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Abstract12

The correlation between cholera epidemics and climatic drivers, in particular13

seasonal tropical rainfall, has been studied in a variety of contexts owing to its14

documented relevance. Several mechanistic models of cholera transmission15

have included rainfall as a driver by focusing on two possible transmission16

pathways: either by increasing exposure to contaminated water (e.g. due17

to worsening sanitary conditions during water excess), or water contamina-18

tion by freshly excreted bacteria (e.g. due to washout of open-air defeca-19

tion sites or overflows). Our study assesses the explanatory power of these20

different modeling structures by formal model comparison using determinis-21

tic and stochastic models of the type susceptible-infected-recovered-bacteria22

(SIRB). The incorporation of rainfall effects is generalized using a nonlinear23

function that can increase or decrease the relative importance of the large24

precipitation events. Our modelling framework is tested against the daily25
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epidemiological data collected during the 2015 cholera outbreak within the26

urban context of Juba, South Sudan. This epidemic is characterized by a27

particular intra-seasonal double peak on the incidence in apparent relation28

with particularly strong rainfall events. Our results show that rainfall-based29

models in both their deterministic and stochastic formulations outperform30

models that do not account for rainfall. In fact, classical SIRB models are31

not able to reproduce the second epidemiological peak, thus suggesting that32

it was rainfall-driven. Moreover we found stronger support across model33

types for rainfall acting on increased exposure rather than on exacerbated34

water contamination. Although these results are context-specific, they stress35

the importance of a systematic and comprehensive appraisal of transmission36

pathways and their environmental forcings when embarking in the modelling37

of epidemic cholera.38

Keywords: epidemiological drivers, waterborne disease epidemics, Juba,39

South Sudan, environmental exposure40

1. Introduction41

Two main exposure pathways fuel cholera transmission across endemic42

and epidemic settings. First, as famously discovered by John Snow during43

the 1854 London cholera outbreak, an indirect exposure occurs from con-44

sumption of unsafe water contaminated by raw sewage [1]. Here, rainfall and45

the ensuing hydrologic transport processes play a major role in water con-46

tamination, for instance through the washout of open-air defecation sites and47

raw sewage circulation in the environment which is thought to have caused48

the revamping of the Haitian 2010 outbreak [2]. Direct, or human-to-human49
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exposure occurs when the bacteria is transmitted from an infected directly50

to a healthy person, for example via contaminated food. In this case, en-51

vironmental factors do not play a major role, except for possibly enhanced52

transmission due to (over-)crowding [3, 4]. It is known that the combination53

of environmentally-mediated and direct exposures shapes the spatio-temporal54

distribution of cases during cholera epidemics [5, 6, 7, 8].55

The importance of climatic and environmental factors in the transmis-56

sion of cholera, namely temperature and rainfall, has been highlighted across57

settings. Indeed, the relationship between cholera and climate has long been58

studied, moving from seminal works linking cholera outbreaks to anomalies in59

the El Niño Southern Oscillation [9, 10] that have paved the way for a new60

field in epidemiological research. For large-scale infection patterns, many61

studies highlighted the role of climatic drivers on cholera dynamics, mostly62

focusing on climate change effects on disease spread [11, 12, 13, 14, 15, 16, 8]63

or on the impacts of spatial and temporal heterogeneities [17, 18, 19, 20, 21,64

22, 23]. While the effect of temperature on cholera transmission has been65

well unravelled, mainly regarding bacterial biology and ecology in natural66

environments, that of rainfall remains to be fully elucidated, possibly due67

to the multiple ways in which it can influence transmission at the local and68

regional scales [2, 24, 25]. Indeed, intense rainfall events have been shown69

to alter infection risk through a variety of potential mechanisms, including:70

flooding, leading to raw sewage contamination of water sources [26, 11]; in-71

creased hydrologic transport-driven iron availability in environmental waters72

that enhances pathogen survival and the expression of toxins [27, 28, 29]; dry73

spells inducing persistent low water levels leading to increased use of unsafe74
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water sources [30]; and crowding during strong flood events [17].75

Most countries where associations between rainfall and cholera risk have76

been studied experience endemic cholera transmission [8]. Empirical studies77

have shown a range of correlations, both positive and negative, endowed78

with time lags ranging from weeks to months [26, 31, 12]. In general, rainfall79

has been found to enhance cholera transmission, but there is evidence that80

propagation buffer effects in wet regions may be due to pathogen dilution [26].81

Such variability reflects the variety of potential mechanisms whereby rainfall82

may alter infection risk. Similarly, a clear empirical correlation between83

intense rainfall and enhanced transmission is found in several regions hit by84

cholera epidemics [32, 30, 33, 34, 35]. The Haitian case, which has been in85

the midst of a major outbreak since October 2010 [36, 35, 37, 38, 39, 40, 41],86

has been studied under that angle, but its patterns have been argued to87

require a specific understanding [42]. Rainfall therein is empirically known88

to be directly associated with sudden resurgence of cholera infections via89

the analysis of reported cases [35], but a direct, causal relationship has only90

begun to be quantitatively examined [2, 24, 43]. Indeed, cholera case counts91

tend to rise sharply at the onset of seasonal heavy rains [44, 45, 46]. Notably,92

for the Haitian outbreak, such nexus has been addressed theoretically [2, 24].93

Results therein showed that at all spatial scales and locations examined, the94

tropical storms were significantly correlated with increased cholera incidence95

with lags of the order of a few days. As a consequence, accounting for96

the related forcing of dynamic models resulted in improved fits of reported97

incidence.98

Properly incorporating the effects of rainfall in mathematical models of99
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cholera transmission is thus paramount to discriminate among the above-100

mentioned alternative transmission pathways, thus unlocking a predictive101

framework to evaluate the potentially rainfall-sensitive efficacy of available in-102

tervention strategies in endemic and epidemic settings including vaccination,103

antibiotics, and improved access to water sanitation and hygiene (WaSH),104

leveraging the numerous solutions that exist for rainfall forecasting [2, 43].105

This becomes critically important when evaluating the number of averted106

infections by deploying vaccines, as was done in the aftermath of the passage107

of Hurricane Matthew [40], or considering optimal deployment in space and108

time.109

Rainfall has been accounted for in two main fashions in recent mathe-110

matical models of cholera. On one side, a contamination-centered approach111

suggesting that bursts of infections could be linked to increased contamina-112

tion of the water compartment [2]. This process conceptualizes the washout113

of open-air defecation sites by hydrologic transport. The same ‘transport’114

effect may be realized by sewer collectors’ overflows. In fact, both mecha-115

nisms have the net effect of charging progressively the bacterial concentration116

in the water reservoir [47]. Pathogens’ loads are washed out from a hydro-117

logic catchment enclosing human settlements and their infective individuals118

shedding bacteria. Therein, pathogen survival and thus the toxicity of their119

loads depend on hydrologic residence time distributions [2, 8]. Such loads120

increase as a function of rainfall, which acts as proxy of runoff volumes. The121

second approach is exposure-centered and employs a rainfall-dependent ex-122

posure rate subsuming both pathogen availability and the probability of the123

ingestion of contaminated water during wet spells [24]. Although both ap-124
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proaches are physically plausible, they have not been compared directly on125

the same datasets within a formal statistical framework, which would allow126

to highlight their respective merits and further recommendations for their127

use in different settings.128

Here, we compare the explanatory power of these different types of rainfall-129

driven mechanistic models applied to a cholera outbreak in South Sudan.130

We quantitatively examine the link between rainfall and cholera during the131

outbreak recorded in Juba in 2015, when an intra-seasonal peak of cholera132

cases was recorded possibly in correspondence to intense precipitation events.133

The analysis of the lagged relationship between rainfall rates and revamped134

cholera incidence is addressed via dynamical compartmental models con-135

sidered both in deterministic and stochastic versions incorporating direct136

(human-to-human) and indirect (water-to-human) disease transmission, and137

rainfall effects on contamination and exposure.138

This paper is organized as follows. The Materials and Methods section139

introduces to the data sets employed in our exercises and the general mod-140

eling rationale and framework. Results and a discussion follow, highlighting141

the role of rainfall in this specific case study with a view to the systematic142

comparative analysis of the importance of intra-seasonal precipitation events143

in epidemic and endemic cholera in other settings. A set of conclusions build-144

ing on the modelling results and suggesting the way forward closes then the145

paper.146
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Figure 1: Flow diagram for our cholera models, with the different variations ME, MR,

and MEC indicated.

7



2. Materials and methods147

We base our analysis of the cholera outbreak in Juba on a general epi-148

demiological model that encompasses previous approaches to account for149

the effect of rainfall on cholera transmission. The proposed model builds150

on the classic susceptible S, infected I, and recovered R compartments for151

individuals, with an additional variable B describing the concentration of152

the bacteria in the environment (thus, the model is named SIRB). Previ-153

ous modelling exercises had considered rainfall intensity J(t) either to i)154

multiplicatively increase water contamination with bacteria shed by infected155

individulas [43, 40], or ii) assumed that the rainfall multiplicatively increases156

the exposure to contaminated water [24] (details on these two modelling157

frameworks are the Supplementary Information, SI, Section S.1). Aiming at158

a systematic comparison of the effect of rainfall through these two different159

transmission pathways, we here consider a generalized formulation of these160

cholera-forced models, wherein both formulations are nested.161

Given the daily temporal resolution at which incidence data was available162

for the 2015 Juba’s epidemic (see Section 3), we here introduce in addition163

to the S-I-R-B variables, a compartment of exposed individuals E, to de-164

scribe the incubation period of the disease (from 12 h to 5 days [48]). This165

compartment is necessary to account the lag between the time of infection166

and the onset of the symptoms which result in reported cases. Moreover, in167

order to account for the vaccination campaigns that were deployed in Juba168

during August 2015, four compartments (V S, V E, V I , and V R) are added to169

describe the dynamics of vaccinated individuals and their removal from the170

pool of susceptibles.171
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The proposed generalized cholera model is described in Figure 1, and172

formulated as:173

dE

dt
= σF (t)S − (φ+ µ+ ν)E (1)

dI

dt
= φE − (γ + µ+ α)I (2)

dR

dt
= (1− σ)F (t)S + γI − (ρ+ µ+ ν)R (3)

dB

dt
= −µBB + θ [1 + fC (J(t))] (I + V I) (4)

dV S

dt
= νS − µV S + ρvV

R − (1− η)F (t)V S (5)

dV E

dt
= νE + σ(1− η)F (t)V S − (φ+ µ)V E (6)

dV I

dt
= φV E − (γ + α + µ)V I (7)

dV R

dt
= νR− (µ+ ρv)V

R + γV I + (1− σ)(1− η)F (t)V S , (8)

where F (t) takes into account both human-to-human transmission and non-174

linear water-to-human transmission:175

F (t) = βB

[
B

K +B

](
1 + fE (J(t))

)
+
βI
H

(I + V I). (9)

As few reliable data on changes in Juba’s population are available for the176

years of interest (2014 and 2015), the total population H, is assumed to be177

constant, which implies that the number of susceptible individuals at time t178

is S(t) = H−I(t)−E(t)−R(t)−V S(t)−V E(t)−V I(t)−V R(t). Individuals179

are removed from the susceptible compartment S at rate F (t), becoming ei-180

ther symptomatically or asymptomatically infected with probabilities σ and181

(1− σ), respectively. Symptomatically infected, I, shed V. cholerae into the182

local watershed at rate θ. The infectious period is governed by parameter γ,183
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which determines the portion of infected individuals that enter the recovered184

compartment R, joining the asymptomatic infected. Recovered individuals185

return to the susceptible compartment at a rate ρ, describing the average186

rate of loss of immunity for individuals that previously had been asymp-187

tomatic or symptomatic infected. Parameters α and µ concern cholera re-188

lated and unrelated death rates, respectively. The compartment B quantifies189

the concentration of V. cholerae in the local (conceptualized) water reservoir,190

which is used to estimate the probability of exposure to the contaminated191

water in (9) through the term βB
B

K+B
, where βB is the maximum exposure192

rate and K is the half-saturation constant of the dose-response function of193

V. cholerae [47]. Parameter K is usually set to one by considering the change194

of variable B̃ = B/K. The parameter µB expresses the rate of decay of bac-195

teria in the environment. Exposed individuals become symptomatic infected196

at a rate φ, which corresponds to an average incubation period of 1/φ ≈197

1.5 days [48]. Functions fC (J(t)) and fE (J(t)) account for the rainfall effect198

respectively by increasing the bacteria contamination in the water reservoir199

(as the term λJ(t) in eq. S.3) or directly through amplifying the exposure200

in the force of infection (as the term λJ(t) in eq. S.8).201

With the objective of assessing the importance of rainfall on cholera trans-202

mission, we here propose a generalization of the linear relation in eqs. (S.3)203

and (S.8) by using a nonlinear function form for fC,E (J(t)), reading:204

fC,E (J(t)) = λC,E

(
J(t)

maxt J(t)

)αC,E

(10)

where the subscripts C, E respectively denote the effect of rainfall on expo-205

sure and contamination, maxt J(t) is the maximum recorded rainfall intensity206

during the epidemic, and the αC,E ≥ 0 controls for the relative importance of207
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different rainfall intensities in their effect on the force of infection. Indeed,208

since the ratio J(t)
maxt J(t)

∈ [0, 1], for αC,E � 1 the ratio will tend to 0 for209

all small precipitation events, leaving only the effect of the strongest events,210

whereas for αC,E < 1 all precipitation events will be assigned a similar weight211

in the FOI. We also note that by setting αC,E = 1 we recover the formu-212

lations in eqs. (S.3) and (S.8). The flexibility allowed by (10) is therefore213

able to discriminate between rainfall effects along a continuum from acting214

on disease transmission regardless of intensity to a threshold-like effect for215

the largest events which could be associated to severe flooding causing dam-216

ages to the city’s water and sanitary system, for instance leading to sewer217

overflow. Note that in (9) precipitation enters in the term (1 + fE (J(t)))218

which entails water-to-human transmission also when J(t) = 0 (differently219

from what happens in eq. S.8).220

During the vaccination campaign, OCV doses are assumed to be dis-221

tributed with equal rate ν to susceptible, exposed and recovered individuals,222

which enter the compartments V S, V E and V R. As the OCV provides only a223

partial immunity having efficacy η, 0 ≤ η ≤ 1, vaccinated susceptibles (V S)224

can become exposed (V E) through a decreased force of infection of a fac-225

tor (1 − η) with respect to non-vaccinated individuals. Vaccinated infected226

individuals behave exactly like infected ones, but are placed in a different227

compartment to exclude them from future vaccination campaigns. After re-228

covering at rate γ, they lose their vaccine protection at rate ρv.229

2.1. Model comparison230

Here we assess the relevance of the two rainfall-driven transmission path-231

ways by comparing the impact the results of the following models:232
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MN SIRB model without rainfall: λC = λE = 0, βI = 0, as the null hypoth-233

esis for the importance of rainfall.234

MC SIRB model using the approach described in eqs. (S.1-S.4) accounting235

for rainfall enhances the contamination of the water reservoir [2, 43]:236

λE = 0, βI = 0.237

ME SIRB model using the formulation rainfall as in eqs. (S.5-S.8) where238

rainfall increases the exposure to bacteria [24]: λC = 0, βI = 0.239

MEC SIRB model combining both approaches MC and ME (βI = 0). Both240

ways of accounting rainfall play a role simultaneously.241

For each model we explore the possibility of adding explicitly human-to-242

human transmission (βI > 0), which is indicated with an H at the end of the243

model name: MNH, MCH, MEH, and MECH. Table 1 summarizes the244

different parameters associated with the considered models.245

The results of the 8 models that arise from this setting are compared246

on the basis of their ability to match the time series of daily reported cases247

during the cholera epidemic in Juba of 2015 (see Section 3). Table S.1 sum-248

marizes which parameters are calibrated for each model and their prior dis-249

tribution. The degrees of freedom of the models, np, vary from np = 7 for250

MN to np = 12 for MECH. Given the low number of daily reported cases251

and their ensuing variability, we also implement a stochastic equivalent of252

the deterministic ODE system (1-8) formulated as a continuous time par-253

tially observed Markov process model, accounting for both demographic and254

disease transmission stochasticities [49] (details Section S.2).255
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Model λC αC λE αE βI

MN - - - - -

MNH - - - - X

MC X X - - -

ME - - X X -

MCH X X - - X

MEH - - X X X

MEC X X X X -

MECH X X X X X

Table 1: Parameters considered in the eight compared models. λ and α characterize the

functional forms considering the precipitation (eq. 10). βI is the exposure for human-to-

human transmission.

Calibration of the deterministic model is performed using a Markov Chain256

Monte Carlo (mcmc)-based algorithm, which draws samples from the pos-257

terior distribution of the parameters. Inference on the stochastic model is258

performed using a frequentist multiple iterated filtering algorithm. Both259

model were fit against the daily reported cases accounting for over- or under-260

reporting, and assuming a Poisson distribution. Models were then compared261

using the Bayesian Information criterion (BIC), Bayes factors, and the like-262

lihood ratio test for the nested models (details given in Sections S.3 and263

S.4).264

13



3. Case study: the 2015 Juba’s outbreak265

In the past years, South Sudan had been struck by several cholera out-266

breaks (details in S.5). Here we focus on the analysis of the outbreak in267

Juba during 2015, when a particular double peak of cholera cases occurred,268

probably associated to a strong intra-seasonal precipitation event (Figure 2).269

Epidemiological records for the 2014 and 2015 cholera epidemics included270

cholera cases and hospitalization time series at the second-lowest administra-271

tive level (named Payams in South Sudan)as reported by SSMoH [50, 51, 52].272

The recorded cases in the 7 Payams that constitute the administrative area of273

Juba have been aggregated to obtain the reported time series for the county274

level. We assigned the population values for Juba county as in the official275

projections provided by the South Sudan National Bureau of Statistics [53].276

These values were validated against the growth rate value stated by CIA [54].277

Daily rainfall estimates [mm d−1] were downloaded from the Climate Data278

Library (National Oceanic and Atmospheric Administration, NOAA) [55] for279

the years 2014 and 2015, with spatial resolution of 0.1◦ (approximately 10280

km at the equator). The precipitation considered in the model have been281

spatially averaged over the study area (see Figure 2). For what concerns the282

implementation of vaccines in 2015, we considered the 167’377 OCV doses283

that were distributed in the county of Juba [52] during 6 days of a mass284

vaccination campaign started in July 31, 2015. Additional details about the285

model setup can be found in [56].286
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Figure 2: Reported cholera cases (dots) versus precipitation (bars) during the 2015 epi-

demic in Juba. The timing of the vaccination campaign is highlighted in yellow.

3.1. Initial conditions287

The past history of cholera epidemics in South Sudan, and particularly in288

Juba (see Section S.5), plays an important role in the determination of the289

size of susceptible and recovered compartments at the beginning of the 2015290

epidemic. These two compartments are also largely impacted by the rate of291

immunity loss, ρ, of the recovered individuals, which determines the duration292

of the stay in the R compartment (from few months to several years), and293

the probability of asymptomatic infected, 1−σ, which determines how many294

asymptomatics enter the R compartment (values in literature range between295

σ = 0.5, meaning one asymptomatic per each symptomatic infected, to less296

than σ = 0.01, corresponding to more than 99 asymptomatic infected per297

each symptomatic infected [57]. The initial conditions must therefore be298

estimated for each parameter set considered during calibration.299

15



To take into account the uncertainty associated with the past epidemics300

and vaccination campaigns, the initial number of temporary immune indi-301

viduals, R0, in April 2014 is calibrated for each model.302

The detailed daily data of suspected cases during 2014 is used to estimate303

the associated number of recovered individuals. These undergo an exponen-304

tial decay with average time of immunity loss 1/ρ (similarly to what done305

in [40]), thus obtaining a consistent estimate of the recovered in June 2016.306

Simulations are then initialized on the 5th of June 2015 considering two307

exposed individuals, two infected, and the associated steady-state bacteria308

concentration.309

4. Results310

4.1. Selection of rainfall effects on transmission pathways311

The summary statistics of the deterministic and stochastic models con-312

sidered in the study are given in Table 2. Overall, the stochastic models313

outperform their deterministic counterparts for all model structures by ≈ 40314

log-likelihood units. Both model types agree in the significance of rainfall in315

explaining the time series of daily reported cases, in particular through the in-316

creased exposure pathway, although the specific ordering of the models differs317

between model types. Indeed, the BFs for the deterministic models suggest a318

strong support for model MEC, followed by model ME (BF−1ME,MEH = 0.16),319

with very little support for all other models (BF−1·,MEH < 10−2 for all other320

models than ME). For the stochastic model, the BFs estimated with the BIC321

suggest the strongest support for model ME, with the basic SIRB model322

coming in second with 5 times less evidence (BF−1MN,ME ≈ 0.15). When323
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considering only the BIC, model ME ranks first for both the determinis-324

tic and the stochastic formulations. Interestingly, all models that include325

human-to-human transmission present smaller or equal log-likelihoods than326

their counterparts with only the bacteria compartment, which suggests that327

the data does not support both environmental and human-to-human trans-328

mission within the set of the models we considered here.329

The results of the nested LR-tests confirm the statistical significance of330

including rainfall in the cholera transmission models, with the effect on ex-331

posure better supported by the data in both model types than the effect on332

contamination. In the deterministic case, the extension of the basic SIRB333

(model MN) with rainfall effects were significant for all direct comparisons334

(Fig. 3 A). The addition of human-to-human transmission was not signifi-335

cant mostly due to the above-mentioned lower estimate of the log-likelihood336

in these models. When considering only a single effect of rainfall (either337

increasing exposure or contamination), ME outperforms MC in terms of338

likelihood for the same number of parameters. Interestingly, the inclusion339

of rainfall-induced contamination in model ME is rejected due to the very340

limited increase of the estimated log-likelihood of MEC, in contrast with341

the BFs favouring the latter. Model ME is thus the one retained by the342

LR-tests in the deterministic set of models. In the case of the stochastic343

models, the LR-tests also highlight the importance of the effect of rainfall on344

exposure rather than on contamination (Fig. 3 B). In fact, the much stronger345

performance of MN in comparison with its deterministic counterpart rela-346

tive to all other model structures imposes a stronger condition for retaining347

additional transmission processes. Indeed, both models MC and MCH were348
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Deterministic Stochastic

Model n ˆ̀ BIC BF−1 n
ˆ̀

(s.e.)
BIC BF−1

MN 7 -368.62 770.27 3.1E-05 8 -326.45
(0.105)

690.65 1.5E-01

MNH 8 -368.95 775.64 1.1E-09 9 -327.52
(0.052)

697.51 4.7E-03

MC 9 -358.32 759.11 5.5E-03 10 -323.50
(0.037)

696.01 2.5E-02

MCH 10 -359.06 765.30 1.7E-04 11 -324.89
(0.041)

701.68 5.9E-04

ME 9 -356.96 756.40 1.6E-01 10 -319.81
(0.035)

687.38 1

MEH 10 -358.06 763.30 6.3E-04 11 -320.64
(0.030)

693.18 4.1E-02

MEC 11 -356.87 765.64 1 12 -320.17
(0.031)

696.96 6.2E-03

MECH 12 -357.55 771.73 2.4E-06 13 -320.38
(0.024)

702.09 4.8E-04

Table 2: Model comparison statistics. We report for each model its number of parameters

n, the associated estimated log-likelihood ˆ̀ (and its Monte Carlo standard error for the

stochastic model), and the inverse of the Bayes Factor (BF−1) with respect to the model

with the largest evidence. The BFs for the deterministic models were computed directly

from the parameters posteriors, whereas for the stochastic models they were estimated

with the Bayesian Information Criterion (BIC) as BFi ≈ e
1
2 (BICi−BICmin). The BIC for

the deterministic models was computed using the maximum log-likelihood value visited

with the MCMC algorithm across chains. Best values in each column are indicated in

bold.
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rejected when compared to MN, thus only models with rainfall-driven ex-349

posure were retained. As in the deterministic case, model ME is the one350

finally retained due to the lack of significance of the inclusion of additional351

transmission processes. We here note that the conclusion based on the LR-352

tests for the deterministic models should be taken with caution because the353

mcmc algorithm used for calibration does not directly aim at maximizing354

the likelihood, but rather at sampling from the posterior distribution of the355

parameters given the data and the model. Moreover, the best likelihood356

visited by the chains when sampling the posteriors that we here use in the357

LR-tests is not a formal estimate of the models’ likelihood. However, the358

fact that the LR-tests applied to both model types agree with the selection359

of ME supports their use in both cases.360

Both statistical methods for model comparison therefore agree about the361

importance of the effect of intra-seasonal rainfall on the exposure to trans-362

mission during the 2015 cholera epidemic in Juba. For the deterministic363

type of models the BFs suggest a stronger support for model MEC, and364

the LR-tests for ME, whereas for the stochastic models both the BIC-based365

estimates of BFs and the LR-tests favor ME.366

4.2. Intra-seasonal rainfall events and the 2015 Juba epidemic367

The comparison between the estimated output cases computed by the368

basic SIRB model (MN) and the most significant rainfall-based processes369

(MEC and ME for the deterministic and stochastic types, respectively)370

highlight the importance of rainfall in retrieving the second epidemiological371

peak (Figure 4). Both deterministic and stochastic SIRB fit well the gen-372

eral trend of the data, but they clearly underestimate the large number of373
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Figure 3: Likelihood ratio tests of model nesting. The LL-tests were computed for each

nested pair of models {M0,M1}, with parameter vectors θ0,θ1, for which at least on of

the parameters that is not null is θ1 is equal to 0 in θ0. Each model is labeled with its

associated estimated maximum log-likelihood value, ˆ̀ , for the deterministic (A) and the

stochastic (B) models, and linked based on whether the likelihood ratio is significantly

(full black lines) or not (dashed gray lines) at the 5% level. The absence of lines indicates

a lower ˆ̀ for the more complex model.
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reported cases on the 19th of July (65 cases). Instead, the more complex374

models ME and MEC follow the SIRB dynamics and then are forced by the375

precipitation occurred in the 18th of July (33 mm/d) toward the epidemio-376

logical peak.377

Model calibration results suggest that precipitations with smaller inten-378

sities did not have a strong impact on cholera transmission during the 2015379

epidemic in Juba. Indeed, the exponents αC and αE were found to be sys-380

tematically larger than 1 (as shown by posteriors of the deterministic models381

in Figure S.2 and the Monte Carlo confidence intervals for the stochastic382

ME in Figure S.4 of the SI). Thus, in the considered epidemic, the nonlinear383

function used to account for rainfall in the model (eq. 10) helps isolating the384

contribution of the largest rainfall.385

The best measures of fit computed for the stochastic ME (see Table 2)386

are thus explained by a larger sensitivity to precipitation, which causes the387

match between the mean of the simulated cases and the data during the388

second peak.389

Comparing the two model types, stochastic results have a larger 95%390

confidence interval, which better encompass most of the data. In particular,391

both epidemiological peaks are well captured by the stochastic models, while392

the deterministic results systematically underestimate them. Two factors393

contribute to this result: the intrinsic stochastic nature of the model, that394

requires the simulation of various model runs for the same set of parameters,395

and the noise that necessarily perturbs the force of the infection yielding an396

overdispersion in infections. The standard deviation of such (assumed white)397

noise is estimated in each stochastic model, and it is interesting to note that398
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Figure 4: Simulations of the MN (A-B), ME (C-D) and MEC (E-F) models. Simu-

lations for the deterministic versions (A,C,E) are given by the mean (blue dashed line),

median (blue full line) and 95% simulation envelops (blue ribbon) of 100 simulations of

the measurement model for each trajectory from 100 samples from the posteriors of model

parameters against reported daily cholera cases (red line and dots). Simulations from the

stochastic models (B, D, F) are given for 10’000 simulations of the stochastic process and

measurement models.
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the MLE obtained for ME is slightly smaller than in MN (0.028 versus399

0.022), highlighting again that the data are retrieved with a lower uncertainty400

when rainfall is included in the model. This is evident in Figure 4, where401

the width of the 95% confidence interval of models ME and MEC is smaller402

with respect to MN.403

Finally, despite having different BFs, the deterministic models ME and404

MEC are qualitatively similar in terms of output response, indicating that405

the recorded changes in the log-likelihood function do not correspond to406

qualitative changes in the output.407

5. Discussion and conclusions408

In this study we developed a general mechanistic SIRB-based epidemi-409

ological model to evaluate the relevance of rainfall in the amplification of410

cholera transmission, focusing on the 2015 Juba outbreak. Two rainfall-based411

transmission processes were compared: the direct increase of the exposure to412

the contaminated water (model ME) following [24], and the increase of water413

contamination by flooded open defecation sites (model MC) following [2]. In414

addition, we also considered human-to-human transmission (models’ name415

with H).416

Regarding the epidemiological model, this study introduced two innova-417

tions with respect to previous modeling attempts of cholera epidemics (see,418

e.g., [43, 40]. First, the focus on daily incidence data, as opposed to weekly419

epidemiological reports commonly used in modelling works, motivated the420

introduction of a compartment of exposed individuals (eq. 1) to account for421

the incubation period of the disease and, thus, the lag between the possibly422
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rainfall-driven infection process and the manifestation of the symptoms re-423

sulting in the timeseries of daily reported cases at our disposal. Second, a424

non-linear version of rainfall driver, in the form of a power-law controlled by425

a single parameter, was introduced to generalize the previous linear depen-426

dence. Such formulation has the flexibility to either emphasize the impact427

of the largest rainfall events, or give equal weight to all non-zero rainfall428

intensities.429

All model assumptions were compared for both deterministic and stochas-430

tic model’s types, in order to draw more general conclusions. The statistics431

and tests used to compare the model results (Table 2 and Figure 3) sup-432

ported the significance of rainfall effects during the 2015 epidemic in Juba.433

In fact, results showed that for both model types there exists a significant434

positive effect of including rainfall drivers, in particular because standard435

SIRB models were not able to reproduce the second epidemiological peak436

of reported cases occurred in July during the recession period. All models437

considering rainfall, instead, showed an increase of the number of cases in438

correspondence of the second epidemiological peak, which was due to the439

large rainfall rates occurred during the previous days (Fig. 4). This differ-440

ence in the simulated responses of models considering (or not) rainfall lead441

to stronger support for rainfall-based models. Due to the small variations442

among the likelihoods of rainfall-based models, however, (Table 2), it is not443

straightforward to draw conclusions on the best way to include the rainfall444

effect. Models with the minimum BIC were those considering the increase in445

exposure (model ME) for both the stochastic and the deterministic model446

types. For the deterministic models, the computation of the Bayes Factors447
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(BFs), which should provide a direct estimation of the model probability,448

suggested the selection of the model combining exposure and contamina-449

tion processes (model MEC). However, this information criterion might be450

unstable due to numerical issues and oscillations in the mcmc used for cal-451

ibration [58]. By considering the fact that the models’ outputs were similar452

for MEC and ME (4), we advise to select the approach endowed with less453

parameters, in this case ME, as indicated by the BIC. Note that the inclu-454

sion of human-to-human transmission was not statistically relevant in this455

modeling exercise.456

The comparison between the likelihoods of the two models’ types (de-457

terministic and stochastic) showed that considering the stochasticity of the458

processes improves the model results (Table 2). This suggests that also de-459

terministic models should include a stochastic term in the computation of460

the force of infection (eq. 9), which might increase the flexibility of the461

outputs.462

Several limitations should be considered when analyzing the present re-463

sults. The calibration exercise attempted in this study considered daily rain-464

fall and cholera reported cases, which are characterized by significant random465

fluctuations that might partly cloud the description of the underlying infec-466

tion processes. Small random delays in reporting could change the infection467

curve and thus the effect of rainfall. This issue was partially addressed by468

considering the exposed compartment (1) for simulation of the incubation469

period, and unknown reporting rate ε for the observed cases.470

Here, we strove to reproduce the epidemic by modelling epidemiological471

transmission processes. While we took into account non-linear rainfall effects472
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and possible over-reporting, we did not consider human mobility effect [59,473

60, 61, 23], which could help modeling the arrival of infected individual.474

Moreover, in our model asymptomatic infected individuals did not contribute475

to the bacterial concentration in the environment, while they might impact476

the infection cycle due to the presence of bacteria in their feces. From a477

modeling viewpoint, these unaccounted processes were compensated by the478

calibration procedure, at the loss of predictive power.479

The prior bounds to be assigned to parameters are typically wide [62]480

because the rates governing transmission processes are highly dependent on481

the specific epidemiological context, so that somewhat contradictory values482

had been estimated in literature. These considerations, together with the483

intrinsic noise affecting recorded cases, underlie the possibility that some of484

the model parameter might be unidentifiable [63], in the sense that different485

parameter combinations would yield the same model output (also called equi-486

finality). The exploration of the posterior parameter distribution using an487

mcmc approach allowed us to evince the possible correlation among parame-488

ters that were well identified by the data, with the main risk of the algorithm489

getting trapped in a local minimum of the fitness landscape (the distribution490

of parameters). The posterior probability distributions of the model parame-491

ters (see SI, Section S4) are associated with the model uncertainty, and were492

here explored by the chains of the mcmc calibration.493

The lack of available data prevented us to include the effects of the overall494

efforts towards WaSH improvement in this study. This assumption is reason-495

able in the case at hand, however, given the short time-frame of the study.496

Despite these limitations, our model comparison using both a deterministic497
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and a stochastic model gave coherent results. The agreement of the two498

modeling types strengthened our results regarding the importance of rainfall499

patterns to significantly affect the development of cholera cases in time.500

Overall, the findings of the study are consistent with the lessons learned501

in South Sudan with most of the transmission starting with the onset of the502

rainy season. In 2016 and 2017, cases in the dry season were observed and503

associated to the overexploitation of scarce water resources by nomadic herds-504

men (cattle camps). This suggests that, as already observed, a general as-505

sessment of the relationship between precipitation and general waterborne or506

water-based disease infections is far from obvious and surely case-dependent.507

It has been argued, for example, that in the domain of water-based parasitic508

infections (see e.g. [64, 8]) rainfall could not only boost disease transmis-509

sion (especially in dry climates where it is a key driver of habitat formation510

for possible intermediate hosts) but also reduce it substantially, e.g. by in-511

creasing water flow (which in turn decreases habitat suitability for both the512

intermediate and the human hosts). Rainfall patterns may also drastically513

affect human activities related to water contacts, thus potentially altering514

exposure and transmission risk [65]. To that end, a hydrology-driven assess-515

ment cannot ignore certain characteristics, in particular the ephemeral or516

permanent nature of the waterways fostering contacts among pathogens and517

hosts [66]. Also, temporal fluctuations of rainfall patterns may be particularly518

important in determining the seasonality of transmission [67, 68, 69, 66].519

Subsuming the results obtained by this major computational exploration520

focused on the analysis of Juba’s 2015 epidemics, we conclude that rainfall521

patterns are fundamental drivers for epidemic cholera models, whether de-522
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terministic or stochastic, not only to capture seasonal trends, but also to523

describe short-term fluctuations in the number of reported cases.524
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cual, Seasonality in cholera dynamics: A rainfall-driven model explains613

the wide range of patterns in endemic areas, Advances in Water Re-614

sources 108 (2016) 357–366.615

[26] D. Ruiz-Moreno, M. Pascual, M. Bouma, A. Dobson, B. Cash, Cholera616

seasonality in madras (1901–1940): Dual role for rainfall in endemic and617

epidemic regions, EcoHealth 4 (2007) 52–62.618

[27] E. Lipp, A. Huq, R. Colwell, Effects of global climate on infectious619

disease: The cholera model, Clinical Microbiology Reviews 15 (4) (2002)620

757–770.621

[28] S. M. Faruque, M. J. Islam, Q. S. Ahmad, A. S. G. Faruque, D. A. Sack,622

G. B. Nair, J. J. Mekalanos, Self-limiting nature of seasonal cholera623

epidemics: Role of host-mediated amplification of phage, Proceedings624

of the National Academy of Sciences USA 102 (2005) 6119–6124.625

[29] V. R. Hill, N. Cohen, A. M. Kahler, J. L. Jones, C. A. Bopp, N. Marano,626

C. L. Tarr, N. M. Garrett, J. Boncy, A. Henry, G. A. Gomez, M. Well-627

man, M. Curtis, M. M. Freeman, M. Turnsek, R. A. Benner, Jr., G. Da-628

hourou, D. Espey, A. DePaola, J. W. Tappero, T. Handzel, R. V. Tauxe,629

Toxigenic Vibrio cholerae O1 in water and seafood, Haiti, Emerging In-630

fectious Diseases 17 (11) (2011) 2147–2150.631

[30] S. Rebaudet, B. Sudre, B. Faucher, R. Piarroux, Environmental deter-632

minants of cholera outbreaks in inland Africa: a systematic review of633

32



main transmission foci and propagation routes, The Journal of Infectious634

Diseases 208 (2013) S46–S54.635

[31] M. Emch, C. Feldacker, M. S. Islam, M. Ali, Seasonality of cholera636

from 1974 to 2005: a review of global patterns, International Journal of637

Health Geographics 7 (1) (2008) 31–39. doi:10.1186/1476-072X-7-31.638

[32] G. Constantin de Magny, R. Murtugudde, M. R. P. Sapiano, A. Nizam,639

C. W. Brown, A. J. Busalacchi, M. Yunus, G. B. Nair, A. I. Gil, C. F.640

Lanata, J. Calkins, B. Manna, K. Rajendran, M. K. Bhattacharya,641

A. Huq, R. B. Sack, R. R. Colwell, Environmental signatures associ-642

ated with cholera epidemics, Proceedings of the National Academy of643

Sciences USA 105 (2008) 17676–17681.644

[33] S. Rebaudet, B. Sudre, B. Faucher, R. Piarroux, Cholera in coastal645

africa: a systematic review of its heterogeneous environmental determi-646

nants, The Journal of Infectious Diseases 208 (2013) S98–S106.647

[34] A. Jutla, A. Akanda, A. Huq, A. Faruque, R. Colwell, S. Islam, A wa-648

ter marker monitored by satellites to predict seasonal endemic cholera,649

Remote Sensing Letters 4 (8) (2013) 822–831.650

[35] J. Gaudart, S. Rebaudet, R. Barrais, J. Boncy, B. Faucher, M. Piarroux,651

R. Magloire, G. Thimothe, R. Piarroux, Spatio-temporal dynamics of652

cholera during the first year of the epidemic in Haiti, PLoS Neglected653

Tropical Diseases 7 (4) (2013) e2145.654

[36] R. R. Frerichs, P. S. Keim, R. Barrais, R. Piarroux, Nepalese origin655

33



of cholera epidemic in Haiti, Clinical Microbiology and Infection 18 (6)656

(2012) E158–E163.657

[37] A. Kirpich, T. Weppelmann, Y. Yang, A. Ali, J. Morris Jr., I. Longini,658

Cholera transmission in ouest department of haiti: Dynamic modeling659

and the future of the epidemic, PLoS Neglected Tropical Diseases 9 (10)660

(2015) e0004153. doi:10.1371/journal.pntd.0004153.661

[38] ERCC ECHO, Haiti - Hurricane Matthew - Damage assessment and662

ECHO Response, Emergency Response Coordination Centre (ERCC),663

European Commission, Humanitarian Aid and Civil Protection (2016664

(accessed on 2017-14-04)).665

URL http://erccportal.jrc.ec.europa.eu/getdailymap/docId/1774666

[39] A. Camacho, D. Pasetto, F. Finger, E. Bertuzzo, S. Cohuet,667

F. Grandesso, E. Lynch, F. Luquero, Prediction of cholera dynamics668

in Haiti following the passage of Hurricane Matthew, Tech. rep., Epi-669

centre, Paris, France (2016).670

[40] D. Pasetto, F. Finger, A. Rinaldo, E. Bertuzzo, Real-time projections671

of cholera outbreaks through data assimilation and rainfall forecasting,672

Advances in Water Resources 108 (2017) 345–356.673

[41] R. Khan, R. Anwar, S. Akanda, M. D. McDonald, A. Huq, A. Jutla,674

R. Colwell, Assessment of risk of cholera in haiti following hurricane675

matthew, The American Journal of Tropical Medicine and Hygiene676

97 (3) (2017) 896–903. doi:10.4269/ajtmh.17-0048.677

34



[42] R. Piarroux, R. Barrais, B. Faucher, R. Haus, M. Piarroux, J. Gau-678

dart, R. Magloire, D. Raoult, Understanding the cholera epidemic, Haiti,679

Emerging Infectious Diseases 17 (2011) 1161–1168.680

[43] E. Bertuzzo, F. Finger, L. Mari, M. Gatto, A. Rinaldo, On the681

probability of extinction of the Haiti cholera epidemic, Stochastic682

Environmental Research and Risk Assessment 30 (2016) 2043–2055.683

doi:10.1007/s00477-014-0906-3.684

[44] P. Adams, Haiti prepares for cholera vaccination but concerns remain,685

The Lancet 379 (2012) 16.686

[45] M. Periago, T. Frieden, J. Tappero, K. De Cock, B. Aasen, J. Andrus,687

Elimination of cholera transmission in haiti and the dominican republic,688

The Lancet 379 (2012) E12–E13.689

[46] P. Adams, Cholera in Haiti takes a turn for the worse, The Lancet690

381 (9874) (2013) 1264.691

[47] C. Codeço, Endemic and epidemic dynamics of cholera: the role of the692

aquatic reservoir, BMC Infectious Diseases 1 (1).693

[48] A. S. Azman, K. E. Rudolph, D. A. Cummings, J. Lessler, The incuba-694

tion period of cholera: A systematic review, Journal of Infection 66 (5)695

(2013) 432 – 438. doi:10.1016/j.jinf.2012.11.013.696
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