can reason about those facts and use rules and other
forms of logic to deduce new facts or spot inconsistencies. An ex-
pert system requires structured data, not just tables with numbers
and strings, but references to other objects. A KB stores complex
structured information and the ideal representation for a KB is an
object model or an ontology as a graph linking classes, subclasses
and object instances. A meta-model (similarly to a grammar for
a programming language) describes the structure of such model,
formally defining its syntax and rules. This paper presents a new
meta-model in support of a formalized KB on the aforementioned
relations. Moreover, it describes an inferential system that builds
on the meta-model to perform the risk analysis of software appli-
cations.

The research into this meta-model and related tools was carried
out in the European FP7 research project ASPIRE.> This modelling
research was done in conjunction with the design and execution of
multiple penetration test experiments and with proof-of-concept
research into tool-supported, composable, multi-layered protection
of multiple industrial use cases, i.e.,, on software and assets of
real-world complexity. Moreover, ASPIRE researched an evaluation
methodology for software protection strength, including a metrics
framework, and decision support to automate the selection of the
best combinations of software protections. Consequently, a major
strength of the presented meta-model and the corresponding tools
is that they have been evaluated and to a large extent validated in
the context of all those other research activities.

This paper’s main contributions are the following: (i) A discus-
sion of the requirements of a MATE software protection KB and
a corresponding meta-model in Section 2; (ii) the presentation of
the meta-model that can be instantiated to populate a KB that cap-
tures the necessary information to reason about and assess MATE
software protections in Section 3; (iii) a validation of that meta-
model against existing models and taxonomies from the literature
in Section 4.1; (iv) a validation of the meta-model by means of
tools that demonstrate its practical applicability on concrete use
cases in Section 4.2. After those contributions, we discuss related
work in Section 5 and draw conclusions and discuss future work
in Section 6.

2. Requirements and scope

As already motivated in the introduction, we need a way to col-
lect and represent knowledge regarding MATE attacks and protec-
tions, i.e, to model the relations between the already mentioned
aspects of assets, applications, protections, and attacks. More pre-
cisely, we put forward the following requirements.

Requirement R1: We need a way to capture the application
structure. This is important for two reasons. First, to relate attacks
and protections to real software parts (e.g., functions and variables)
and not entire applications or whole components, allowing a finer
granularity and in turn more expressiveness. Second, it is impor-
tant to have a way to model not only the various application parts,

5 Advanced Software Protection: Integration, Research, and Exploitation -
https://www.aspire-fp7.eu.
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but also their relationships (e.g., variable x is contained in function
y or function y calls function z) and possibly abstract interpreta-
tions involving these parts (e.g., control flow graphs). This is key to
build a KB system where to perform meaningful inferences about
the security of an application, not in the least because attackers
typically dedicate quite some effort reverse engineering the rela-
tion between application components and zooming in on the most
relevant components in the application under attack (Ceccato et al.,
2018).

Requirement R2: We need a way to formalize the concept of
assets. Original assets are the application parts that have value for
the developer, so it is important to represent them in the most
precise fashion. In addition, it is important to define which asset
security properties the defender should try to protect and, vice-
versa, the attacker will try to breach. In this regard, not only the
original assets hold value. So do artifacts in the application code
that help attackers to execute complete attack strategies, such as
hooks where they can attach their tools, and code patterns they
can easily identify and that lead them towards the original assets,
i.e., that allow them to zoom in the most relevant parts of the soft-
ware. We call such artifacts intermediate assets. Furthermore, we
consider protection assets, which are artifacts of the deployed pro-
tections that either allow the identification of the deployed pro-
tections (thus allowing the attacker to pick a strategy to defeat
the protection) and protection artifacts that can become the target
of individual attack steps to defeat the protections. Unlike origi-
nal assets, which come with security requirements defined by the
application developer, intermediate and protection assets become
assets only because they are the target of attack steps. Reasoning
about original assets and automatically inferring intermediate and
protection assets would be an important task to demand to a KB
system.

Requirement R3: We need a way to formally describe attacks
and relate them to the various application parts. Even if there are
some efforts in the security world to represent attacks (e.g., CWE,
CVE), we are still lacking a formal way to represent a complete at-
tack in an unambiguous way in a MATE scenario. This is important,
especially since we are interested in building a KB system whose
inferences allow performing various kinds of automated security
analyses that need to cover all possible attack paths in order to be
truly useful.

Requirement R4: We need a way to formally describe the ef-
fects of protections when applied to code and data. A protection
can be abstracted as a specialized tool that transforms code or
injects new code for the purpose of hampering attacks on (orig-
inal, intermediate, or protection) assets. Several protection tools
are available on the market, each one offering support for specific
versions of multiple protection techniques, configurable in various
ways. Therefore, we are interested in modelling protections both
from the perspective of the attacks they prevent or delay, and with
respect to the performance overhead and software development
life cycle impact they have. Modelling what a protection effectively
does is vital for a KB system able to perform automatic inferences
for a protection assessment of a software application. Moreover,
a KB system to suggest mitigations strongly relies on the ability
of the meta-model to represent relationships among protections.
On the one hand, a defender may be interested in knowing when
protections cannot be applied on the same piece of code, or on
the same applications. On the other hand, he could be interested
in knowing when applied protections strengthen each other either
because one renders defeating another protection more complex or
because they work in synergy against the same attack.

Requirement R5: We need a way to formally describe a pro-
tected application. Assessing the security of protected applications
requires to model with precision where and how the protections
are deployed. Since the application of protections can be config-

ured and tuned based on a set of configuration parameters (e.g.,
opaque predicates of different levels of complexity can be inserted
into the code at different frequencies based on an integer param-
eter) we need a model that is expressive enough to capture all
the possible ways protections may be applied on each application
part. Note that, while R4 concerns reporting how protections re-
late to each other and how they change an application, R5 is about
describing how protections are applied to application parts. A KB
system that can reason on this information, can be used to pre-
dict the effect of protections when applied on specific application
parts, both in terms of overheads and reached protection strength.
Clearly, this is a necessary step to build an expert system that can
assist defenders when they have to select the best way to protect
the assets in their applications.

Requirement R6: Besides the qualitative relations that we need
to model between protections and attacks, it is also useful to
model the relation quantitatively where possible. This can fa-
cilitate more accurate evaluations of the strength of protections
given an application, its assets, and potential attacks. In litera-
ture, many metrics to measure that strength have already been
proposed. For example, software complexity metrics have been
proposed to quantify the potency of obfuscations, i.e., the extent
with which obfuscations make manual code comprehension tasks
and automatic de-obfuscation techniques harder (Collberg et al.,
1997; 1998; Schrittwieser et al., 2016). Other authors have pro-
posed combining many different metrics for assessing the strength
of a wider range of protections (Anckaert et al., 2007; Tonella et al.,
2014; Ceccato, 2016) or have evaluated which metrics are better
predictors of obfuscation quality (Ceccato et al., 2015).

Requirement R7: We need a way to help users populate the
KB, without requiring them to be modelling experts, i.e., by using
visual model editors or textual data that can be easily translated
and imported. Similarly we need a way to help users in extending
the model by importing new information from different sources
into a unique format.

In these requirements, we observe the need to model three
forms of information:

e Generic a priori information describes features of and relations
between aspects that holds invariably for a defender, such as
the available attack tools and protection tools and their capa-
bilities, which do not depend on the exact software to be pro-
tected;

A priori use case information describes features of and relations
between the application, its assets, and their security require-
ments;

A posteriori information describes features of and relations be-
tween a concrete application and its assets, applicable protec-
tions, and possible attacks on protected and unprotected ver-
sions. This is mostly information that can be inferred from the
two other forms of information.

The scope of our model is currently limited to software-only
protections. We exclude protections that depend on advanced
hardware security features such as Intel's enclaves (Intel, 2014)
or TrustZone® or Sancus or SOFIA-like cryptography-based en-
forcement of integrity and confidentiality (Noorman et al., 2013;
de Clercq et al, 2016). Furthermore, the attacks we envision
are limited to man-at-the-end attacks. Man-in-the-middle attacks,
which focus on attacking distributed systems by intercepting com-
munications and by tampering with the communications, are ex-
cluded. And so are system penetration attacks. In MATE scenarios,
attackers are assumed to have, in their own lab, all the access they

6 https://www.arm.com/products/silicon-ip-security.
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want to the software under attack, they do not need to penetrate
systems in order to get that access.

Furthermore, the scope of our work is limited to native soft-
ware, i.e., code that is distributed to end users and attackers in the
form of stripped executable binaries that can be either main ex-
ecutables of applications, or dynamically linked libraries. This ex-
cludes threats from insiders such as any developers with access to
the source code or intermediate formats. It also excludes hardware
descriptions in any source, intermediate, or binary format.

Finally, it is important to point out that the models, inferences,
and tools we propose are created first and foremost to aid de-
velopers and users of software protections, i.e., the defenders. We
approach the link between protections and attacks from the de-
fender’s perspective. Individual attackers approach an application
and its assets one attack step at a time, and consider alternatives
and directions for their next steps after each step, thus executing
one sequence of attack steps, i.e., one attack path. Each attacker’s
path depends on his experience, his access to tools, the exact pre-
cision with which their specific tool versions and tool customiza-
tions analyse particular deployments of protections, and even sheer
luck, such as when they decide to spend limited amount of time
on searching for clues through an unordered set of information,
and it hence depends on luck whether or not they bump onto
the most relevant elements before their time runs out. Defenders
cannot reason in terms of individual attack paths and luck, how-
ever. They instead have to make worst-case assumptions, including
the assumption that multiple attackers may be attempting multiple
different attack paths at any point in time, and the assumption that
all potentially successful attack steps will actually be successful. In
other words, they have to assume that all potentially successful at-
tack paths will be attempted in parallel. Our models reflect this
worst-case scenario. For example, they do not contain the notion of
failed attack steps. However, not all companies and developers may
want or be able, to protect their application against all the possible
attacks. They may lack access to the most powerful protection tools
because of their cost and expertise needed to use them success-
fully, or their applications maybe cannot suffer from the perfor-
mance overhead that invariably comes with stronger protections.
Also the application domain matters. While it is reasonable to pro-
tect software for critical infrastructure also against sophisticated
attacks mounted by very motivated and skilled attackers, several
applications (e.g., low-cost games for smartphones) just need to be
protected against automated attacks launched by script kiddies. We
hence differentiate between different levels of attacker expertise,
but in our worst-case analysis, we assume that all the attacks that
can be mounted by attackers with a certain expertise are all per-
formed in parallel and successful.

3. Meta-model

We will now introduce our meta-model that, for the sake of
readability, is split in four smaller meta-models:

o the core meta-model contains the most important classes and
relationships, from our perspective;

o the application meta-model details the concepts and associations
related to a generic application and its code;

o the protection meta-model describes the notions that link to-
gether the protections and the protected areas of an applica-
tion;

o the attack meta-model finally introduces the attack classes and
their relationships with the various application parts.

In the UML class diagrams shown in the rest of the paper, we
have adopted a colour code to help the reader in understanding
the effort to fill in the meta-model instance:

e Red classes with a double border represent generic a-priori
concepts. Instances of these classes are populated by security
experts when preparing the KB. It is not expected from defend-
ers to change these instances when they have to protect their
applications, unless they are experts in formal models and want
to add new features (e.g., inferences, reasoning) that cannot be
built with the data in the existing meta-model.

Blue classes with a double border relate to the a-priori use case
information. Instances of these classes are expected to be ob-
tained from the application to protect. These data can be ob-
tained automatically, e.g., name of functions and their relations,
i.e., a call graph, can be obtained with static analysis tools, or
manually, e.g., to report that a function or a piece of code dis-
covered automatically is an asset and requires the enforcement
of specific security requirements.

The yellow classes with a single border model the a-posteriori
knowledge. All a-posteriori data is, by definition, obtained auto-
matically with the inferences performed in the KB system, thus
defenders have not to care about their collection.

The reader may have noticed that the effort required by the de-
fender to build the KB for protecting a specific application is lim-
ited to part of the a-priori use case information and associations.

3.1. The core meta-model

The core meta-model formalizes the relationships between the
main concepts involved in assessing an application’s vulnerabilities
and protecting its valuable assets. Fig. 1 depicts the main meta-
model’s UML class diagram. It includes the classes to model the
application itself, the assets that must be protected, the available
software protections, the attacker, and the potential attacks on the
assets’ security requirements.

The main class is Application, whose instances abstract the ap-
plications or libraries that must be protected. An Application is
a composition of one or more ApplicationPart instances, which
represent functions, code regions (as defined by the developer, see
Section 4.2.2 for more details), and global and local variables. An
Asset is an ApplicationPart instance with a set of security re-
quirements, such as confidentiality or integrity, targeted by an at-
tacker and that must be enforced by means of some protection. All
the Asset objects must then have at least one hasRequirement
association with the SecurityRequirement enumeration, contain-
ing all the security requirements an asset can have.

The AttackTarget class represents a possible target of an at-
tacker, who aims at breaking the security requirements of the as-
sets, as explained before. In our meta-model each AttackTarget
instance will be associated with one and only one Asset via the
threatens association and with one and only one SecurityRe-
quirement element via the affects relationships. If an attacker can
target multiple asset requirements, then several AttackTarget on
the same asset are instantiated.

Attacks can be typically subdivided in an ordered sequence of
steps. For example, if the attacker wants to break the integrity of a
function in the application, such as in a license check, he will need
to disassemble/decompile the application’s binary, find the license
check function that forms the asset, and then modify it in order to
break its integrity, being its security requirement. We model such
basic steps via the class AttackStep. Instances of this class may
have one or more hasTarget relationships with instances of the
AttackTarget class. Note that some attack steps may not have any
target, since they model some preparatory actions needed by the
attacker to mount the following attack steps (e.g., attaching a de-
bugger to the application before dynamically changing a function
code).
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Fig. 1. Core meta-model UML class diagram.

Attacks are modelled via the AttackPath class, whose instances
are ordered sequences of attack steps. Note that not only the last
attack step will breach the security requirement of an asset. For
instance, an attack step that threatens the confidentiality of a par-
ticular asset can lead to another step breaching the asset integrity.
To formally enforce the attack step order, we introduced the class
AttackStepltem, whose instances are associated with a single At-
tackStep object via the refersTo association and the next step in
the attack path through the isFollowedBy association. Each At-
tackPath instance is related, through the startsWith relationship,
to one AttackStepltem instance representing the starting point of
the attack path.

Generic protections types are represented via the Protection
class. A protection enforced with a specific tool and with a partic-
ular configuration is represented in the meta-model as an instance
of the Protectionlnstance class. Every Protectionlnstance ob-
ject has two importation relationships. The first one is represented
via the hasType association that binds a Protectionlnstance ob-
ject with its generic protection, that is a Protection instance. The
second one is the isEnforcedWith association, used to relate a
Protectionlnstance object with one or more ProtectionTool in-
stances, modelling all the tools needed to actually deploy the pro-
tection. For instance, the control flow flattening obfuscation tech-
nique is represented as a Protection class instance (Wang et al.,
2000).

To slow down an attacker, various protection instances must
be applied to the assets in the application. Therefore, we intro-
duced the AppliedProtectioninstance class, representing a pro-
tection instance applied to a generic application part. This asso-
ciation is directed towards the application part class, and not the
asset concept, since a security expert can choose to protect also
non-assets in order to confuse (and hence slow down) the at-
tacker (see Section 4.2 for more information about this subject).
Instances of the AppliedProtectionlnstance class are bound via
the haslnstance and isAppliedOn associations to a ProtectionIn-
stance and ApplicationPart objects, respectively representing the

protection instance and the application part where the former is
deployed.

The global set of applied protection instances is represented
with the Solution class. Different solutions in the same model, i.e.,
for the same application, are obviously possible. For example, dif-
ferent solutions may be devised to find the best trade-off between
the level of security achieved and the introduced overhead. When
applying more than one protection to the same asset, the order
of application is important, since it could lead to different results
in terms of security and even to incoherent cases. Therefore, we
enforced an ordering between the applied protection instances in
a solution by means of the AppliedProtectionlnstanceltem class,
representing an applied protection instance inside a solution. Every
AppliedProtectionInstanceltem object is linked with a Applied-
Protectionlnstance object via the refersTo association. Each So-
lution instance will have an association startsWith with an Ap-
pliedProtectioninstanceltem instance to represent the first ap-
plied protection instance. The ordering in the solution is then en-
forced between the AppliedProtectionlnstanceltem instances via
the isFollowedBy relationship.

3.2. The application meta-model

The meta-model depicted in Fig. 2 defines the fundamental in-
formation about the application needed to protect its assets, in or-
der to preserve the security requirements of the latter from the
attacks mounted by the attacker, allowing us to satisfy the require-
ments R1 and R2.

The class used to model the various components of an appli-
cation is ApplicationPart. Each application part has a name at-
tribute and it is contained into a source file represented with an
homonym class, specifying its location in a file system with the
path element. All the ApplicationPart instances can be assets,
code or data, represented by three distinct sub-classes.

The Datum sub-class represents a generic variable or function
parameter. Each datum is characterized by its type (e.g., string, in-
teger variable, cryptographic key or ciphertext), modelled by the
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DatumType class and hasType association. Knowing this informa-
tion is useful for at least two reasons. First, data protections usu-
ally are only applicable to specific data types. For instance, in the
prototype protection tools developed in the ASPIRE project, XOR
masking (Collberg et al., 1997) can only be deployed to protect
an integer variable or array of integers. Second, some attacks can
only be mounted against some kind of data. For example, differen-
tial cryptanalysis (Biham and Shamir, 1993) is only meaningful for
some kind of encrypted data.

The Code sub-class is used to model functions, class meth-
ods and any generic code region. A code region can be thought
of as a container of other application parts (e.g., a function con-
tains variables, but also other smaller code snippets) and this fact
is modelled via the containment relationship between the Appli-
cationPart and Code classes. A piece of code can also access a
(local or global) variable, fact represented by the accesses associ-
ation. In addition, storing also the call graph of the application may
prove useful, especially when inferring attacks. Each call to a func-
tion is modelled as an instance of the Call class. The caller code
is bounded to the call via the hasCall 1-to-1 association, while
the call is related to the callee with the hasCallee 1-to-1 associ-
ation. Each call object contains also to the ordered list of param-
eters passed to the called function. A parameter in this ordered
list is modelled via the Datumltem class, related to the correspon-
dent Datum instance with the refersTo association and the next
item via the isFollowedBy relationship. If the called function has
at least one parameter, the Call instance will contain a startsWith
association with a Datumltem instance modelling the first call pa-
rameter. Note that when it is relevant to consider multiple calling
sites to the same callee in some caller function, this can be done
by considering multiple ApplicationParts in the function, and by
associating each of them to the callee with hasCallee.

As introduced in the core meta-model, assets are represented
as instances of the Asset concept, a sub-class of ApplicationPart,
and are related with their security requirement with the associa-
tion hasRequirement to items of the SecurityRequirement enu-
meration. In this context, we limited the list of security require-
ments to the following values:

o Confidentiality, indicating that an asset should not be compre-
hensible for the attacker (e.g., patented algorithms) or that it
should remain hidden completely (e.g., crypto key);

o Execution correctness, specifying that a code asset must be
called and executed as intended, and should not be bypassed
by the attacker (e.g., license checks) or be executable outside
the context of the given application (e.g., a white-box crypto
algorithm);

Integrity, applicable to an asset that must not be modifiable by
the attacker (e.g., a hard-coded PIN number);

Privacy, suitable when the disclosure of an asset could lead to
personal data leakage (e.g., credit card numbers).

Note that the meta-model does not restrict the usage of these
requirements, but allows the security expert to add additional
ones, if needed. Also note that although these requirements can
never be met completely (as full protection against MATE attacks is
impossible as explained in the introduction), it is useful to express
them because the aim of the protections is to delay the attackers
that aim for violating the requirements. Thus the expected attacks
follow in part from these requirements.

Since filling this meta-model with meaningful instances can be
a long process, especially for big applications, we developed some
tools to perform this action automatically (see Section 4.2.2).

3.3. The protection meta-model

The protection meta-model, depicted in Fig. 3, contains the
classes and relationships related to the protections that can be
used to protect the security requirements of the assets against
the actions performed by the attacker. This meta-model allows to
model not only the protection relationships (requirement R4), but
can be also used to precisely describe how an application was pro-
tected (requirement R5).

The Protection class is associated with SecurityRequirements
values by means of the enforces association. This association char-
acterises the abilities and purposes of applying a given protection.
Furthermore, the Protection class has several association loops
that are useful to model protection synergies and forbidden prece-
dences. In particular, the shouldBePrecededBy and shouldNot-
BePrecededBy associations are respectively used to specify that
an applied protection instance should or should not be preceded
by another applied protection instance of a given kind. This is use-
ful when choosing the best solution since one protection can make
another, previously applied protection stronger (e.g., software re-
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Fig. 3. Protection meta-model UML class diagram.

mote attestation (Viticchié et al., 2018) can be made more robust
if coupled with anti-debugging (Abrath et al., 2016)), but applying
one protection can also make a later one weaker (e.g., a control
flow obfuscation applied first can negatively impact the data flow
analysis that checks preconditions for applying a data obfuscation),
thus affecting the aggressiveness with which the data obfuscation
can be applied. Furthermore, the cannotBePrecededBy relation-
ship is used to model impossible sequences of protections that can
lead to incoherent or non-compilable applications (e.g., software
remote attestation is usually the last protection to be put, since
altering the code after its deployment will trigger an invalid attes-
tation).

The ProtectionTool class contains all the available tools that
can be used to deploy a protection on an asset or application part.
The supported protection instances are linked to their tool via the
isEnforcedWith association.

Finally, the Metric class instances represent the value of a cer-
tain complexity metric computed over an application part (usu-
ally a code) (Tonella et al., 2014). The value attribute represents
the numerical value of the metric, while the kind is modelled
via the hasType association towards an enumeration MetricType
containing all the available metric categories (e.g., Halstead length,
cyclomatic complexity). The refersTo and the hasMetric associa-
tions direct towards respectively the relative application part and
the current protection solution. Complexity metrics can be useful
to quantitatively measure certain security features of an applica-
tion, as we also discuss in Section 4. Together, these classes allow
the meta-model to meet requirement R6.

We developed several tools that enable us to assess the security
level of a protected application (see Section 4.2) and further in-
crease the attack effort by strategically protecting some non-asset
application parts (see Section 4.2.7).

3.4. The attack meta-model

The attack meta-model, whose UML class diagram is sketched
in Fig. 4, contains all the classes and relationships used to repre-
sent the attacker, his attacks and their effects on the application
and the protections. These classes allow us to model with precision

the effects of the attacks on a generic application and its compo-
nents, thus meeting the requirement R3.

The attackers are modelled via the Attacker class, related with
the hasExpertise association to the AttackerExpertise enumera-
tion, representing the various levels of expertise an attacker may
have. We envision four levels of increasing expertise (i.e., geek,
amateur, professional and guru). Note that this enumeration set is
completely customizable and adaptable according to the scenario
that needs to be modelled. In addition, the solution itself is related
to a specific attacker via the hasAttacker relationship to explic-
itly indicate that it was generated to counteract a specific attacking
profile.

Attack steps usually refers to an application part (not necessar-
ily an asset). This is modelled through the refersTo association
and the fact that an attack step can threaten a security require-
ment of an asset is modelled via the AttackTarget class and its
relationships. For instance, if the variable ‘x’ is an asset whose con-
fidentiality must be enforced, the attack step ‘locate the variable x
in the function y’ refers to the function ‘y’ and has an attack target
for the confidentiality of the asset ‘X'.

The requiresExpertise association represents that an Attack-
Step may need a minimum level of attacker expertise to be
mounted, thus representing its base difficulty level. This should
represent a best-case scenario from the attacker point-of-view
and can be useful to perform additional inferences on the global
difficulty of an entire attack path. Analogously, the meta-model
includes the requiresExpertise association between AttackTool
and AttackerExpertise instances, which allows the classification
of tools based on the minimum level of skills the attacker should
have to use it.

Each attack step belongs to a specific type such as dynamic
tampering or static analysis. This fact is formalized through the
AttackStepType class and the hasType association. As stated be-
fore, we stress that an attack step does not necessarily need to be
a full fledged attack, but it can also be a preparatory step such as
‘setup a web server’, thus the AttackStepType instances mix to-
gether both proper attacks and non attack types. Furthermore, the
requiresExpertise association models the fact that an attack step
type requires a minimum expertise level to be mounted by an at-
tacker.

An attack step type (e.g., a debugging attack) can be performed
by one or more different attack tool types (e.g., a debugger). This
fact is represented by the isimplementedBy relationship with the
AttackToolType enumeration, in turn related with the AttackTool
class, via the hasType association, containing the known attack
tools (e.g., IDA Pro).

The hasMitigation property is used to represent that a pro-
tection can mitigate an attack step type. For instance, this allows
us to express that the opaque predicates obfuscation technique
(Collberg et al., 1997) can be used to decrease the feasibility of
both static and dynamic analysis attacks. The Mitigation class rep-
resents the protection mitigation. It is linked with the softened at-
tack step type through the mitigates association and also allows to
specify a non-numeric level of effectiveness by using the hasLevel
association and the Level enumeration. Vice-versa, an attack can
be used to partially or completely remove a protection. This is
modelled via the hasDisruption relationship with one or more
Disruption class instances. Analogously to the mitigation case, this
class specifies the protection that is affected by an attack via the
disrupts association and the effectiveness level of the disruption
with the hasLevel relationship.

Risk analysis is an important phase in the software life cycle.
We hence created a tool that allows us to automatically discover
the attacks that can be mounted against a protected or not pro-
tected application (see Section 4.2.5) and another one that per-
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forms various kind of assessments on attack paths and steps via
Petri nets (see Section 4.2.8).

The meta-model can indeed represent several simple yet use-
ful inferences. For instance, information about expertise is useful
to reduce the complexity of the attack discovery tool. If one wants
to protect just against a certain category of attackers, the tool has
not to consider all the attack steps and tools, which is an advan-
tage with backward reasoning. As an example, if we consider the
AttackerExpertise values as an ordered set (GEEK < AMATEUR <
PROFESSION < GURU), an attack path can be considered feasible
by an attacker of a given expertise (e.g., AMATEUR) if and only if
all the attack steps needed to mount it require at most the same
expertise (i.e., AMATEUR or GEEK). As another example, attack step
types can be associated to the expertise based on the information
about the tools needed to mount them. That is, if an attack step
can only be implemented by attack tools that require a minimum
expertise, the attack step type cannot be performed by attackers
having expertise less than the minimum expertise required by the
tools needed to mount it.

4. Validation

Several taxonomies and surveys of software protections and re-
verse engineering techniques have been presented in literature.
In the first part of this section, we discuss to what extent our
meta-model covers concepts and relations presented in that litera-

ture, thus validating that our models can capture the information
considered relevant in literature. In the second part, we discuss
a number of tools we developed to populate a KB system using
our meta-models and to make practical use of the information in
that KB system. With these tools, we validate that the models have
practical use.

4.1. Validation against models from the literature

4.1.1. Reverse engineering taxonomy and models

Recently, Ceccato et al. developed models to capture the activi-
ties of attackers that target protected software (Ceccato et al., 2017,
2018). On the basis of penetration test reports and public challenge
reports produced by professional and amateur hackers, they cre-
ated a taxonomy of the concepts that were used by the attackers
to describe their attack methods and corresponding reasoning pro-
cesses. This taxonomy is a hierarchy of concepts, in which sub-
concepts are refinements and concrete instances of higher-level
concepts. They also presented four models that capture causal,
conditional, temporal and instrumental relations between

(a) The attackers’ high-level comprehension activities;

(b) Their attack strategy building activities;

(c) Their attack tool selection, creation and customization activi-
ties;

(d) Their selection processes to choose between undoing, overcom-
ing, bypassing or working around protections.
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It is interesting to study how our meta-model covers the tax-
onomy concepts and models from Ceccato’s work. With regards to
the taxonomy, we observe that all top-level concepts can either be
mapped onto the classes of our meta-model, or are irrelevant to it.
More in detail, we observe the following regarding these top-level
concepts:

Asset. Assets map directly to our Asset class.

Attack strategy. Attackers mention generic attack strategies as
justification for how they spend their attack effort. Concrete attack
path models in a KB, (through instances of the AttackStep, Attack-
Stepltem and AttackPath classes in our meta-model) represent
the result of concrete, executed attack strategies, i.e., the sequence
of steps executed as a result of implementing an attack strategy. So
while the current meta-model does not directly support modelling
attack strategies, it supports concrete instances.

Background knowledge. Attackers rely on their background
knowledge for making decisions. Since different attackers have a
different background knowledge, they can choose the most dis-
parate attack paths. Remember, however, that a defender reasoning
about the protections most often needs to consider the worst-case
scenario in which the attackers at the considered level of expertise
(as incorporated in our attack meta-model, see Section 3.4) have all
the possible knowledge available to the experts at that specific ex-
pertise level. The relevance of their combined background knowl-
edge is determined by the attack paths that this knowledge en-
ables. Hence, the relevant information can be incorporated in the
meta-model by populating it with all the attack paths that are built
on that knowledge. The attack-related classes in our meta-model
support this representation, as discussed for the previous concept
of attack strategies.

Workaround. In the taxonomy by Ceccato et al., workarounds
are a specific class of attacks to defeat protections. They map di-
rectly to the AttackStep class.

Analysis | Reverse engineering. These concepts are techniques
(e.g., diffing, debugging, profiling, pattern matching) to analyse
and reverse engineer different aspects of the software under
attack. Those concepts map directly onto the AttackStepType
class.

Difficulty. Attackers face all kinds of practical issues in their ex-
perimental environment. That is the case because their concrete
environments are not perfected a-priori for the attacked software.
From a defender’s perspective, these are best-case scenarios. On
the other hand, in worst-case scenarios, such difficulties do not oc-
cur, so there is no strict need to cover them in our meta-model. In
case the issues are not mere practical ones, but fundamental limi-
tations (e.g., related to non-scaling analysis and decidability issues)
the impact these difficulties have on attacks will be reflected in the
absence of certain attack paths in the KB. So, by populating the KB
with the relevant attack paths, and excluding the irrelevant ones,
this concept can also be covered.

Obstacle. Ceccato et al. consider two kinds of obstacles that at-
tackers face when trying to execute attack strategies. The first are
protections, which are clearly covered in our meta-model (by the
Protection, Protectioninstance and AppliedProtectioninstance
classes). In addition, also the effects that they have on enabling or
disabling certain attack steps can be modelled via the Mitigation
and Disruption concepts. The second kind of obstacles are addi-
tional limitations to the attack environment (e.g., impossibility to
run the protected application, lack of knowledge in the application
execution environment), to which the aforementioned discussion
for the concept of difficulties applies.

Weakness. Weaknesses are features of application parts that
ease attacks on corresponding assets, be it original assets with se-
curity requirements or protections that are attacked or intermedi-
ate assets that attackers target on their way along a complete at-
tack path. The fact that an application part is weak against some

attack step can be modelled in our KB by means of the AttackTar-
get class and the hasTarget, threatens and affects associations
from our meta-model.

Tool. Concrete attack tools map directly to the AttackTool class.
Their abstractions (i.e., sets of similar tools with similar capabili-
ties) map onto the AttackToolType class.

Attack step. Ceccato et al. identified a wide range of attack ac-
tivities at a fine granularity. These steps, such as “locate a variable
in a function”, have explicit or implicit objects, i.e., targets. For the
previous example, these are the function and the variable them-
selves. These steps map directly to the AttackStep class. In ad-
dition, the relationships with the objects is handled by the refer-
sTo association and the AttackTarget class (and its relationships),
if the object is an asset.

Analyze attack result. Ceccato et al. noted that while executing
the attack paths, the analysis of their results (in particular whether
or not attempted attack steps succeeded) is an important aspect
for attackers to decide on the next attack steps to try, i.e., to es-
timate the path of least resistance that they will try to execute.
As our meta-model aims to model worst-case scenarios from the
defender’s perspective, it is not relevant to represent such steps
separately. As discussed above, attack paths in our KB model all
successful attacks.

Attack failure. Being the outcome of an attempted, but failed
attack step, this concept is not relevant in the context of our meta-
model.

Software element. Ceccato et al. listed a wide range of soft-
ware artifacts that are targeted in individual attack steps be-
cause they serve either as ultimate targets of the attacks or
because they serve as clues while the attacker is still search-
ing for the ultimate assets. These artifacts or elements in-
clude both code and data, and static ones (e.g., code frag-
ments, global data, API definitions and invocations) as well as
dynamic ones (e.g., variables being assigned values during the
program execution, system calls being executed, code patterns
in traces). In all cases, they relate directly to the application
parts that are covered by the ApplicationPart class in our
meta-model.

As for the four inferred models of relationships between con-
cepts in the work of Ceccato et al., we note that these reflect how
attack paths are constructed by attackers. The knowledge in those
models is not stored directly in the KB, but the constructed paths
are, as already discussed above for some of the top-level concepts.
Thus, the relevant conclusions to be drawn from Ceccato et al.’s
models can be represented in a KB based on our meta-model.

In our prototype tools (see Section 4.2) that populate a KB built
upon our meta-model, the inferred models from Ceccato et al.
are present but in a strongly simplified form. More specifically,
one of the so-called enrichment modules hard-codes some causal
and temporal relations between attack steps to infer relevant at-
tack paths starting from a set of attack steps. For simple cases,
this module allows us to populate a KB with straightforward at-
tack paths relevant to the use case at hand, i.e., the application at
hand with its deployed protections and embedded assets. In fu-
ture work, we plan to extend our meta-model to cover concepts
of attack strategies as well as the relationships in the relational
models of Ceccato et al. The relevant information to infer rele-
vant attack paths for a given (protected) application with a set
of given constraints from a set of generic, a-priori available attack
steps can then all be stored in the meta-model, at which point we
foresee that more interesting inference can be performed to popu-
late the KB with attack paths, thus avoiding the need to insert a-
posteriori complex attack paths manually with the Petri Net tools
(see Section 4.2.8).
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From this discussion, we conclude that requirements R3-R4-R5
are met with respect to the concepts and relations considered rel-
evant by Ceccato et al.

4.1.2. Obfuscation taxonomy

Collberg et al. presented the first taxonomy of obfuscation
techniques in a seminal paper on software protection against re-
verse engineering (Collberg et al., 1997). The obfuscation taxon-
omy includes layout obfuscations, data obfuscations, control obfus-
cations, and preventive transformations, and discusses several de-
obfuscation attacks. The paper also puts forward potency, cost, and
resilience as aspects to consider during the evaluation of protec-
tions.

The obfuscation techniques discussed in the paper are mostly
covered by our protection meta-model: data and control obfusca-
tions operate on code and data; both those forms of application
parts are covered by the meta-model. Layout obfuscations are not
but they are also outside the scope of our model: they concern
source-code aspects such as comments and names of variables,
which are mostly irrelevant in stripped binaries. Those binaries,
be it main binaries or dynamically linked libraries, are the form
in which native software, the focus of our work, is distributed and
hence attacked. The sole exception is when identifiers identify ex-
ternal APIs. As discussed in the previous section, API definitions
and invocations are covered by the ApplicationPart class. Preven-
tive obfuscations, i.e., obfuscations that do not hide assets but that
prevent analysis techniques from providing (very) useful results,
are modelled as well, and the Mitigation class and its relations
in the attack meta-model enables us to model which protections
prevent which attack steps.

To evaluate the potency of obfuscations, Collberg et al. propose
to use software complexity metrics that need to be computed on
the relevant application parts. Others later extended on this idea,
including some of us (Anckaert et al., 2007; Tonella et al., 2014;
Ceccato, 2016). Our protection meta-model contains the relevant
classes and relations to express the necessary information regard-
ing such metrics and application parts. To evaluate the cost of pro-
tections, specific metrics can be used, such as the static number
of instructions to measure code size, and the dynamic number of
instructions (i.e., the number of executed instructions for some in-
puts) to approximate performance overhead. To evaluate resilience,
Collberg et al. propose a discrete scale with five levels of resilience:
trivial, weak, strong, full, and one-way. In the attack model, the
Mitigation and Level classes can capture three levels of resilience
of protections against attacks. We opted for only three techniques
because the level “trivial” is mostly useless when considering only
worst-case scenarios, and because one-way is theoretically possi-
ble, but in practice not yet achieved in MATE scenarios where at-
tackers have white-box access to the software and assets under
attack. When considering resilience, Collberg et al. distinguish be-
tween programmer effort, i.e., the effort needed to build or cus-
tomize tools to perform an attack, and de-obfuscator effort, i.e.,
the time and resources needed to deploy the thus built tools. In
our models, we do not make this distinction explicitly. However,
the individual attack steps that our meta-model covers can be both
preparatory steps, such as customizing a tool, and actual attack
steps, such as deploying a tool. Thus our meta-models are expres-
sive enough to capture all the concepts and relations put forward
by Collberg et al.

From this discussion, we conclude that requirements R3-R4-R5-
R6 are met with respect to the concepts and relations considered
relevant by Collberg et al.

4.1.3. Obfuscations versus program analyses
Much more recently, Schrittwieser et al. surveyed the state
of the art in software obfuscation vis-a-vis code analyses

(Schrittwieser et al., 2016). The latter are used as attack techniques
to directly attack obfuscations, i.e., if obfuscations lack the neces-
sary resilience, and to work around obfuscations, i.e., if obfusca-
tions are not potent with respect to some reverse engineering task.
Like the concrete obfuscation techniques surveyed by Ceccato et al.
the concrete ones surveyed by Schrittwieser et al. can be modelled
with our protection model. Furthermore, the code analysis tech-
niques surveyed by Schrittwieser et al. can be modelled with our
attack model.

Schrittwieser et al. provide a taxonomy that partitions concrete
attack techniques in categories based on (i) the attack goal, (ii)
the generic, abstract technique used to reach that goal, such as
“locating code through static analysis”, and (iii) whether or not
the technique is fully automated or performed with human assis-
tance (or even completely manually). Each of the different com-
binations they consider can be modelled with multiple instanti-
ations (one for each concrete technique) of the AttackStepType
and AttackToolType classes from our attack meta-model. Finally,
Schrittwieser et al. analyse the resilience and potency of the obfus-
cations with respect to different attack classes, and label them in
three categories, ranging from “minor increase of costs”, over “not
unbreakable, but makes analysis more expensive”, to “breaks anal-
ysis fundamentally”. These labels map well onto the three levels of
mitigation in our attack meta-model.

From this discussion, we conclude that requirements R3-R4-R5-
R6 are met with respect to the concepts and relations considered
relevant by Schrittwieser et al.

4.1.4. Integrity protection taxonomy

An interesting taxonomy of software integrity protections has
recently been published by Ahmadvand et al. (2019). It covers sev-
eral concepts that are also represented in our meta-model. How-
ever, we noticed two major differences that are related to the goal
of the two works. Whereas our approach started from the need
of representing the information needed when protecting an appli-
cation from tampering (to break software integrity requirements
or to defeat anti-reverse-engineering protections in MATE scenario
with software-only protections), the classification presented by Ah-
madvand et al. aims at describing integrity protections. Therefore,
our attack meta-model is more precise than their taxonomy. While
they define generic attacks, which can be roughly mapped to our
attack step types, we also have the possibility to define precise at-
tack steps that refer to the original, intermediate, and protection
assets, to group them in paths and associate attack tools on indi-
vidual attack steps. Moreover, their taxonomy lacks the concept of
a deployed protection and of the solutions that are needed when
deciding how to protect an application.

On the other hand, they expanded the high-level classifica-
tion of protections with intermediate concepts that group pro-
tections in a way that is interesting for categorisation purposes,
but is unnecessary for our goals. Moreover, their classification in-
cludes information about the life cycle, which describes informa-
tion about management and production stages of the application
to protect. It will be certainly interesting to study how that in-
formation can be integrated in our model, as life cycle informa-
tion can be useful when protecting libraries or when protecting
applications without having the possibility to access source code.
Moreover, the proposed taxonomy includes high-level concepts like
overhead (which we have explicitly avoided as too coarse grained
by resorting to a broader concept of metrics), and trust anchor
(which defines hardware security mechanisms that we have ex-
cluded by hypothesis). Moreover, in their work, authors explic-
itly defined the granularity of representation of the assets, which
we can avoid as our application meta-model conveys precise in-
formation on the application parts that allows us to infer the
granularity.
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4.2. Validation with practical tools

The meta-model presented in Section 3.2 has been used in con-
junction with various tools to support the process of analysis and
protection of an application.

These tools have been developed and used in the context of the
ASPIRE project. Here they are introduced to demonstrate that our
meta-model is able to convey information useful to perform real
software protection tasks.

4.2.1. Integration with Eclipse EMF

The meta-model has been implemented using the Eclipse
Modeling Framework (EMF)’, allowing its manipulation and
navigation directly in Java applications. EMF is a well sup-
ported standard in the Eclipse world and several tools (e.g.,
Eclipse Epsilon®) are available to perform various modelling
tasks, such as validation and model-to-model transforma-
tion. The code of our meta-model is publicly available at
https://github.com/SPDSS/adss/tree/master/eu.aspire_fp7.adss.akb.

This implementation contributes to the coverage of the R7 re-
quirements, as it concerns the usability of our meta-model.

4.2.2. Automatic analysis of the application to protect

We developed a tool based on the Eclipse C Development
Toolkit (CDT)? that is able to parse a set of C/C++ source files, iden-
tifies the functions, their parameters, reconstruct the call graph, lo-
cate the local and global variables, and to translate such informa-
tion into appropriate instances of our EMF-based meta-model, in
particular the application meta-model. The fact that we were able
to correctly and properly represent all the information extracted
by CDT about an application that we deemed important for attack
evaluation and protection purposes validates the effectiveness of
our meta-model in meeting the requirement R1.

Moreover, the CDT tool is also used to parse annotations, di-
rectly applied to the code by software developers or analysts, that
indicate which parts of the applications are assets and which are
their security requirements. The ASPIRE tools support annotations
in the form of pragmas to identify and annotate code regions of in-
terest and attributes to identify and annotate variables of interest
(Basile et al., 2016). Using this approach, we were able to validate
the capability of our meta-model to represent what constitutes an
asset, thus fulfilling requirement R2.

4.2.3. Text to OWL conversion

We developed a text20WL tool'® for developers who are not
familiar with the OWL formalism and tools. It was developed to
create or update a valid OWL ontology out of a text file contain-
ing a taxonomy of reverse engineering attacks. The input text file
consists of two parts: the first one contains the taxonomy of con-
cepts, while the second part consists of additional rules between
such concepts. In the first part the taxonomy is made of a set of
trees of concepts whose hierarchy is defined by the indentation, as
in the following excerpt of the textual taxonomy:

Analysis-reverse engineering
=Static analysis

==Diffing

==Control flow graph reconstruction
=Dynamic analysis

==Dependency analysis

7 See https://[www.eclipse.org/modeling/emf].

8 See https://www.eclipse.org/epsilon/.

9 https://www.eclipse.org/cdt/.

10 Online at https://github.com/uel-aspire-fp7/text2owl

The number of = characters indicates the sub-concepts’ nest-
ing depth. This tool generates the same class hierarchy in OWL via
an axiom for each tree edge as a triplet of ‘concept, relationship,
concept’ (e.g., ‘Diffing isSubConceptOf StaticAnalysis’).

A list of similar triplets forms the second part of the text file,
but with different types of relationships (e.g., ‘Analysis-Reverse En-
gineering usedTo IdentifySensitiveAssets’), that actually transform
the taxonomy in a thesaurus (a graph of concepts, not bound by a
tree structure like a taxonomy). Furthermore, the tool also checks
for inconsistencies among the concepts defined in the rules and
the taxonomy (e.g., concepts in the rules that do not appear in the
taxonomy). This tool has been specifically developed for, and tested
on, the taxonomy and models of Ceccato et al. that were discussed
extensively in Section 4.1.1. This tool also helps us to meet the us-
ability requirements of R7.

4.2.4. Integration with OWL ontologies

Given the huge amount of information required to perform se-
curity analysis of software applications in MATE scenarios, sup-
porting the KB enrichment with automatic inferences was one of
our primary goals. Ontologies are an important tool that we have
positively evaluated to perform basic inferences and checks. For
this purpose, we developed an API to translate the EMF meta-
model in an ontology'!, written in the Web Ontology Language
2 (OWL2) and vice-versa (from OWL2 to EMF) to feed the meta-
model with the inferred data. In addition, this API allows the ma-
nipulation of the ontology (e.g., create/remove classes/individuals
or write SWRL'? rules), uses a reasoner (we support both the
Hermit!®> and Pellet'* reasoners) and performs advanced queries
using the SPARQL-DL language'®. This allows executing advanced
searches, coherence checks (e.g., test if a Solution instance does
not contain any forbidden precedence between its applied protec-
tion instances) and various logical inferences (e.g., infer all protec-
tions that mitigate a particular attack step with a given level of
efficacy).

With the help of such tool, and eventually manually filling out
the missing information, it is possible to generate instances of the
application and protection meta-models constituting a strong KB,
to be used with more advanced inference and analysis tools. This
tool fulfills all the R1-R6 requirements, as it concerns the gener-
ation of a-posteriori information and hence covers all the meta-
models.

4.2.5. Deriving attack paths against an application

We have developed a tool, written in Java, which infers various
types of attack paths on application assets by using Prolog-based
reasoning (Basile et al., 2015; Regano et al., 2016). We have used
the meta-model to instantiate a KB with various types of attack
steps that include dynamic and static tampering attacks as well
as network attacks, such as sniffing and spoofing the client-server
communications.

The tool manages a fact base that is initialized with the in-
formation, taken from the KB, about the assets and their security
requirements. Moreover, the tool imports from the KB the attack
steps, which have been annotated (manually by us at the tool de-
sign time) with pre-conditions and post-conditions. Pre-conditions
are predicates built on the facts in the fact base. Examples of facts
are:

1 Its source code is available at https://github.com/daniele-canavese/ontologies.
12 See https://www.w3.0rg/Submission/SWRL/.

13 See http://www.hermit-reasoner.com/.

14 See https://github.com/stardog-union/pellet.

15 http://www.derivo.de/en/resources/sparql-dl-api/.
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The asset a is a code region inside function f, which is used
to infer relations of attack steps related to static and dynamic
analysis;

Traces collected for function f, which indicates that the appli-
cation has been executed in a previous attack step, and which
enables all attack steps that involve dynamic analysis;

The value of the variable x is known, which may be the tar-
get of an attack (e.g., knowing the license key) or enable cryp-
tographic operations (together with the fact x is a symmet-
ric/asymmetric private key).

When a pre-condition is true, the attack step can be executed
and adds new facts in the fact base. The tool uses Prolog to infer,
with backward reasoning, if there is a sequence of attack steps, i.e.,
an attack path, that compromises the security requirements of the
assets. All the discovered attack paths are then added in the KB. In
the end, this tool is able to fill in an instance of the attack meta-
model in a completely automatic fashion. The effort of annotating
attack steps is only needed once and it needs an update only in
the rare event of new attack steps added to the KB. With this tool
we have been able to validate the satisfaction of requirement R3,
as the meta-model was able to properly store all the inferred at-
tack paths and steps on industrial ASPIRE use cases (as will be dis-
cussed in more detail in Section 4.2.12).

4.2.6. Protections and their potency estimation

The protections that counter the attack paths can be found with
various inference rules. We implemented them as custom enrich-
ment modules that integrate ontology reasoning with our EMF im-
plementation of the meta-model. Once these protections are found,
they must be applied in the right order on each (original, interme-
diate and protection) asset, thus producing a Solution instance.
Waiting for an effective automatic decision support system that
finds such, these solutions are manually devised. In order to assist
the security expert to estimate the effectiveness of such solutions,
the concept of potency introduced by Collberg et al. (1997) can be
used. The potency is essentially a value stating how good the secu-
rity of a protected asset is based on the value of selected software
metrics. In his work, Collberg proposed the use of seven static and
dynamic metrics. Since metrics need to be measured on the pro-
tected asset, evaluating the potency of a protection over a specific
asset means that the protection needs to be actually applied, the
program possibly rebuilt and some complexity metrics needs to be
extracted by an ad-hoc tool. This process can be time consuming,
especially if the application is big and/or if the number of candi-
date solutions to choose from is high. To avoid the actual applica-
tion of protections, we developed an estimator that uses a set of
neural-networks trained to predict, with a high degree of accuracy,
the variations of the metric values used to compute the potency.
Therefore, with this tool a defender is able to accurately estimate
the potency of a solution starting only from the unprotected assets’
complexity metrics without rebuilding the application each time
(Canavese et al., 2017).

By using the protection meta-model to store the information
about (single and combination of) protections applied to an asset
and the various application part metrics, we validated the satisfac-
tion of the requirements R4 and R6.

4.2.7. Hiding protected assets

Protected assets have recognizable fingerprints that can be
identified and exploited by attackers. For instance, obfuscation
techniques may flatten the control flow or increase the number
of if statements (opaque predicates) to render code understanding
more difficult. However, static analysis and inspection allow an at-
tacker to identify these protected parts with respect to unprotected
areas. Therefore, after having protected the assets, a security expert

might decide to fool the attacker by applying the same protection
on other application parts that are not real assets with the pur-
pose of delaying the attacker activities, who will have to evaluate
more candidate assets fingerprints. We named this protection step
assets hiding. We developed a tool (Regano et al., 2017) that au-
tomatically generates a mixed-integer linear problem for the IBM
ILOG CPLEX'6 solver to select the best applications parts where to
apply these decoy protections in order to maximize the attacker
confusion and delay, by leveraging the information in the applica-
tion and in the protection meta-models.

Also in this case, the protection meta-model served his purpose,
as it allowed us to model both the protected assets and the other
protected application parts, thus validating the requirement R5.

4.2.8. Petri net modelling of attacks

Petri Nets (PNs) (Peterson, 1977) are often used to model the
flow of information in concurrent and distributed systems. We
chose a Petri net editor to model reverse engineering attacks vi-
sually, thus helping to meet requirement R7.

Petri nets are bipartite graphs, with two types of nodes: places
and transitions, visualized as circles and rectangles respectively. In
our interpretation, places represent sub-goals reached during an
attack and transitions correspond to attack steps being executed.
The final place in the model represents the final goal of the at-
tacker, i.e., accessing or compromising the security-sensitive as-
set. By correctly connecting the places and transitions in a single
PN, one can easily model one or more sub-goals that need to be
reached before the next attack step can be executed, which attack
steps can be performed concurrently or sequentially, and which al-
ternative attack paths lead to the same goal. In a Petri net model
there are different attack paths that can be followed to achieve the
final goal. Each attack path is a temporal sequence of attack steps,
visited by a token (a black dot within a place in the PN model)
traversing the net from the initial state to the end state through
one of the possible attack paths. Each token represents a different
attacker in a team of attackers in collusion to achieve the same
goal. In this way attacks performed in parallel by two colluding
attackers can be represented.

PNs with Discrete Variables (PNDVs) are a more recent PN ex-
tension with a set of finite global integer variables, used in pre-
conditions, that are guards on transitions (Kindler, 2011). In our
experience with all the ASPIRE use cases, we noted that the infor-
mation used by the attackers can be decomposed and mapped to
a set of integer variables. For example, when looking for a crypto-
graphic key into a binary file, the attacker usually needs to identify
some areas of code worth of further investigation. Such intermedi-
ate knowledge can be represented with a code region array, where
each code region is represented by a couple of integer numbers,
representing the initial and final offset with respect to the base
address of the binary code.

To design the attack models we used ePNK, an Eclipse-based
tool'” which provides a Java-based extensible open source platform
for PN modelling, based on EMF and Graphical Modeling Frame-
work (GMF).’® The current ePNK plug-ins allow designing a PN
model with discrete values and save it as standard PNML' file,
as the GMF-based editor is built on top of an EMF meta-model of
PNML. We used this tool to model attacks on two software protec-
tion techniques. The first, as shown in Fig. 5, aims to extract the
cryptographic key from a White-Box Crypto (WBC) (Wyseur, 2008)

16 https://www.ibm.com/analytics/data-science/prescriptive-analytics/
cplex-optimizer.

17 See http://www.imm.dtu.dk/ekki/projects/ePNK/.

18 See http://www.eclipse.org/gmf-tooling/.

19 petri Net Mark-up Language (PNML) standard ISO/IEC 15909, on-line at http:
//[www.pnml.org/.
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TO-static
P1

Tdis-Find dispatch routine

Tdec - Find the decoder

Tvm - Find VM function

T5 - build disassembler

[le
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Fig. 5. Petri net for the attack on white-box cryptography.

T4 - code optim

T6 - Dyn analysis to find code chunks

Fig. 6. Petri net for attacks on a SoftVM.

library. The second aims at de-obfuscating the code of an ap-
plication protected by the use of custom, randomized instruction
sets that are interpreted by a software virtual machine (SoftVM)
(Ghosh et al., 2010), as shown in Fig. 6. These models have been
designed after four rounds of interactions with the security experts
from the ASPIRE project’s industrial partners responsible for the
development of these protections.>’

These modelling exercises have helped the security analysts in
identifying and visually defining the different attack steps and re-
lated attack tools. Moreover, the Petri net editor has been used
to populate the OWL KB with new attack step types and new in-
stances of attack steps. Each new attack step in the Petri net can
be mapped to a new or existing AttackStepType and to a new
AttackStepltem object in OWL, according to the syntax defined
in the attack meta-model of Fig. 4. Similarly the attack paths rep-
resented by the PN are mapped to many AttackPath objects in
the KB, while the temporal sequence between attack steps in a PN

20 WP4 deliverables on the ASPIRE website present a full description of the attacks
on the two use cases.

model is mapped into a set of OWL axioms instance of the isFol-
lowedBy relationships between two AttackStepltem objects. Fi-
nally the Petri net models have been used by other tools for more
advanced analysis and simulation (Zhang et al., 2016).

The Petri net modelling helped us in validating the R3 require-
ment of the meta-model by showing that it can represent even
complex attacks on industrial use cases.

In the remainder of this section, we report more details about
the modelling of the attacks on the two protections to demon-
strate the level of precision that our attack meta-model can reach.
First, the PN attack model on white box cryptography contains pre-
conditions to transitions. For example, in case the attacker has de-
tected AES-related binary code (represented by Ts0), he will run
a more precise static analysis with AESKeyFinder (represented by
Ts1), or in case RSA-related code is found (i.e., crypto = 'RSA’), he
will run a RSAKeyFinder (represented by Ts2), otherwise the IDA
Pro-findCrypt2 plug-in can be used (Ts3). After an initial phase
with the static analysis tool, the attacker is in P2 and can choose
among many following attack steps representing different dynamic
analysis techniques (Td1 to Td4): each attack step can be executed
depending on the results and the type of the static analysis attack
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step previously executed. The pre-condition can help defining that,
for example, Ts1 isFollowedBy Td1 is a possible sequence of At-
tackStepltem while other combinations of attack steps are not ac-
tually feasible.

On the other hand, the design of a PN attack model on vir-
tualization obfuscation as in Fig. 6 has shown that an attack can
be performed by a team of attackers working in parallel. In the
virtualization obfuscation, the SoftVM contains an interpreter that
fetches bytecode from memory. For each bytecode, the SoftVM ex-
ecutes the corresponding native code stored in the respective In-
struction Handler (IH), and then loads the next bytecode. The byte-
code is not stored in a single file or data structure but it split
in different code chunks spread throughout the native code. The
VM implementation is split in a set of [Hs which might be obfus-
cated and then encrypted and then spread through the native bi-
nary code using a binary rewriting tool. Each code chunk can con-
tain one or more bytecode instructions. The VM contains different
code portions that are interesting to the attacker: (i) the VM func-
tion called by the native code to transfer control to the VM; (ii) a
decoder, which translates the bytecode into native code; (iii) a dis-
patch routine that given a particular bytecode invokes the IH, and
(iv) the different IHs.

Petri nets are particularly useful to model parallel processes,
and in this example we can see how three attackers can work to-
gether to achieve the common goal. Attacker1 can start looking
for the VM function with dynamic analysis (attack step Tvm), and
then search for the bytecode chunks within the binary code (T6).
The other two attackers can find the dispatch routine of the VM
(Tdis) and then split the work: Attacker2 can focus on the de-
coder function and building a custom disassembler for the byte-
code (Tdec followed by T5), while Attacker3 can search for the IHs
using various static and dynamic analysis tools (To, T2, T3, T4).

In order to rebuild the de-obfuscated code (attack step T7), At-
tacker2 and Attacker3 must synchronize to understand the byte-
code semantics by running the code chunks (found in attack step
T6) through the custom disassembler (built in attack step T5).
Once Attacker1 will find the IHs he will have to synchronize with
the others to combine the bytecode semantics and IHs manually to
understand the full semantics of the de-obfuscated code. This case
study with parallel attacks can be represented in the KB system
with a set of axioms representing the different sequences of At-
tackStepltem linked by the relationship isFollowedBy; in fact, (T5,
T6, T7) or (T6, Th, T7) are two valid attack paths representing the
fact that T7 can start only when both T5 and T6 have been per-
formed in any order.

4.2.9. Validation on software protection tool chain

In the ASPIRE project, a tool chain for composable native soft-
ware protections was developed (Basile et al., 2016), which inte-
grates a wide range of protections, and of which almost all com-
ponents are available as open source at https://github.com/aspire-
fp7/. This tool chain is called the ASPIRE Compiler Tool Chain
(ACTC). It uses compiler techniques to deploy software protections
on applications. Those protections all implement different parts of
a layered software protection architecture (Wyseur et al., 2016;
De Sutter et al., 2016a). The ACTC's protections aim at defending
against reverse-engineering, tampering, and cloning. They include
code and data obfuscations Collberg et al. (1997), white-box cryp-
tography (as also discussed in Section 4.2.8) (Wyseur, 2008), code
mobility (Cabutto et al.,, 2015), code diversity, code guards, code
renewability, remote attestation and migration of sensitive code
to secure servers (Viticchié et al., 2016), use of custom instruc-
tion sets interpreted by virtual machines (Ghosh et al., 2010) (as
also discussed in Section 4.2.8), anti-debugging by means of self-
debuggers (Abrath et al., 2016), and more.

int func(int x)
{
int i=0;
//start of the asset
_Pragma ("ASPIRE begin requirement (integrity)");
x++;
i-=;
_Pragma ("ASPIRE end");
//end of asset
return i-x;

Fig. 7. Example of a code annotation used to define assets.

During the project, we validated that the presented meta-model
can capture the necessary aspects of all of those protections, of the
tool chain that allows the composition of those protections to vary-
ing degrees, and of the attacks we surveyed in the project and col-
lected in the so-called ASPIRE attack model. This includes, e.g., the
two attack models discussed in Section 4.2.8. We cannot discuss
the full attack model in detail, as it was a confidential document.
It consists of a survey of the different types of assets and their se-
curity requirements; the different types of attackers that we might
face; the concrete methods, tools, and techniques that are avail-
able to the attackers and the different types of attack activities that
can be performed with them to reach specific intermediate or fi-
nal attack goals; as well as the possible ways in which the attack-
ers combine different attack activities to reach their final goal. We
do confirm, however, that all attacks considered as relevant in the
scope of the ASPIRE project by both its academic and its industrial
partners, are covered by our meta-model.

From this discussion, and from the final validation report
(De Sutter et al.,, 2016b) of the ASPIRE project, we conclude that
requirements R1-R6 are met with respect to the concepts and re-
lations considered relevant in the scope of the ASPIRE project.

4.2.10. Software protection work flow

The tools presented in Section 4.2.2 and Sections 4.2.5 to
4.2.8 have been integrated with the ACTC as introduced above, to
assist software developers in (semi-automatically) protecting their
applications with the ACTC. The meta-model allowed us to inte-
grate inferences as needed for providing decision support for us-
ing the tools in the ACTC into a KB system. The integrated tools
and the ACTC thus form a tool-supported work flow for semi-
automated software protection.

As a first step, the work flow calls the tool of Section 4.2.2 to an
instance of the application meta-model by parsing and analysing
the structure of the C/C++ application to be protected. The user
only needs to link the application parts he considers as assets to
security requirements. This is done manually, via pragma annota-
tions. An example of an asset, in this example a part of the C code
that requires integrity, is provided in Fig. 7. For a complete spec-
ification of the supported annotations, we refer the reader to the
ASPIRE Framework Report (Basile et al., 2016) and the ASPIRE Open
Source Manual (Coppens et al., 2016).

The structure of the target application is described by means of
classes from the application meta-model of Section 3.2. Variables
and functions are translated into instances of the ApplicationPart,
assets as Asset instances, while security requirement annotations
are translated in hasRequirement relationships between the As-
set instances and values of the SecurityRequirement enumera-
tion.

The structure of the application stored in the KB is then
analysed by the automatic attack discovery tool described in
Section 4.2.5. The identified attacks against the application’s as-
sets are then translated by using the a-posteriori classes defined
in the attack meta-model described in Section 3.4. For each in-
stance of the hasRequirement relationship, i.e., for each secu-
rity requirement of each asset, the tool generates an instance of
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the AttackTarget class, with the threatens and affects relation-
ships set accordingly. Then, for each AttackTarget instance, the
tool tries to generate any possible AttackPath containing at least
one AttackStep having a hasTarget relationship with the Attack-
Target instance. Attack paths are generated by following a set
of Prolog rules, contained in an external KB system, as described
in Regano et al. (2016). Identified attacks may also be manually vi-
sualized and refined by the software developer with the Petri net
tool described in Section 4.2.8. Manual attack paths may be added
to the attack meta-model; they will hence be compatible with the
later tools in the work flow.

After inferring the possible attacks against the application with
the custom enrichment modules of our EMF meta-model imple-
mentation described in Section 4.2.6, the work flow identifies the
protections that can be applied on the target software in order to
block the attacks found in the precedent step of the work flow.
The tool automatically generates an instance of the Protection-
Instance class for each AttackPath instance for each Protection
having a Mitigation for the AttackStepType of at least one At-
tackStep instance in the target AttackPath. The candidate Protec-
tionlnstance instances can be manually combined by the applica-
tion developer into an instance of the Solution class.

The tool described in Section 4.2.6 produces an estimation of
the software metrics on the ApplicationPart instances after be-
ing protected with the AppliedProtectioninstance instances in
the Solution (linked with the isAppliedOn relationship). The es-
timated metrics serve to compute an estimated potency of the so-
lution without actually applying any protection on the application.
With this approach, the defender can quickly compare several so-
lutions in terms of effectiveness and overhead, without spending
time to actually apply the solutions and measure and compute the
metrics on the target software. Clearly, the usefulness of the esti-
mation relies on its precision. In the ASPIRE project, in which we
used profile information collected on the unprotected software to
drive the estimation, we found it sufficiently precise for selecting
protections. These data are saved in the protection meta-model by
means of hasMetric relationship between each Solution and Met-
ric class instances, for each pair of ApplicationPart and Metric-
Type. Moreover, the original metrics of the unprotected applica-
tion can be modelled using a dummySolution instance that links
no protections and it is not related to any AppliedProtectionln-
stance.

Next, assets are hidden in other code with the tool of
Section 4.2.7. It refines a Solution by adding decoy protections as
AppliedProtectionlnstance class instances, both on already pro-
tected assets and other ApplicationPart instances not marked as
assets. In the latter case, there is no need to link the Application-
Part to security requirements.

As a final step, a tool is executed to annotate the source code
of the application with data that can be processed by the ACTC
tool chain to automatically apply the protections. The tool, starting
from the solution selected by the defender, navigates the associa-
tions in the meta-model to identify the code to be protected (i.e.,
files and line numbers) and determines, for each code region to
protect, the low-level parameters that configure the deployment of
each protection. All the data that will drive the tool chain for that
deployment is injected into the source code in the form of low-
level annotations, named protection annotations. Like the afore-
mentioned security requirement annotations, these are pragmas
and attributes. With the protection annotations, however, the de-
veloper configures the ACTC to deploy concrete protections on the
assets, i.e., on the annotated code fragments. We again refer to the
ASPIRE Framework Report (Basile et al., 2016) for a complete spec
of those annotations.

4.2.11. Validation of work flow on open source application

We have executed our work flow on an open source applica-
tion, Sumatra?!, a C console application used to compare DNA se-
quences. More information on the meta-model instance and the
meta-model parts that have been instantiated during the phases
of the presented work flow is available as support material to this
paper.

To simulate a risk analysis and mitigation task of a software
application, even if Sumatra is open-source and free, we treated
it like it was commercial software, whose comparison algorithms
must be safeguarded against reverse engineering to protect intel-
lectual property. We have thus manually identified the assets, 25
functions related to the DNA comparison, performed in four con-
secutive phases, which we have associated to the confidentiality
security requirement.

We have identified 162 attack paths able to compromise the se-
curity requirements associated to the assets. Then, we have iden-
tified nine types of protections that may help in stopping/delaying
the identified attacks. These protections can be applied in differ-
ent ways to the assets by changing their configuration and appli-
cation parameters, our tool flow identified 299 different protection
instantiation instances that can be considered during the protec-
tion phase (e.g., for trading off performance and potency). Based
on this information about attacks and useful protections, we have
defined one solution that, according to our experience, properly
protects the assets. This solution includes 27 protections instances,
at least one for each asset. For an asset that has been considered
more sensitive, the solution foresees the application of a combina-
tion of three protections. Finally, we have refined this solution by
adding 45 protections to additional application parts to help hiding
the original assets.

The instantiation of the meta-model and the associated knowl-
edge base is available as an ontology file?2, written in the Web
Ontology Language 2 (OWL2). In a supplementary document asso-
ciated with this paper (Basile et al., 2019), we present a detailed
analysis of how the work flow performed on the Sumatra applica-
tion, and how the meta-models were instantiated for this applica-
tion.

4.2.12. Validation of work flow on industrial use cases

As part of the ASPIRE project, the ACTC was validated on in-
dustrial use cases. The three industrial project partners, Nagravi-
sion, SafeNet and Gemalto, are world market leaders in their dig-
ital security fields. They developed the uses cases, and in partic-
ular the client-side Android apps of which the security-sensitive
parts were implemented in native dynamically linked libraries
that were protected by means of the ACTC. DemoPlayer is a me-
dia player provided by Nagravision. It incorporates DRM (Digi-
tal Right Management) functions that need to be protected. Li-
censeManager is a software license manager provided by SafeNet.
OTP is a one time password authentication server and client pro-
vided by Gemalto. Table 2 shows their lines of code (measured by
sloccount Wheeler (2001)). All security-sensitive code is imple-
mented in the C code part, which is the code protected with the
ACTC.

Security experts from the industrial partners determined the
assets in the C code, as well as their security requirements. A
pseudonomynous list of them can be found in Section 5 of the AS-
PIRE Validation Report (De Sutter et al., 2016b). The security ex-
perts, together with the developers of the ACTC, then also deter-
mined which configurations of protections have to be deployed on
each asset to achieve sufficient protection against attacks on the
assets. Table 1 lists the deployed protections on the use cases. Note

21 https://git.metabarcoding.org/obitools/sumatra/wikis/home.
22 https://github.com/uel-aspire-fp7/text2owl/EMSE2018.owl
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Table 1
Protections applied to each industrial use case.
Industrial UC Data  Anti Remote Code Client-Server ~ SoftVvM  WBC  Binary  Diversified
Obf. Debug  Attestation  Mobility  Splitting Obf. Obf. Crypto Libs
DemoPlayer X X X X X
LicenseManager X X X x X X
OTP X X X

Table 2
Size of industrial use case applications in SLoC per file type, before the
ACTC is deployed.

Application C H Java C++ Total
DemoPlayer 2595 644 1859 1389 6487
LicenseManager 53,065 6748 819 - 58,283
OTP 284,319 44,152 7892 2694 338,103

the use of the SoftVM obfuscation and WBC for which we dis-
cussed Petri net attack models in Section 4.2.8. To generate the
protected use cases, their thus annotated source code was sent
through the ACTC.

At this point, it is useful to remark that the penetration test-
ing experiments with professional, hired hackers mentioned in
Section 4.1.1 as the basis for the models developed by Ceccato
et al. (2017, 2018) were performed precisely on these protected use
cases. When we validated that our meta-model covers all protec-
tion and attack concepts taken into account by Ceccato et al. as
discussed in Section 4.1.1, this therefore already implied the vali-
dation of the meta-model with respect to all attack activities per-
formed on the protected industrial use cases by the professional
penetration testers. For those penetration tests, the necessary pro-
tection annotations were injected into the use cases’ C code, and
the thus annotated use cases were compiled and protected by the
ACTC.

Access to the industrial use cases, to the security requirements
of their assets, to experts’ opinions on how to best protect the as-
sets with the ACTC, and to reports of actual penetration test ex-
periments performed on the protected use cases provided an ideal
basis for validating the meta-model and the work flow engineered
around it.

We hence validated the work flow presented in
Section 4.2.10 on the use cases. For this validation, we started from
use case source code annotated with the security requirements
annotations, not with the protection annotations. Also in this
validation effort, we involved security experts from the industrial
partners. In particular, we asked them to assess the practical
usefulness of the work flow.

The security experts were satisfied by the level of detail of the
information obtained by our tools about the applications to pro-
tect. This implicitly validates the meta-model that allow to repre-
sent these data.

The security experts were surprised by the number of attack
paths our tool was able to identify and appreciated the possibility
to add new attack paths manually. Again, the information repre-
sented by the meta-model was defined sufficient and appropriate.
However, they found the attack steps we instantiated for our anal-
ysis had been defined too coarse grained. As the meta-model sup-
ports more fine-grained attack steps (we simply did populate the
KB a-priori knowledge with such steps), this is not a fundamental
issue.

Furthermore, the experts were satisfied by the protections iden-
tified by the tool to mitigate the risks of each attack path. To a
large degree, these identified protections overlapped with the ones
they had proposed manually. They also appreciated the possibil-
ity to precisely link each protection to the attack step it affected.

Moreover, the possibility to indicate combination of protections
and an optional order of application was an important character-
istic, in their opinion, for the adoption of the work flow.

Even if they were a bit reluctant on considering the potency
score we computed for each combination of protections as trust-
worthy, they were convinced that the possibility to visualize met-
rics and protection scores for each asset to protect was a useful
feature.

We can conclude from the feedback received that the meta-
model and the corresponding work flow can be considered posi-
tively validated.

5. Related work

In this section we provide some additional insights on the cur-
rent state-of-the-art on the use of meta-models, ontologies and
Petri nets in cyber-security, complementary to the related work al-
ready discussed in the introduction.

Meta-models. Various meta-models and modelling languages have
been proposed to represent threats in enterprise networks.
Sommestad et al. (2013) presented the Cyber Security Modeling
Language (CySeMoL), which can be used to model computer sys-
tems in enterprise networks. In addition, the authors presented a
way to infer threats against such systems using an inference en-
gine on the models developed with CySeMol, evaluating also the
success probability of the inferred attacks. Based on this work,
Vilja et al. (2015) proposed an improved security analysis, that
considers attacks by attackers external to the enterprise network
mounted and by legitimate users inside the network.

Kritikos and Massonet (2016) presented a meta-model to assess
the security of cloud applications, alongside a domain specific lan-
guage, namely CAMEL (Cloud Application Modelling & Execution
Language). It permits the description of the design and the secu-
rity requirements of cloud applications and allows the validation
of the model against a set of constraint expressed using OCL (see
https://www.omg.org/spec/OCL/).

In the field of access control systems,
Mouelhiv et al. (2008) proposed a meta-model to represent
access control policies, with a particular focus on mutation analy-
sis, a testing technique for security policies based on the voluntary
injection of flaws (mutation) in policies, in order to evaluate the
efficiency of the security tests. Mutation operators are included in
the meta-model to represent the aforementioned testing process.

Model-Driven Reverse Engineering approaches usually aim at
extracting models from code (Raibulet et al., 2017); our work is
the first proposed meta-model including software protections and
reverse engineering attacks.

Ontologies. A significant deal of work has been done by the sci-
entific community in defining ontologies for cyber-security pur-
poses. Herzog et al. (2007) presented an ontology in OWL to
model vulnerability and threats on assets in network domains,
with the relative countermeasures. The authors presented, along-
side the ontology itself, a set of possible inferences that can be
done on it, e.g., finding all the appropriate countermeasures for
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a specific threat. They also show how to query the ontology us-
ing the SPARQL language. Ekelhart et al. (2006) developed an-
other security ontology, built to simulate attacks against assets
in corporate networks, in order to support a cost-based analy-
sis of these threats. It is an extension of a previous work by
Landwehr et al. (1994), where the authors created an ontology as
a centralized KB of flaws for computer systems designers and se-
curity analysts. Costa et al. (2016) proposed a security ontology fo-
cused on the modelling of insider threats, e.g., potential malicious
activities by legitimate users inside an organization. They also de-
scribed a database of real life incident reports, named MERIT, built
by the authors to validate the ontology against real life use cases.

Petri nets. Petri-nets are a super-set of state-transition diagrams,
and their usefulness for attack modelling was pointed by McDer-
mott as an alternative to attack trees (McDermott, 2000), as Petri
nets are better at representing the actions of simultaneous attack-
ers collaborating on the same attack. Traditionally attack trees have
been the most common type of model for representing known at-
tacks (Dewri et al., 2007) as a hierarchy of sub-goals leading to
the final goal. Attack trees have been extended to attack graphs
where nodes might have associated values or logical and/or con-
ditions (Sheyner et al., 2002). Other proposals of attack graphs
have emerged with different semantics and visual representation
to document attack paths (Gupta and Winstead, 2007), analyse
risks (Sheyner and Wing, 2003) or generating attack graphs from
a PROLOG KB (Ou et al., 2006). Roy et al. (2012) proposed Attack
countermeasure trees (ACT) to extend attack trees to take into ac-
count both attacks and protections. Attack trees and attack graphs
lack a common standard for representing and exchanging models
and the fact that they are subset of Petri Nets models made us
choose the latter modelling for visual editing of attacks and ex-
porting in standard PNML format.

Recently they have also been used to combine hierarchical
Petri nets to model specific cyber-physical attacks on smart grids
(Chen et al., 2011), while Wang et al. (2013a) focused on Petri
net based attack modelling for software security where the at-
tack step difficulty is ranked within five categories (from au-
tomated to fully manual). Xu and Nygard (2006) also models
attacks with aspect-oriented Petri nets to superimpose protec-
tions as sub-nets to be interconnected with the attack model.
Dalton et al. (2006) suggested generalized stochastic Petri nets for
attack modelling; stochastic Petri nets are a type of timed Petri
nets where transitions fire after random times. Coloured Petri nets
(CPN) are used to design coloured Petri nets, where tokens repre-
sent different data types (colours) (Jensen, 1987); a similar open-
source project is PIPE Petri Net editor and simulator (Dingle et al.,
2009), however both tools cannot export the model to standard
formats, making more complicated the conversion of their models
towards standard formats like OWL.

6. Conclusions

This paper has presented a meta-model developed to describe
the knowledge needed to perform risk analysis in the context of
software protection against MATE attack scenarios that involve re-
verse engineering and tampering attacks. We discussed how the
meta-model meets a set of concrete requirements, we discussed
how existing models and taxonomies in the domain of software
protection are covered, and we presented a range of tools that
demonstrate the practical usefulness. Moreover, we provided a de-
tailed use case analysis in the form of an instance of the meta-
model filled in with the data from the risk analysis and mitiga-
tion of an open source software application. doi:10.1016/j.jss.2018.
12.025.

Developing an automatic decision support system is the long
term goal of our research, which we have started addressing with
the ASPIRE project. There are several open issues to solve before
such a system can be used in the real world. The most relevant
one is the weak correlation between measurable characteristics of
the software (protected and unprotected) with the empirical as-
sessment of the effort needed to perform successful attacks.

One important result of the research in this field would be in-
stantiating the meta-model with an as much as possible complete
representation of the generic a priori information, to be shared
with the software protection community. However, this goal will
certainly face major issues. For political aspects (related to the ad-
herence to a security by obscurity principle) companies do not
share their data about protection assessment (e.g., weak points, at-
tack paths against their protections).

We also foresee that the model may be extended in the future,
e.g., to cover different software distribution formats, such as (more
symbolic) bytecodes.
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