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Abstract

Inspired by the classical riot model proposed by Granovetter in
1978, we consider a parametric stochastic dynamical system describ-
ing the collective behavior of a large population of interacting agents.
By controlling a parameter, a policy maker aims at maximizing her
own utility which, in turn, depends on the steady state of the system.
We show that this economically sensible optimization is ill-posed and
illustrate a novel way to tackle this practical and formal issue. Our
approach is based on I'-convergence of a sequence of mean-regularized
instances of the original problem. The corresponding maximizers con-
verge towards a unique value which intuitively is the solution of the
original ill-posed problem. Notably, to the best of our knowledge, this
is one of the first applications of I'-convergence in economics.
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1 Introduction

Understanding and controlling collective behavior is a challenging, subtle and
potentially very useful endeavour (see|Granovetter|[1978]). The mere attempt
to know agents’ preferences, motives and norms is fraught with practical and
conceptual difficulties: data are sometimes scarce or difficult to obtain and
persons may have blurred incentives and hide or misrepresent, consciously
or not, the drivers of their behavior. Moreover, even when a reasonable
model for individual actions is agreed, results can be puzzling as shown, for
instance, in Thomas Schelling’s segregation model where slight homophilic
preferences for neighbors of the same race lead in equilibrium to massive
residential segregation, [Schelling [1971]. These collective models are know to
produce very diverse and intriguing outcomes (simple vs complex attractors,
bifurcations, stable polarized vs non-polarized equilibria,...). Therefore, a
policy maker (or any external mastermind) could be interested in controlling
the behavior of the population by setting, in her capacity, some parameters
at some optimal level.

We consider a problem characterized by two components: a dynamical
system describing the evolution of some state variable that represents, in
aggregate terms, agents’ collective behavior; and a social planner who ez-
ante sets the parameters of such dynamics to maximize her payoff which,
in turn, depends on the steady state of the system. Interestingly, in some
cases, the problem turns out to be ill-defined in that the objective function
is bounded form above but does not admit a maximum. However, we show
that, by defining a proper sequence of auxiliary stochastic problems, it is
possible to formally prove a convergence result whose limit is well-defined
and helps in shedding light on the original problem.

To fix ideas and keeping for the moment the formalism at a minimum,
consider the dynamical system

r(t+1) = F(r(t);0),

where the future state r(¢+ 1) depends on the current state r(¢) through the
(iterated) application of F', as well as on a parameter o. Assume now that
for a given initial condition 7(0) = rg, a limit state p(c) is reached[l] The
social planner attempts to solve an optimization problem which depends on
p(0) and is subject to some costs ¢(o). Specifically:

max f(o), where f(o) = p(o) — c(0). (1)

Formally, this means that p(c) = lim;_, F¥(rg;0), where F! is the composition of F
with itself for ¢ times.



The fact that the payoff of the social planner positively depends on the
long-run outcome of the system, (i.e., on p(o)) seems reasonable for many
applications. Consider, for example, the case where r(t) represents the mar-
ket share of a durable good and ¢ is a parameter related to the quality of the
same good. In this respect, p(o) can be interpreted as the equilibrium mar-
ket share related to a specific quality strategy implemented by the company.
In the payoff, the cost component, ¢(o), plays the role of the (potential)
cost to implement such strategy and, mathematically speaking, completes
the definition of a specific parametric dynamical system indexed by o.

Modelling approaches of individual decisions giving rise, at the aggregate
level, to dynamics resembling can be found, among others, in Blume &
Durlaufi [2003] or Barucci & Tolotti [2012]. Models of supply and demand
emerging in financial markets, where a similar structure manifests itself are
presented in (Gordon et al| [2013]. Diffusion of innovations and adoption
models of durable goods as pioneered in Bass |[1969] and, recently, in Peres
et al.| [2010] share a micro-foundation which is similar in spirit to the one
presented here. Also epidemiological models of SI (Susceptible Infected) type
exhibit dynamics which resemble the formalism proposed in . Finally, as
already said, a celebrated model in this context goes back to |Granovetter
[1978]; here, a mastermind manipulates the mood of crowds to trigger riots
that in the end involve a large fraction of the population. Hereafter, due to
its clarity and simplicity, this latter riot model will be used to motivate our
treatment and exemplify our results.

The previous situations all share a similar conceptual structure: contin-
gent on the value of the parameter, some equilibrium is likely to endogenously
appear as the final outcome of the dynamics and an external agent is inter-
ested in shaping or controlling this outcome. While the intuition appears
to be quite natural, the explicit setup of this “optimization problem over a
dynamical system” is not so frequent and we explore some of the intrinsic
difficulties that may arise defining such problems.

In fact, we show that problems formalized as in can be ill-posed in that
the objective function is discontinuous, has no maximum but only admits a
supremum. Essentially, this is due to a saddle-node bifurcation characterizing
the dynamical system: one of the fixed points of the equation r = F(r;0)
disappears, when o increases beyond some critical value O'CEI Note that p(o)
is one of such fixed points (actually, the smallest one in our setup) and the
presence of a bifurcation makes its value abruptly jump at the bifurcation
value. On the top of that, as already noticed in Granovetter| [1978], the

2 A brief description of saddle-node bifurcations is postponed to Appendix A. See |Stro-
gatz| [2015] for an exhaustive analysis of bifurcations in dynamical systems.



bifurcation value o, is intuitively the value the value the masterind is looking
for. In loose words, the system is purposedly steered to reach a bifurcation
point (as this is advantageous).

However, as a matter of fact, this value is not a maximizer for f, but rather
a point where a supremum is attained. As a consequence, this optimization
problem is intrinsically ill-posed. Summarizing, at odds with their natural
appeal, problems like can be fraught with technical difficulties that may
impede formal and numerical treatments.

Technically speaking, one of the main goals of this paper is to overcome
such technical issue by examining the problem from a different angle. Instead
of looking at the steady states of the one-dimensional (deterministic) dynam-
ical system as expressed in , we introduce a regularized stochastic version
of it, where the number of agents in the population is large but finite. Albeit
stochastic, this problem is now well-defined and admits a unique maximizer
oy for all N, where N is the size of the population. Finally, we are able to
provide a formal limit for NV going to infinity and to show that the sequence of
maximizers, (o} )n>1, converges exactly to o., the value that is “expected” to
be a solution of the ill-posed original problem. Interestingly, it turns out that
the aforementioned convergence holds in a I'-sense: we will formally prove
that the sequence of objective functions fy of the auxiliary N-dimensional
problems I'-converges to a well-defined fo (see (13))). This I-limit turns
out to be almost everywhere equal to the original objective function f ex-
cept at the optimal level o] The result sheds light on one rigorous way to
deal with the ill-posedness of the original problem hinted at in Granovetter’s
work. More recently, singularities similar to the one described above are also
detected in |[Nadal et al| [2005] and |Gordon et al|[2013]. In these works,
the authors model a monopolist in charge to set the optimal price to foster
demand and maximize profits. With language and notation borrowed often
from physics, these papers contain a model that has similarities with ours
and contains a lengthy discussion of the “epistemic uncertainty” inherent in
selecting one price to maximize monopolist’s profits. Uncertainty due to the
presence/disappearance of multiple equilibria is acknowledged by sentences
like “[the optimal solution] lies very near the critical price value at which such
high demand no more exists” (Gordon et al. [2013]). The singularity recog-
nized (albeit not “solved”) in their model can be formally tackled through the
use of a I'-convergent sequence of problems whose limit results to be almost
everywhere identical to the original singular model.

Coming to the methodology, to the best of our knowledge, papers in the

3We refer the reader to Appendix B for a brief recap on I'-convergence and to Braides
[2002] for a complete treatment.



realm of mathematical economics and social sciences employing I'-convergence
are quite rare. (Ghisi & Gobbino| [2005] describes a variational problem aris-
ing from a generalization of the well known monopolist’s problem introduced
in Rochet & Choné| [1998]. In this model, the monopolist proposes a set of
products and looks for the optimal price list which minimizes costs, hence
maximizing the profit. This leads to a minimum problem for functionals
H (the “pessimistic cost expectation”) and G (the “optimistic cost expecta-
tion”), which are in turn defined through two nested variational problems.
The authors prove that the minimum of G exists using an approximating
sequence which I'—converges to G, and that such a minimum coincides with
the infimum of H. An economic model of monopoly has also been studied in a
general setting by [Monteiro & Page Jr.[[1998], and under convexity assump-
tions by |Carlier| [2001]. In the latter, the author studies a principal-agent
model with adverse selection and characterizes the incentive-compatible con-
tracts in terms of an envelope property called h—convexity. Using this char-
acterization, the principal’s problem is written as a non-standard variational
problem (with h—convexity constraint) for which existence of a solution is
proved. In Monteiro & Page Jr. [1998], similar general existence results for
the principal-agent problem with adverse selection are given. However, the
way to deal with the problem is different from the one in |Carlier| [2001], since
the authors consider budget constraints that force the prices to remain in a
given compact set and their results rely on a nonessentiality assumption (i.e.,
nonessentiality of some goods relative to other ones) which is not required in
Carlier| [2001].

We show in this paper how I'-convergence can be used to deal with a nat-
ural but ill-posed problem faced by the decision-maker. Indeed, the economic
interest of our treatment stems from the observation that it is the decision-
maker herself who rationally pushes the system to configurations where some
equilibria disappear. This fact also poses severe difficulties when numerical
solutions are searched, especially if one studies higher dimensional systems,
where the insightful graphical representations of |Granovetter [1978] are un-
available. The decision-maker is akin to someone willing to reach the edge
of a cliff to reap benefits while approaching, at the same time, a dangerous
discontinuity.

The paper is organized as follows. Section [2| describes in detail the op-
timization problem as stated in (1)). In Section [3| we provide a stochastic
version of the same problem where the number of actors in the economy is
now finite. This stochastic approach, albeit looking more cumbersome at the
surface, provides a double benefit: first, it allows us to take advantage of
probabilistic tools and, secondly, it naturally leads the modeler to simulation
and numerical methods. We will see that this finite-dimensional approach is



crucial to analytically set the proper convergence scheme. Section [ is de-
voted to the analysis of numerical simulations, whereas in Section |5 we draw
some conclusions. Appendix A contains all technical proofs and Appendix B
summarizes the main concepts of I'-convergence employed in the paper.

2 The deterministic dynamic model

Inspired by |Granovetter| [1978|, we first consider a (infinite) population of
actors facing the decision of taking part in a riot. Agents are heterogeneous,
they are aware of the actual proportion of people involved in the riot and
decide whether to join or not according to a personal (random) activation
threshold. If the proportion of active agents is above the threshold, they join
the crowd; otherwise they don’t. Technically speaking, the random thresh-
olds are independent copies of a random variable with distribution F', which
is assumed to be, from now on, Gaussian with fixed mean p = 0.25 and
standard deviation o > 0] Recall that o will be set by the social planner.
In this respect, by choosing o, she is fixing a specific Gaussian distribution
F and, hence, a specific behavioral trait of the underlying population of po-
tential rioters. Practically, this can be interpreted as a purposely inflation of
the volatility of the crowd to ignite a riot.

Let call r(t) the proportion of agents taking part in the riot by time ¢,
where ¢ € N and fix 7(0) = 0F] People, whose threshold is lower than r(t),
decide to join the riot at time £+ 1; moreover, once they are part of the riot, it
is not possible to retire. Therefore, r(t+1) will account for the people already
involved at previous time plus the proportion of newcomers. In other terms,
this is exactly F(r(t);o), i.e., the probability of the threshold being lower
than r(¢). Hence, we obtain the recursive equation of Granovetter |[1978]:

r(t+1) = F(r(t); o). (2)
We denote by p(c) the smallest solutionﬂ of the fixed point equation

r=F(r;o). (3)

4We use the statistical specification suggested in Granovetter [1978].

SWe are interested in studying the case where the initial condition is zero (or small) as
a benchmark for applications where the social phenomenon is analyzed from its beginning.

SIn this respect, p(o) can be interpreted as the lowest fized point function in the sense
of Milgrom & Roberts| [1994]. In that classical paper, the authors discuss conditions for
monotonicity of such a map. Conversely, we are interested in those situations where the
monotonicity is broken.



1.0

0.8
|

0.6

F(x, 0)

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: The graph of x — F(x;0) for three different values of o. Specifi-
cally, 0 = 0.1 (solid line), o = 0.122 (dashed line), and o = 0.15 (dot-dashed
line).

In case F' admits a unimodal density function (as in our example based
on Gaussian thresholds), it is possible to characterize such an equilibrium.
In fact, it is well known that under this minimal assumption, there are at
most three solutions to , and the number of such solutions depends on
the value of 0. Moreover, when there are three equilibria, the intermediate
one is always unstable whereas the two extreme ones are (locally) stable. As
said, we are interested in the case where the initial condition is zero and,
therefore, the dynamical system always converges to the smallest solution of
(3). This family of dynamical systems exhibits what is called a saddle-node
bifurcationﬂ Keeping 1 = 0.25, the black line in Figure [1| shows three fixed
points of r = F(r; o), occurring when ¢ = 0.1. The intermediate fixed point,

"For a formal analysis of saddle-node bifurcations and related facts, we refer the reader
to Lemma |£f| in Appendix A.



located at about 0.15 is unstable and, hence, the limit state for any initial
condition below this fixed point would converge to the lower fixed point. For
all such initial conditions, the limiting fraction of population involved in the
riot would be about 0. Suppose now that the social planner has the power
to increase o (at a cost): this has the effect to slide upwards the graph of F,
up to the point where the two smaller fixed points merge when F' is tangent
to the bisector line (the case is depicted with the dashed line in Figure
obtained when o = 0.122 & o, where 0. denotes the exact tangency value).
Now, the limit state when the initial fraction of citizens involved in the
riot is an infinitesimal fraction would raise to about 6.2%. But, even more
importantly, a further tilt to F' beyond o, triggers the occurrence of a saddle-
node bifurcation and the limit state abruptly jump to 1, see the dot-dashed
curve in the picture, relative to o = 0.15.
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Figure 2: Equilibrium share p(o) of the population involved in the riot as a
function of ¢. The discontinuity occurs at o, =~ 0.122.

Figure [2| depicts the effect of the saddle-node bifurcation on the equi-
librium share p(o) of the model: clearly, as o is increased beyond o, the
disappearance of two fixed points generates a jump in the limit state that
will be reached through iteration of F'. As pointed out in [Strogatz| [2015],
the term “saddle-node” is not entirely consolidated in the dynamical systems’
literature and, for instance, such a bifurcation is quite imaginatively called a
“blue sky bifurcation” in some cases to stress that, reversing the direction of
the change of o, a new equilibrium can be created “out of the blue”.



Figure [2[ shows that p(c) has no maximizer as a function of o, that can
be interpreted as the mood of the population. As it was influentially pointed
out in Granovetter| [1978|, finite populations drawn from the same F', when
o ~ 0., may lead to very different limit states under iteration: “There is no
obvious sociological way to explain why a slight perturbation of the normal
distribution around the critical standard deviation should have a wholly dis-
continuous, striking qualitative effect... This example shows again how two
crowds whose average preferences are nearly identical could generate entirely
different results”ﬁ

The revelation that minor perturbations in individual features could pro-
duce large aggregate effects was probably a part of the zeitgeist of the late
seventies as similar ideas are present in |[Schelling| [1971] concerning racial seg-
regation. Likewise, Allen and Sanglier in 1979, examining dynamic models
of urban growth distilled their results observing that “small perturbations of
density, perhaps of random origin, are amplified by the interactions between
the elements of the system, and lead to a qualitative change in the macro-
scopic structure of the spatial distr@'bution”.ﬂ It is opinion of the authors that
these insights keep their freshness despite four decades have passed.

To make this argument formal, we deviate from the original paper and
introduce an external agent acting as a social planner. Suppose that a rabble-
rouser is interested in fueling a massive participation in the uprising. Of
course, due to the cost of stiring-up people, the policy maker is facing the
following decision problem: “How to optimally settle the mood of the popula-
tion in order to obtain a large-scale riot?”. Consider a unitary cost k > 0 for
a unit of standard deviation, her optimization problem can be written as

max f(o), where f(o) = p(o) — ko. (P1)

Notice that, if k£ is too large, the problem loses of interest since the objec-
tive function reaches a proper maximum at some point o < o, possibly, at
o = 0. Therefore, in the following lemma we define a suitable threshold for
k. A similar argument applies also to the expected value p related to the
distribution function F['% Although no closed-form solution for this problem
exists, the objective function has the same behavior depicted in Figure [2 as
proven by the following lemma/|

8See (Granovetter| [1978], pages 1427-1428.

9See |Allen & Sanglier [1979], page 257.

10More details on such threshold levels for k£ and p are provided in Appendix A.
L1 ATl proofs are postponed to Appendix A.



Lemma 2.1. Define o. as the value of o that makes the graph of the map
x +— F(x;0) tangent to the bisector line. Define also

f=lim f(o0) =7 —ko,, 7.:= lim p(o). (4)
o—od oc—ol

Suppose finally that k < k" .= FC%C(”C) and p < % Then, the function

flo) = plo) — ko,
where p(o) is the smallest solution to , has the following properties:
i) it is left-continuous with a discontinuity point at o.;
i) it admits a finite supremum f.

In other words, f has no maximum and the sup is reached, for u = 0.25,
at 0. ~ 0.122. On the other hand, o, is exactly the value, where the curve
F(x;0,.) is tangent to the bisector line (see Figure[l]). Algebraically, o, is the
unique value of the parameter such that the following system is solvable for
some r € [0,1]:

As a matter of fact, the problem is clearly ill-defined: no solution exists,
even though the “optimal point” has a very clear geometrical interpretation
in terms of the distribution function of the random thresholds.

To deal with this issue, we propose in the next section an auxiliary opti-
mization problem. In particular, we let the population of actors to be finite
of size N. We will see that this makes the problem stochastic but, on the
other hand, well-posed for any finite N. Eventually, we will show that the se-
quence of objective functions of such finite dimensional problems converges in
a ['-sense to a function f., which will be almost everywhere equal to the orig-
inal objective function f. However, differently from f, f., admits a unique
maximum; therefore, the new auxiliary problem will be well-defined also for
N — o0.

3 The (stochastic) problem with N agents

Consider N actors facing the following decision problem: “to participate or
not into a riot”. The state variable is thus binary. We define y;(t) € {0, 1}
fori=1,..., N, where y;(t) = 1 means that agent ¢ is participating at the

10



riot at time ¢. Once part of the riot, it is not possible to retire. Moreover,
we assume that y;(0) = 0 for all i. This choice captures (makes manifest)
the fact that, in the original infinite-dimensional problem, we analyze the
social phenomenon from its beginning when, with the position 7(0) = 0, it is
assumed that no agent is initially rioting.

Being a decision under collective behavior, the reward in participating at the
riot depends on the present number (or better, the proportion) of people
involved. This quantity is given byE|

ra(t) = 200, )

Any actor decides to join as soon as the quantity ry is large enough.
We model random thresholds X;, i =1,..., N as N independent copies of a
random variable X with absolutely continuous distribution function F'. The
rule is straightforward:

yt+1)=1 & X;<rn(t) (6)

Summing up and normalizing over N, one sees that

Nt 4 1) Z —%Z ) (7)

The right hand side of equation (7)) is nothing but Fy(ry(t);0), the N-
dimensional empirical distribution of the random thresholds. We thus obtain
the following recursive equation, characterizing the N-dimensional system

rn(t+1) = FEn(ry(t); o). (8)

We now have a population of N agents evolving according to . On the
top of that, the social planner is aiming at controlling the behavior of the
population by setting the optimal o so to maximize a measurable function of
the stochastic process ry. More specifically, the policy maker considers the
steady states of such dynamics as a natural outcome to consider.

Should the social planner look at the finite-dimensional (stochastic) pop-
ulation or, rather, implement some theoretical asymptotic results to rely on
some simpler deterministic limit dynamics? Technically speaking, this trans-
lates in the order in which we calculate the limits of N — oo and ¢t — oco. To

12We could also consider the quantity i) = % When N becomes large (infinite)

the contribution of y; is negligible, thus the two problems have exactly the same limiting
behavior.
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deal with a deterministic system, we first take the N-limit; the computation
of steady states is then straightforward but, as just seen above, the optimiza-
tion problem is ill-posed. Conversely, if we first perform the time-limit, the
observable steady states are stochastic and the modeler relies on statistical
tools to remove the randomness inherent in the finite-dimensional system. In
the remainder of the section, we formalize the two approaches, stressing how
different they are in their outcomes.

3.1 Weak convergence of stochastic processes

The first approach relies on the classical asymptotic theory developed in
Ethier & Kurtz [2009]. The convergence of the stochastic process ry to a
well-posed limiting process 7, when the number of actors N tends to infinity,
is ensured by the following result[”]

Proposition 3.1. Assume the recursion given in (), with ry(0) =0 for all
N. When N — oo, the process (rn(t))e>0 weakly converges towards (r(t))i>o,
characterized by the following asymptotic recursion

r(t+1) = F(r(t);o),  r(0)=0, (9)
where F is the distribution of X;, 1 =1,..., N as defined in @

Since, by assumption, 7(0) = 0, necessarily the dynamical system con-
verges to p(o), i.e., the smallest among the (possibly multiple) solutions of

r=F(r;o), (10)

obtained considered the limit for ¢ — oo of (9). In particular, as discussed
above, there is no solution to the maximization problem of the social planner.

Example 3.2 (The Granovetter setting). Assume X ~ N (p,0), where u is
fixed at the level 0.25 and o > 0. In this case, there exists a critical level
0. such that, for o > o. there is only one solution of ([3). For o < o, the
solutions are three and for o = o, the function r — F(r; o) is tangent to the
bisector and the solutions are exactly two.

3.2 TI'-convergence of regularized operators

The second approach is based on the stochastic version of the dynamical sys-
tem given in (). Differently from what was done previously, we first take the

13The proof of this rather classical result is omitted. We refer the reader to Ethier &
Kurtz [2009] for more details.
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time-limit of the dynamics. As a matter of fact, the steady state is now a ran-
dom variable, measurable w.r.t. the N-dimensional sample X;,..., Xy. Let
the random variable Ry represent the (random) steady state of the dynamics

in . Formally,
Ry = tlim ru(t). (11)
—00

To properly define an optimization problem for any finite N, we rely on
the expected value of Ry as the observable to be investigated by the social
planner:

px(0) = E°[Ry]. (12)

It turns out that the auxiliary problem based on such new observable is now
well-posed. Moreover, it is possible to characterize the limit of the sequence
(pn(0))n in terms of p(o), the steady state related to the original and ill-
posed optimization problem. These claims are stated in the following

Theorem 3.3. Fiz N and consider py as defined in . Then, the opti-
mization problem

max fx(0).  fx(o) = pn(o) ~ ko, (P2)

15 well-posed and admits a mazimizer oy. Moreover, for N — oo,

fN £> fooa
where L ,
i) = { ) o 72 m

and 7. is defined in (4)). As a consequence, the sequence of mazimizers (o) N
related to (P2) converges to o. and (pn(ok))n converges to .

The limit of fy is thus taken in a I'-sense and f., is exactly the I'-limit of
the sequence of real functions (fy)y. It can be proven, instead, that the con-
vergence is not properly working in a classical almost sure or uniform sense.
Note, finally, that f., is nothing but the upper-semicontinuous envelope of
f (the original objective function of problem (P1)); the two functions only
differ among each others for the value at o, which turns out to be exactly the
maximizer for the problem where f., is now used as a (auxiliary) objective
function.

A summary of the different convergence schemes is graphically visualized
in Figure |3 The starting point is the top-left stochastic dynamical system
expressed by . Under the first approach, described in Section , we first

13



move to the right by taking a N-limit, in a “convergence of stochastic pro-
cesses” sense; then, we move down (time-limit), obtaining p(c). Moving in
the area of the social planner, we come across the ill-posed problem (P1)
as depicted in the bottom part of the right column. Conversely, by start-
ing at the top-left corner and implementing the second approach described
in Section [3.2] we first move down along the left column (time-limit), and
later introducing the expectation operator, we arrive at the bottom-left point
where o} is defined as the maximizer of fy for any fixed N. Finally, as fy
converges in a ['-sense to f,, we have that o} converges to 0., the maximizer

of fuo.

rn(t+1) = Fy(ra(t);0) =2 r(t +1) = F(r(t); 0)

t—>ool

RN dynamical system t—o0
E“[']l
pw(0) p(o)
social planner
\ '
fn(o) =pn(o) — ko = plo) — ko
N—>oo
F Lim
maxe || / X ill—posed
* * N—00
(ox;ipn(on)) = Uc, Te)

Figure 3: The scheme of convergences in the model.

In the next section we collect some numerical findings and give the sense
of the previous asymptotic result solving the problem for increasing values
of N. Moreover, we show that numerical results are notably affected by
the accuracy in computing an estimator for the expectation of the random
variable Ry .

4 Numerical findings

In this section, we numerically analyse the riot problem where, for concrete-
ness, we set k = 0.5. We simulate M stochastic instances of the optimiza-
tion problem (P2) in Theorem to obtain M couples maximizer-maximum

14



(mON; m Aj{,), m =1,..., M, for given N. Then, we increase N to visually and
numerically show the I'-convergence mentioned in Theorem [3.3]

The key insight of the previous section was that convergence can be
achieved by taking the expectation, py (o), of the random steady state Ry
defined in . As a closed-form computation of py (o) appears to be impos-
sible, we approximate it with a sample mean of S independent generations
of the steady states. The numerical results are obtained as follows:

Given N;

form=1,..., M;

Provide an estimate of the solution to Problem (P2), i.e., evaluate fy (o) as
many times as it is needed to get the optimal solution ]

1. To estimate fy (o) for fixed o:
1.1 for s=1,...,5;
1.1.1 sample individual activation thresholds ;X from A (1, 0);
1.1.2 compute the random equilibrium sRy;
1.2 compute the sample mean py (o) = %Zle sRi;
1.3 return the approximated value fy (o) = pn(c) — ko

2. Varying o, identify the maximum ,, fj(, and the maximizer ,,07%;.
Output: a M-dimensional vector of pairs (,,d'x; mf;[), m=1,..M.

Since the sample mean converges to the correct average for S — oo, the
higher the number S of simulated steady states is, the more our approxi-
mation will be close to py(0) = E?[Ry]. Hence, it is important to realize
that the numerical method to solve the optimization problem of the social
planner relies on an additional parameter, S, due to the need to replace the
mathematical expectation with a sample mean. This amounts to say that,
whenever an evaluation of the objective function in (3.3]) is needed, a set of
N thresholds will be independently re-sampled (over and over) for S times,
as seen in the above pseudo-code to compute fx (o).

Figure [4] shows some representative graphs of the objective functions of
the optimization problem (P2). In the top panel, for fixed S = 100, the
functions fy (o) relative to N = 100, 1000 and 10000 are depicted. It can be
seen that larger values of NV lead to smoother behavior and, more importantly,
produce more accurate approximations of the function f., defined in Theorem
9.0l

14We rely on the R function optimize.
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Figure 4: The objective function fy(c). Top panel: for fixed S = 100, the
cases N = 100, 1000, 10000 are shown. Bottom panel: for fixed N = 1000,
the cases S = 10, 100, 1000 are displayed.

The bottom panel illustrates the role of S, for given N = 1000: when
S = 10, admittedly a case in which the true expectation is poorly estimated,
the function fN(a) is noisy and displays jumps that would make any maxi-
mization effort hard or vain. On the contrary, when S = 100 or S = 1000, the
graphs are smoother and almost overlapped; this seems to suggest that such
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numbers of sample observations are appropriate to reasonably approximate
oy- Practically speaking, some balance must be stricken and, if N is to be
increased to explore asymptotics, S should be limited to avoid an excessive
computational burden.

0.20
I

0.18
I

0.16
I

—
3 i —
S ==
— s
® _— . e
° 1(‘)0 5(‘)0 10‘00 50‘00 10800 50&00 le-l-OS
N (agents)
Figure 5: Boxplots of M maximizers ,,0x,m = 1,..,M, for N =

100, 500, 1000, 5000, 10000, 50000, 100000 and fixed S = 100.

Based on the above argument, we set S = 100 and solve M = 100 in-
dependent instances of the optimization problems, for increasing values of
N = 100, 500, 1000, 5000, 10000, 50000, 100000. Figure [5| shows the boxplots
of moy,m = 1,..., M, in the various cases. The boxes depict interquartile
ranges (IQR); the whiskers extend up to 1.5 IQR to provide evidence of out-
liers (circles), if any; the horizontal line is the median value. While, for small
values of N, the true maximizer o. ~ 0.122, referred to in Theorem [3.3] is
overestimated and there are some outlying results, as /N increases most of
the maximizers of the (stochastic) problems are quite close to the correct re-
sult and, clearly, boxplots support the convergence rigorously proven in the
previous section. In other words, if NV is too small, the maximizers obtained
by numerical optimization inaccurately span a wide interval, that can be
roughly located at [0.17, 0.21]. As N is increased, the numerical results are
increasingly close to o, and are no longer dispersed. The plotted data were
obtained using the routine optimize in R,|R Core Team| [2018], and computa-
tions took about 18 minutes on a 51-cores 2.2 GHz Linux cluster set up with
the library parallel. It may be worth noticing that, say, the boxplot for
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N = 100000 required to sample an order of M-S-N = 100-100-100000 = 10°
individual thresholds /™

0.6
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S (sample size for mean)

Figure 6: Boxplots of M maxima mf]’{,, m=1,... M, for § =1,10,100, 1000
and fixed N = 1000.

Not surprisingly, the value of S also has a conspicuous impact on the
accuracy of the M solutions of the problems that are numerically found in
our simulations. Figure [0] depicts, for fixed N = 1000, the boxplots of the
maxima mfj{,, m =1, ..., M, for different values of S: for S = 1 the computed
results are essentially unreliable and are spread over a large interval. Notice
that the boxplot relative to S = 1 well represents the ill-posedness depicted
in Figure 3: unless the mean operator is used, moving down along the right
side of the diagram by increasing N does not remove the discontinuity of
f(o). As a consequence, numerically computed maxima are most often very
far from 7.. On the opposite, by increasing S, i.e., by taking the mean on the
left side of the diagram, and then maximizing the objective function fy such

that fx — fw, produces a sequence of pairs of real numbers (onspn(oN))
which converges to (o, 7).

Improving the accuracy of the sample mean by using larger S reduces the
errors and visually confirms again that S in the range 100-1000 appears to be
numerically satisfactory. Somewhat more deeply, the figure portrays again
the importance of the smoothing effect provided by the average operator:

15As optimize typically evaluates the objective function about 20 times, the sampled
thresholds exceed 101°.
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on the first hand, problems can be more accurately solved; but, on the other
hand, the ill-posedness of the original formulation is removed and tractability
is obtained in the form of I'-convergence.

5 Conclusions

We have studied a class of “optimization problems over a dynamical system”
and have shown that care is needed to avoid ill-posedness. This was ex-
emplified using the well-known riot example discussed in (Granovetter| [1978]:
intuitively, at some critical value for one parameter, the resulting endogenous
equilibrium can abruptly jump due to small and natural sampling variability
in the activation thresholds of the agents. More formally, in the presence
of a saddle-node bifurcation of the large-scale deterministic dynamics, some
equilibria disappear and the objective of the policy-maker turns out to be
discontinuous, breaking down conventional optimization approaches. The
problem cannot be removed by merely increasing, or taking the limit of, the
number N of agents and solving the deterministic version of the problem,
due to the tangency condition depicted in Figure [1]

Hence, we considered a sequence of finite-dimensional problems, where the
steady states of the dynamical system are random variables and we proved
that the objective functions of such problems are now continuous thanks to
the regularizing effect of the expectation operator. Moreover, the sequence of
the maximizers converges to the critical value of the parameter, i.e. the value
where the bifurcation happens, and the sequence of maxima converges to the
supremum of the (ill-posed) original problem. Technically speaking, this
convergence applies in a ['-sense and we believe that ours may be among the
very few practical applications of this methodology to economically-relevant
problems. Specifically, the sequence of the functions fy that are maximized
['-converges towards f., which is proven to be the upper-semicontinuous en-
velope of the original objective function f. Interestingly, f., and f only differ
at the value 0., which is the limit of the sequence of maximizers, and, in turn,
the point where the social planner (and we, as rational and conscious external
observers) expected a maximum to exist in the ill-posed original problem. In
this respect, our approach endows the social planner with a mathematically
precise argument to identify the unique optimal policy.

From the theoretical point of view, the use of the expectation operator ap-
pears to be crucial in the definition of a sequence of problems that converges
to a regularized right-continuous objective function, where the maximum is
now well-defined and coincides with the supremum of the original problem.

Our numerical results make also clear that the use of an expectation is

19



not simply an astute device to get some usable approximated result but,
more fundamentally, poses the basis for the I'-convergence (in the number
of agents N) to the theoretical model. This, together with a proper Law
of Large Numbers in S, the sample size of the estimator of the expectation,
ensures convergence also of the numerical simulations.

We have demonstrated, in this specific case, that sample sizes of the order
of one hundred to one thousand provide enough smoothing to get reasonably
accurate numerical results (with the help of a multi-core processor and par-
allel computations). We feel that our exemplification shows the need to
incorporate proper sampling schemes in similar problems or whenever, say, a
numerical treatment is the only viable option due to the lack of closed-form
expressions for the steady state of the dynamical systems.

A  Proofs

In this appendix, we collect all proofs.

Proof of Lemma [2.7]

We first state a technical classical result on bifurcation theory of dynamical
system.

Lemma A.1 (saddle-node bifurcation). Consider the dynamical system
P(t+1) = Fla(t);0); a(0) =z € [0,1] (14)

where x € [0,1] and F(-;0) is a continuous distribution function with stan-
dard deviation o > 0, admitting a unimodal density function. The set of
steady states of 15 given by the solutions to

x = F(z;0). (15)
There exists a threshold level o, such that:
i) if 0 > o, admits a unique solution x;
i) if o = o, admits two solutions o' < x";
iii) if o < o, admits three solutions x' < z™ < x".

If the solution x is unique, it is a globally stable attractor for the dynamical
system in . In case of multiple equilibria, if xqg < x™, then

lim x(t) = z'.
t—o00
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On the opposite, if xo > ™, then

lim z(t) = 2"
t—o0

Back to the proof of Lemma , we are exactly in this situation, since F'
is Gaussian. The graph of the distribution function F' intersects the bisector
either three times, twice or once. A visual representation of the three different
cases is reported in Figure[[, When o = 0., we are in the tangency situation:
the graph of F intersects the bisector line at one point z!, when the curves
are tangent, and in one second point 2", when they are not. If the expected
value p of the distribution is such that p < 1/2, then it is easy to see that
x! < 1/2 < zh. Consider finally that we take 79 = 0 so that the dynamical
system always converges to ', i.e., the smallest among the solutions to .
Let us call this equilibrium p(o). The previous lemma shows that the map
o+ p(o) is continuous on [0, o.) and on (0., +00) with an upward jump at
o.. This proves left-continuity. It remains to show that f(o) = p(o) — ko
is bounded from above and that the supremum of f is exactly f defined as
lim, , + f(0). It is convenient to separate the study on the two intervals
[0,0.] and (0., 4+00). Concerning the latter, we show that, on this interval,
o +— p(o) is decreasing. As remarked above, when ¢ > o, there exists a
unique z solving (17), with > p. Moreover, still for ¢ > o, and = > p,
F(z;0) is concave and increasing. Let 1,09 € (0., +00) be such that oy <
0. Then F(+;01) and F(+; 09) satisfy

F(z;09) < F(x;00) Y > p. (16)
Let us call & the unique solution to F(x;01) = x. Then, by (16),
F(&502) < F(&is01) = &1

Since F(+;09) is increasing, there exists & < & : F/(§2;02) = &. Note that
& = p(o1) and & = p(oq). Therefore, p(o) is decreasing on (o, +00) as so
also f is decreasing on that interval. Concerning the interval [0, .|, a similar
concavity argument shows that, in this case, o — p(0) is increasing up to a

level p(o.) such that lim,_, + p(o) := 7 > p(o.). Since, by assumption,
k< ]{,’th — r— p(O'c)
=

we have that, on [0, o],

k<T_p(UC)<7"_p(00)<7"_ﬂ(‘7)’
O Oc— O Oc— O
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where the latter is due to the monotonicity of p. Thus,

r—p(o)

O — O

k< — k(o,—0) <7 —plo) < plo) —ko <7 —ko,:=f.

Summarizing, we have proved that: (i) f is left-continuous with a disconti-
nuity at o.; (ii) the function f is bounded from above and admits a finite
supremum f which is not a maximum. O]

Proof of Theorem [3.3

We first prove a technical lemma.

Lemma A.2. For each N, consider Ry as defined in (11). Ry is a measur-
able and bounded function of the finite sample X = (X1,..., Xn). Moreover,
the function o — py(0) is continuous.

Proof.
p(e) =E°(Ryl = | Ry()dF(z.0), (17
supp(X)
where F(Z;0) = I\, F(x;,0) and where & = (z1,...,2y) is a realization

of the sample X. Note that the integrand function Ry(Z) is a measurable
and bounded function of the sample. As a consequence, the integral is well
defined; moreover, it is continuous in ¢ as soon as F' is continuous in o. [

Back to the statement of Theorem [3.3] to prove the well-posedness of the
problem (P2), simply note that, thanks to Lemma[A.2] fy(0) = pn(0)—ko is
continuous, py (o) is bounded and, finally, lim, ., fx(0) = —00. Therefore,
the objective function is continuous and bounded from above, hence it admits
a maximum point and a maximizer oy.

For the second part of the statement we use the tool of the I'-convergence
which, under suitable conditions, implies convergence of minimum values and
minimizers. Actually, so far we have considered the maximization problem
(P2). To align our reasoning with the standard literature in analysis, from
now on, we take the equivalent minimization problem defined as

mginTN(a) (18)

where _
fn(o) =—pn(o) + ko =—fn(o)

is the sequence of the objective functions of the problem . It is easy to see
that the sequence of objective functions (f )y defined on RT is equi-mildly
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its lower-semicontinuous envelope scf (see Definition |B.4)), that is, for every
o€ R*

coercive. Moreover, given the function f(o) = —piai + ko, we consider

- 19
scf() —7. + ko, if o0 = o, (19)

_ {—p(a)+ka if 0 # o,

with —7, := —lim,_, + p(0). As showed in Proposition scf(o) is the I'—

limit of fy(0), i.e., renaming scf(c) = f.. one has that

Fn(0) 5 Fo

Then, using Theorem in our framework, we get

Hrﬁin?m(a) = lim inf fy(0). (20)

N—+o0 R+

Moreover, since all functions f admit a minimizer % (which exists in virtue
of Lemma ) then, up to subsequences, o converges to a minimum point
of f_.. According to , the only minimizer of f__ is o.. Hence, by , it
follows that

lim —pn(Ty) + koy = —T¢ + ko. (21)
N—+o00

Accordingly,
TN — O (22)

Therefore, from and and back to the maximization problem (P2), it
follows that the sequence of objective functions fy of the auxiliary problem
(P2) I'-converges to f,, the upper-semicontinuous envelope of the objective
function of the original problem (P1). As a consequence, py(ch) converges
to 7. and o} converges to o.. O

B Some basics of ['-convergence

In this section, we introduce some abstract notions and results on I'-convergence.
We start recalling the concepts of lower and upper limits and of lower-
semicontinuous functions to introduce the definition of I'-limit. We also
define the lower-semicontinuous envelope of a function, its link with I'-limit
and we provide an example of computation of I'-limit by noting how this can
be different from the pointwise limit. Finally, we show that under suitable

10See Definition In particular, our sequence (f )y is equi-mildly coercive since all
functions f, are bounded from below. Taking & large enough, all infima are reached in
[0, 5] which is compact.
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conditions I'-convergence implies convergence of minimum values and mini-
mizers.

From now on, unless otherwise specified X will be a metric space equipped
with the metric d.

Definition B.1. Let f : X — R. We define the lower limit (liminf for short)
of f at x as
liryn_glff(y) = inf{limjinff(mj) cx; € X,z — x}
= inf{lijm flz;)xj e X,z; = x, Ellijm f(x)},
and the upper limit (limsup for short) of f at x as
limsup f(y) = sup{limsup f(z;) : z; € X, 2; — x}

y—z J

= sup{li]m flz;) z; € X, 2, = x, Elli]m f(z;)}

Definition B.2. A function f : X — R is lower semicontinuous at x € X,
if for every sequence (x;) converging to x we have

f(z) <lim irj;ff(a;j), (23)

or, in other words, f(z) = min{liminf; f(x;) : z; = x}. We will say that f
18 lower semicontinuous on X if it is l.s.c. at all x € X.

Definition B.3 (I-convergence). A sequence f; : X — R T'-converges in X
to foo : X — R if for all x € X we have
(1) (liminf inequality) for every sequence (x;) converging to x

foo(z) < liminf f;(x;); (24)
J
1) (limsup inequality) there exists a sequence (x;) converging to x such that
J
foo() > limsup f;(x;). (25)
J

The function fs is called the I'-limit of (f;), and we write fo = I'-lim; f;.

Definition B.4. Let f : X — R be a function. Its lower semi-continuous
envelope scf is the greatest lower-semicontinuos function not greater than f,
that is, for every x € X

scf(x) =sup{g(z) : g l.s.c., g < f}.
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Proposition B.5. It shows that scf(z) = foo(2).
Proof. See Proposition 1.31 of Braides| [2002].

Here below, we report an example which highlights the different roles of
the limsup and liminf inequalities. It is also useful to visualize in a simple case
of a sequence of real functions the difference between the classical pointwise
(or uniform) limit and the I'-limit.

Example B.6. Let f;(t) be a sequence of function, where

fj(t)_{il if t=+1/j,

o otherwise.

Note that f; — 0 pointwise, but I'-lim; f; = fo, where

-1 df t=o0,
fm(t)_{o if t+0.

Indeed, the sequence f; converges pointwise (and hence also I'-converges) to
0 in R\ {0}, while the optimal sequence fort =0 is t; = —1/j, for which

fi(t;) = —1.

Definition B.7 (Coerciveness conditions). A function f: X — R is mildly
coercive if there exists a non-empty compact set K C X such that infx f =
infr f. A sequence (f;) is equi-mildly coercive if there exists a nonempty
compact set K C X such that infx f; = infg f; for all j.

Theorem B.8. Let (X, d) a metric space, let (f;) be a sequence of equi-mildly
coercive functions on X, and let fo = I'-lim; f;; then

Fmin foo(w) = lim_inf f;(o). (26)

Moreover, if all functions f; admit a minimizer x; then, up to subsequences,
x; converges to a minimum point of fuo.

Proof. See Theorem 1.21 and Remark 1.22 in Braides [2002].
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