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Abstract

We propose a new measure of disagreement based on connectedness, which

generalizes the disagreement index introduced in Billio et al. (2018). Building

on the lifting approach in Hendrickx (2014), we extend Billio et al. (2018) to

signed networks, which allows us to consider more general consensus dynam-

ics and disagreement with antagonistic behaviour. Synthetic and real-world

financial networks of serial correlation are considered for illustrating the new

measure and for studying opinion dynamics and convergence to consensus on

prices for financial assets.

Keywords: Consensus dynamics; Disagreement; Financial contagion; Finan-

cial Networks; Graph Theory, Opinion Dynamics.

JEL: C58; D83; D85; G12; G29.
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1 Introduction

Given the threat to financial stability and the real economy, quantifying sys-

temic risk is now investigated by scholars as well as policy makers. More

recently, graph theoretic measures and in particular convergence of agents on

a network to a consensus have been involved in the systemic risk analysis and

in the construction of early warning indicator for banking crises (Billio et al.,

2018). Financial networks are usually extracted by testing for significant cor-

relations (e.g., see Bianchi et al., 2019), and for Granger (e.g., see Ahelegbey

et al., 2016a,b; Billio et al., 2019b) or Sims causality (e.g., see Diebold and

Yılmaz, 2014; Diebold and Yilmaz, 2015) between time series of returns. In

this paper, we propose a generalization of the disagreement index of Billio

et al. (2018). Building on the lifting approach in Hendrickx (2014), we extend

the results in Billio et al. (2018) to signed networks. This allows us to con-

sider a more general consensus dynamics and disagreement with antagonistic

behaviour of the agents interacting on a network.

Financial theory literature linked predictability, such as momentum, re-

versal and spillovers effects to disagreement among investors. For instance,

Cujean and Hasler (2017) show that stronger autocorrelation levels in a risky

asset is found during bad times when considering two agents with different

predicting models. Han et al. (2017) found spillovers (cross-autocorrelation)

in two risky assets arises when considering two agents. Serial correlation in

the same asset and between different assets signals disagreement. Thus in

this paper we consider networks of serial correlation for studying the opinion

dynamics on prices. If consensus is reached then serial correlation is reduced.

The paper is structured as follows. Section 2 provides some background on

graph theory for network analysis. In Section 3, we introduce the notions of

disagreement and consensus dynamics for directed networks. Section 4 extends

the results of Section 3 to signed networks. Section 5 provides some empirical

results on both simulated and real-world financial networks.

2 Financial Networks and Graph Theory

A network can be defined as a set of vertices (or nodes) and arcs (or edges)

between vertices. In financial networks, a node represents a financial institu-

tion (e.g., a bank, an insurance company, a financial agglomeration) and an

edge has the interpretation of financial linkage between two institutions. In

3



mathematical terms a network can be represented through the notion of graph

and its properties. In the following sections we provide some background in

graph theory useful for a better comprehension of the new indicators developed

in this paper and of the analysis of financial networks. For further material

on graph theory and random graph we refer the interested reader to Bollobás

(1998) and Bollobás (2001). See Jackson (2008) for an introduction to network

theory in social sciences.

A graph is defined as the ordered pair of sets G = (V,E) where V =

{1, . . . , n} is the set of vertices (or nodes) and E ⊂ V × V the set of edges

(or arcs). The order of a graph is the number of vertices in V , that is the

cardinality of V denoted with |V |. An (directed) edge between two nodes

exists if there is a relationship between them and it can be identified as the

(ordered) pair {u, v} with u, v ∈ V . If there is no direction in the connection

between nodes then an edge {u, v} is an unordered pair of nodes and the graph

G is said to be undirected, whereas if a direction exists, then each edge {u, v}
is defined as an ordered pair of nodes and the graph G is said to be directed

graph (or digraph).

Assume for simplicity the graph G = (V,E) is undirected. If {u, v} ∈ E
then u and v are adjacent vertices and they are incident with the edge {u, v}.
For each node u, it possible to define its neighborhood as the set of nodes ad-

jacent to u, that is Nu = {v ∈ V ; {u, v} ∈ E}. The vertex adjacency structure

of a n-order graph G = (V,E) can be represented through a n-dimensional

matrix A called adjacency matrix. Each element auv of the adjacency matrix

is equal to 1 if there is an edge from institution u to institution v with u, v ∈ V ,

and 0 otherwise, where u 6= v, since self-loops are not allowed. If the graph is

undirected than auv = avu, that is the adjacency matrix is symmetric.

As an example, Figure 1 includes two graphs, one directed (panel (a)) and the

other undirected (panel (b)). The edges of the directed graph are e1 = {v2, v1},
e2 = {v2, v4}, e3 = {v2, v3} and e4 = {v3, v4} and its adjacency matrix is given

in the second line of the same panel. The edges of the undirected graph are

e1 = {v1, v2}, e2 = {v1, v4}, e3 = {v3, v4} and its adjacency matrix is given in

the second line of the same panel.

In some applications it is useful to focus the analysis on a subset of nodes

or edges of a graph. We say that G′ = (v′, E ′) is a subgraph of G if V ′ ⊂ V and

E ′ ⊂ E. The subgraph can be induced by a subset of edges or by a subset of

nodes. Panel (c) of Figure 1 shows, as an example, the subgraph of the directed
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graph reported in Panel (a). Given two subgraphs of G, G1 = (V1, E1) and

G2 = (V2, E2), the graph union G3 = G1 ∪ G2 is defined as the graph G3 =

(V3, E3) such that V3 = V1 ∪ V2 and E3 = {{u, v} ∈ E;u, v ∈ V3}. Note that

E1∪E2 ⊂ E3. The graph difference G3 = G2\G1 with V1 ⊂ V2, is defined as the

graph G3 = (V3, E3) such that V3 = V2\V1 and E3 = {{u, v} ∈ E;u, v ∈ V3}.

INSERT FIGURE 1 HERE

2.1 Graph Connectivity

Let G = (V,E) be an undirected graph, a simple measure of connectivity is

the node degree which is the number of adjacent nodes. If auv is the u-th row

and v-th column element of the adjacency matrix A, then the degree of the

node u is

du =
n∑
v=1

auv (1)

If G = (V,E) is a directed graphs, it is possible to define the number of edges

directed from other nodes to node u (in-degree) and from node u to other

nodes (out-degree)

doutu =
n∑
v=1

avu, dinu =
n∑
v=1

auv (2)

The two extreme configurations of the connectivity structure of a n-order graph

G are given by the graph with empty edge set, i.e. |E| = 0, which is called

empty graph and denoted with En and the complete graph where each node

is adjacent to all other nodes in the graph. In this case, the cardinality of the

edge set is maximal, i.e. |E| = n(n − 1)/2, and graph is denoted with Kn.

Panels (a) and (b) of Figure 2 show an example of complete, K4, and empty,

E4, graphs. The number of elements in the edge set is called volume of G, that

is vol(G) = |E|.
The node degree measures rely on the adjacency of the nodes and do not

account for cohesiveness and indirect connectivity patterns which play a cru-

cial role in spreading of contagion in a network. The cohesiveness can be

represented through the number and size of cliques or of communities, and the

indirect connections can be represented by walks, trails, paths, circuits and

cycles.

A clique C ⊂ G, is defined as an ordered pair of sets C = (VC , EC) with
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VC ⊂ V and EC = {{u, v} ∈ E;u, v ∈ VC} such that m = |VC | > 2, EC = Km

and C ∪ {w} with w ∈ G\C is not complete.

A walk Wuv = (v0, e1, . . . , el, vl) between two vertices u and v of G, called

endvertices, is identified by an alternating sequence of (not necessary distinct)

vertices V (Wuv) = {v0, v1, . . . , vl} and edges E(Wuv) = {e1, . . . , el} ⊂ E, with

e1 = (v0, v1), el = {vl−1, vl}, and v0 = u and vl = v. The number of edges

|E(Wuv)| = l in a walk is called “walk length”. A walk of length l is called

l-walk and denoted with Wl. It is easy to show that the number of l-walks

from node u to node v is equal to the (u, v)-th element of Al that is equal to

n∑
v1=1

n∑
v2=1

· · ·
n∑

vl−1=1

auv1av2v3 . . . avl−1v. (3)

If all edges are distinct then the walk is called a trail. A trail with coincident

endvertices is called a circuit (or closed trail). A walk Wl with l ≥ 3 with

v0 = vl and vertices vj, 0 < j < l distinct from each other and from v0, is

called cycle and denoted with Cl. An example of cycle C4 is given in panel (d)

of Figure 2.

A path Puv between vertices u and v of G is a walk with distinct elements in

its vertex set. A generic path of length l is denoted with l. The shortest-path

P ∗uv between two vertices u and v is min
l
{Puv = (v0, e1, . . . , el, vl), l ≥ 1} that

is the path with the minimum length. An example of path P2 is given in panel

(c) of Figure 2.

The notion of path allows us to introduce the definition of connected graph

and some other basic graph structures. A graph is connected if for every

pair of distinct vertices u and v there is a path from u to v. A maximal

connected subgraph is a component of the graph. A cutvertex is a vertex

whose deletion increases the number of components. An edge is a bridge if

its deletion increases the number of components. A graph without cycles is a

forest or an acyclic graph. A tree is a connected forest.

INSERT FIGURE 2 HERE

The notion of path can be used to define the distance between two nodes

u and v, d(u, v) as the length of the shortest path or geodesic between u and

v. See Billio et al. (2019a) for further background material on graph theory

for financial network analysis.
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Another notion which is relevant to the results discussed in this paper is

the one of random walk on a graph. Let G = (V,E) be a connected graph

with vertex set V = {1, 2, . . . , n}. A sequence of random vertices {vt}t≥0 with

vt ∈ V is a random walk on G starting at the node v0 if at the (t+ 1)-th step

the random variable vt+1 takes value i with probability 1/dvt where i belongs

to the neighbour Nvt . If we define

pij =

{
1/di {i, j} ∈ E
0 {i, j} /∈ E

then M = (pij)i,j∈V is a matrix of transition probabilities and the sequence

{vt}t≥0 is a Markov chain process. The transition matrix can be written as

M = D−1A where D = diag{d1, . . . , dn} is a diagonal matrix and A the

adjacency matrix of G. If the graph G is connected and not bipartite the

random walk converges to the stationary distribution of M , π = (π1, . . . , πn)

with πi = di/(2vol(G)) which satisfies

M ′π = AD−1(d1, . . . , dn)′
1

2vol(G)
= (

n∑
i=1

a1i
di
di
, . . . ,

n∑
i=1

ani
di
di

)
1

2vol(G)
= π.

(4)

The stationary distribution and the spectrum of D1/2MD−1/2 are connected

by the following equation

M t = ππ′ +
n∑
k=2

λtkD
−1/2vkv

′
kD

1/2 (5)

where 1 = λ1 ≥ λ2 ≥ . . . ≥ λn > −1 and v1, . . . ,vn satisfies the spectral

representation

D1/2MD−1/2 =
n∑
k=1

λkvkv
′
k (6)

In the study of opinion dynamics another type of random walk process is

used: the lazy random walk. This process is a random walk with transition

matrix PL = (I + D−1A)/2. If G is connected the lazy walk converges to the

stationary distribution π(v) = dv/vol(G). We refer the reader to Lovász (1996)

for a review on random walks on a graph.
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3 Disagreement and Networks

The relationship between the eigenvalues of the directed Laplacian (Diplacian),

introduced in Li and Zhang (2012), and the rate of convergence to a consensus

of agents interacting on a network was studied in Billio et al. (2018). The

application of those techniques to financial networks could be understood as

measuring persistence of disagreement that is ”magnified when major events

occur in financial markets” according to Carlin et al. (2014). Our approach

considers a limited communication network Parikh and Krasucki (1990) among

agents, represented by statistical causal relationships between stock returns as

done in Billio et al. (2018).

Consider a graph with adjacency matrix A = (aij)ij with non-negative

elements, ai,j ∈ R+, and the diagonal matrix D with non zero elements douti =∑n
j=1 aij i = 1, . . . , n on the main diagonal. In our model for disagreement

persistence (or opinion dynamics on network), we assume the variable xi,t ∈ R
represents the opinion of an agent i ∈ {1, . . . , n} at time t and the coefficient

aij the interaction effect between two agents i and j. Also, we introduce the

following discrete time dynamic system describing the interaction between the

agents:

xit = xit−1 +
1

2douti

n∑
j=1

aij (xjt−1 − xit−1) (7)

Since aij ≥ 0 the opinion of the agent i is attracted by the opinion of the

agent j. Similar systems, introduced by DeGroot (1974), are building blocks

in models for belief evolution of agents with bounded rationality and with a

persuasion bias DeMarzo et al. (2003).

The model can be written in the matrix form:

xt =

(
1

2
In +

1

2

(
In −D−1 (D − A)

))
xt−1 = PLxt−1

Where xt = (xit, . . . , xnt) is the state vector of the agents and PL = (In − P ),

with P = D−1A, is the transition matrix of a lazy random walk (Chung, 2005).

The matrix P = D−1A is the transition probability matrix of the Markov chain

associated with random walks on G, where the (i, j)–th element of P is

pij =

{
1

douti
aij if {i, j} ∈ E

0 otherwise.
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and represent the probability of transitioning from vertex i to vertex j of a

random walk starting at i. If the graph is strongly connected, PL is irreducible

and aperiodic, according well known results, the system converge to a consen-

sus with group decision value ϕ′x0. The group decision is conserved by the

dynamics:

ϕ′xt = ϕ′PLxt−1ϕ
′xt−1 = α.

We define the disagreement vector ξt as follows

ξt = xt − α1

and its law of motion

ξt = PLξt−1.

The disagreement dynamics allows us to study the convergence rate in this

directed unsigned case to this decision value. We exploit the theoretical results

on lazy random walks on strongly connected directed graphs due to Chung

(2005) and Li and Zhang (2012). In particular in Li and Zhang (2012) the

Diplacian Γ and its decomposition of in symmetric and asymmetric part is

introduced

Γ = ϕ1/2 (I − P )ϕ−1/2, Γ = L+ ∆, L =
Γ + Γ′

2
, ∆ =

Γ− Γ′

2
.

where ϕ = diag(ϕ) is a diagonal matrix and ϕ the ergodic probability vector

of the Markov chain with transition matrix P 2. According to the results in

Billio et al. (2019a) the speed of convergence to the consensus can be written

as a function of the second smallest eigenvalue of L, λ2, the second largest

singular value of In − L, σn−1 (In − L), and the largest singular value of the

skew-symmetric part of the diplacian ∆, σn (∆), as stated in the following

theorem.

Theorem 1. Consider the discrete-time system introduced in (5) on a a

strongly connected directed network. A consensus is globally exponentially
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reached according to

‖ξt‖ ≤ exp

{
1

2

[
log

(
max (ϕ)

min (ϕ)

)
+ log (µ) t

]}
‖ξ0‖

µ =
3

4
− λ2

2
+

(σn−1 (In − Γ))

4
<

3

4
− λ2

2
+

(σn−1 (In − L) + σn (∆))2

4
.

where µ is the disagreement persistence index, measuring the convergence rate

to consensus

See Billio et al. (2019a) for a proof. The result in Theorem 1 implies a

slower convergence if the graph is directed and shows a magnifying effect of

the heterogeneity in the importance of the nodes in the common decision of

the group.

4 Disagreement and Signed Networks

In the previous section the elements of the adjacency matrix, aij, were assumed

to be non-negative. In many applications, networks are extracted by vector

autoregressions (VAR), or similar methodologies, which allow for weighted net-

works with possibly negative edge weights. Usually, the network topology is

analysed considering the absolute value of the edge weights. As argued in var-

ious papers (see, e.g. Altafini, 2012, 2013), neglecting the signs of the weights

can lead to wrong conclusions on the connectivity structure and produce a

relevant loss of information about the contagion dynamics.

Consider a signed network that is an adjacency matrix A with real-valued

elements, aij ∈ R, i, j = 1, . . . , n. A signed framework to network analysis

consists in studying the antagonistic interaction among agents, i.e.

xit = xit−1 +
1

2d
|out|
i

n∑
j=1

|aij| (sign (aij)xjt−1 − xit−1) . (8)

Since aij can be either positive or negative, in the system there two types of

effects. If aij ≥ 0 the opinion of the agent i is attracted by the opinion of

the agent j, whereas if aij ≤ 0 the opinion of the agent i is attracted by the

opinion opposite to that of agent j. As argued in Hendrickx (2014), this model

allows not only for convergence of opinions toward a common value but also

for persistent disagreement and multiple clusters of opinions. The behaviour

of the system depends crucially on the topology of the network and on the
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signs of the edge weights aij. The following examples illustrate the roles of

signs in reaching the consensus. In the first example (top plots of Fig. 3) we

let x0 = (0.5, 0) be the initial value of the agent opinions and

A =

(
0 −1/4

−1/4 0

)

be the adjacency matrix. In the second example (bottom plots of Fig. 3)

we assume the initial value of the agent opinions are randomly selected as

follows x0 = (u1v1, . . . , u100v100), with ui and vi standard uniform and Bernoulli

variables, respectively. The edge weights are aij = (i− j)/100.

In both settings, we consider the opinion dynamics in the classical consensus

system assuming alternatively aij and |aij| as interaction coefficients. In the

first case the two agents reach consensus as t → ∞ (left plots in Fig. 3)

whereas in the second case the agents opinions diverge (right plots).

INSERT FIGURE 3 HERE

The antagonistic interaction in Equation 8 can be written as a classical

consensus system, with unsigned directed interactions, by applying the clever

lifting trick introduced in Hendrickx (2014). Let us define bij = max (0, aij),

cij = max (0,−aij), d|out|i =
∑n

j=1 |aij| then the dynamic in Eq. 8 can be

written as

xit − xit−1 =
1

2d
|out|
i

n∑
j=1

bij (xjt−1 − xit−1)− 1

2d
|out|
i

n∑
j=1

cij (xjt−1 + xit−1) (9)

and

yit − yit−1 =
1

2d
|out|
i

n∑
j=1

cij (yjt−1 − yit−1)− 1

2d
|out|
i

n∑
j=1

bij (yjt−1 + yit−1)(10)

where the two systems are coupled by the relationship yit = −xit. The joint

dynamics can be written[
xt

yt

]
=

(
1

2

[
In 0

0 In

]
− 1

2

[ (
D|out|

)−1
0

0
(
D|out|

)−1

][
B C

C B

])[
xt−1

yt−1

]
(11)
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where

B =


b11 · · · b1n

...
...

bn1 · · · bnn

 , C =


c11 · · · c1n

...
...

cn1 · · · cnn

 ,

D|out| =


d
|out|
1 0 · · · 0

0 d
|out|
2 · · · 0

...
...

. . .
...

0 0 · · · d
|out|
n


Analogously to Hendrickx (2014) xt is a solution of (11) if and only if

zt = (xt,yt) is a solution of the “classical” discrete time consensus system[
xt

yt

]
= PL

[
xt−1

yt−1

]

where the lifted transition probability is

PL =
1

2

[
In 0

0 In

]
− 1

2

[ (
D|out|

)−1
0

0
(
D|out|

)−1

][
B C

C B

]
. (12)

The decision vector and Laplacian corresponding to PL can be used in Theorem

1 to bound the speed of convergence of the lifted dynamics and to find an upper

bound for consensus dynamics on a signed directed network. As discussed for

the unsigned case in Billio et al. (2018), those results can be readily applied to

build a disagreement index which includes the sign information. A comparison

with the unsigned framework can provide a better understanding of the roles

of the negative weights in financial connectedness and systemic risk. In this

paper, we apply the following two disagreements measures:

• the disagreement persistence

µ =
3

4
− λ2

2
+

(σn−1 (In − Γ))

4

which measures the fraction of disagreement present in the system after

one period;
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• the half life of disagreement

τ1/2ξ = −
log

(
max (ϕ)

min (ϕ)

)
log (µ)

which indicates the time the disagreement vector norm takes to reduce

by one half.

5 Empirical Analysis

In this section we provide some empirical applications to synthetic and real

data. Network analysis proved to be an efficient methodology to measure

connectedness in financial systems. Scholars have introduced several inference

approaches on financial networks. In this paper, we consider a rolling window

parametric estimates of the connectedness following two of most compelling

approaches.

The first one is due to Billio et al. (2012) which proposes to extract con-

nectedness between stock returns by pairwise Granger causality tests, that is

by estimating

rit = φiirit−1 + φijrjt−1 + εit

and by setting

AGC,ij =

{
1 if φij statistically different from 0

0 otherwise

where ri,t = log(Pi,t) − log(Pi,t−1) i = 1, . . . , n are logarithmic returns on n

assets.

The second approach proposed by Diebold and Yılmaz (2014) applies the

H-step generalized variance decomposition of a VAR model. Assume a VAR

model of the first order

rt = Φrt−1 + εt, εt
iid∼ N(0,Σ) (13)

where r′t = (r1,t, . . . , rn,t). The estimated autoregressive coefficients Φ̂ and

covariance matrix Σ̂ are used to compute the connectedness matrices D̂h, h =

13



1, . . . , H with elements

D̂h,ij =

σ̂−2
jj

h−1∑
`=0

([(
Φ̂
)`√

Σ̂
√

Σ̂
T
]
ij

)2

h−1∑
`=0

[(
Φ̂
)`√

Σ̂
√

Σ̂
T (

Φ̂T
)`]

ij

, i, j = 1, . . . , n

and the corresponding weight matrix AD = D̂h − diag
(
D̂h

)
of a signed and

directed weighted network (Diebold and Yılmaz (2014)). Alternatively, we use

Φ̂ to compute the forecast operator Φ̂h =
∑h

`=0(Φ̂)` and the weight matrix

AΦ = Φ̂h − diag
(

Φ̂h

)
of a signed directed weighted network.

In the following applications, we study the autoregressive coefficients Φ̂,

the global connectedness

Ch =
1

n

n∑
i,j=1
i 6=j

ÂD,ij

and the disagreement persistence measures, µ (AD) and µ (AΦ), and the half

life of disagreement τξ/2 (AD) and τξ/2 (AΦ).

5.1 Simulated Networks

Following the prediction from the financial theory (e.g., see Chan (1993)) asym-

metric information, disagreement and predictability are strictly related. As-

sume the stocks are traded over T periods and the stock log-value is given

by

Vi,t = v̄ +
t∑

τ=1

∆Vi,τ (14)

∆Vi,t = Mt + εi,t (15)

where ∆Vi,t represents the change in the stock log-value, εi,t is a stock-specific

information component that affects stock i at time t and Mt a market-wide

information component that affects all stocks. We assume that the market

factor and the stock idiosyncratic terms are independent that is

(Mt, εt)
′ iid∼ N

(
02, diag

(
σ2
M , σ

2
ε

))
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Assume there is one market maker for each stock i which observes directly

the true increment of the log-value ∆Vi,τ , τ = 1, . . . , t − 1, does not observe

directly the current increment ∆Vi,t but instead observes the signal θi,t where

θi,t = ∆Vi,t + ηi,t (16)

where ηi,t ∼ N(0, σ2
η) and Cov(ηi,t, ηj,s) = Cov(ηi,t,Ms) = 0 for all i 6= j and

s, t = 1, . . . , T . Conditionally on his information set, the market maker i sets

the log-price as

logPi,t = v̄ +
t−1∑
τ=1

∆Vi,τ + κθi,t (17)

where

κ =
σ2
M + σ2

ε

σ2
M + σ2

ε + σ2
η

It can be shown (see Chan (1993)) that the cross-autocorrelation generated by

the disagreement is

Corr (∆ logPi,t,∆ logPj,t−1) = κ (1− κ)
σ2
M

σ2
M + σ2

ε

Figure 4 provides a numerical illustration of the auto cross-correlation level for

different levels of disagreement (horizontal axis) and market volatility (different

lines).

INSERT FIGURE 4 HERE

In empirical applications, the disagreement level (σ2
η > 0) and the serial

cross-correlation are not observable, but can be inferred from observed data.

We generate T = 12000 samples from the model given above with the following

parameters setting: v̄ = 1000, σ2
M = 1, σ2

ε = 0.1, σ2
η = 0.1 if t < 6000 and

σ2
η = 0.7 if t ≥ 6000. Figure 5 shows theN = 40 simulated series of asset prices.

For the simulated data, we consider a sequence of 100 not overlapping windows

of 120 observations each, and estimate for each window the autocorrelation

matrix (see Figure 6), the autoregressive coefficients matrix, its spectral radius

and its total degree, see the shaded blue area(left axis), the solid line and

the dashed line (right axis) in Figure 7). Figure 8 shows the disagreement
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persistence τξ/2 (AD) (blue line, left axis), and half-life disagreement µ (AD)

(red line, right axis).

INSERT FIGURES 5 - 8 HERE

5.2 Stock Market Networks

In the empirical analysis, we consider the financial connectedness in the Euro-

pean area. The dataset is composed of daily returns for value-weighted finan-

cial institutions stock indexes for 19 European countries from 8th January 1996

to 30th December 2016.1 Data have been downloaded from Eikon/Datastream.

Following Billio et al. (2012), we estimate dynamic Granger networks us-

ing rolling windows with length size of 252 daily observations, that is approx-

imately one year. We estimate in each window a VAR(1) using a penalized

regression approach with an Elastic Net penalty to obtain the spillover index

Dh and Φh with an horizon h form 1 to 12 days. The tuning parameter is

chosen by cross-validation using the sparsevar R package2.

We compute connectedness, half life of disagreement and disagreement per-

sistence on Dh and half life of disagreement and disagreement persistence on

Φh.

We study if our measures are statistically related to other measures of dis-

agreement, such as the Economic Sentiment Indicator (ESI) of the European

Commission3. ESI is based on regular harmonized surveys, conducted by the

Directorate General for Economic and Financial Affairs for different sectors of

the economies in the European Union (EU) and in the applicant countries It

is a composite indicator on five weighted sectoral confidence indicators: Indus-

trial confidence indicator, Services confidence indicator, Consumer confidence

indicator, Construction confidence indicator, and Retail trade confidence in-

dicator. In this respect, we consider the monthly sentiment indicators for

the 19 European Economies included in our dataset and compute their cross-

sectional standard deviation (σ̂ESI) at each point in time. Is worth noting that

the obtained measure σ̂ESI describes disagreement about the condition of the

1The countries considered are Austria, Belgium, Czech Republic, Denmark, Finland,
France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Portugal,
Spain, Sweden, Switzerland and the United Kingdom.

2The Package is available at https://cran.r-project.org/web/packages/sparsevar/
sparsevar.pdf.

3The ESI indicator is available at https://data.europa.eu/euodp/it/data/dataset/
c04BuUz6WXIQGJkHPwLug
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whole European economic system and not just the financial system. Therefore,

the higher the cross-sectional standard deviation, the higher the disagreement

about the economic condition between the European Countries.

INSERT FIGURE 9 HERE

To compare the proposed measures with the ESI indicator, we sample the

estimated Φ̂ in each window which corresponds to the last day of the month

and perform a regression analysis. Figure 9 shows the total connectedness Ch

and the cross-sectional standard deviation of national ESI indicators, σ̂ESI . As

expected, the total connectedness increases during turbulent market periods

while the cross-sectional deviation of ESI indicators picks up after the Asian

crisis in 1997-98 and after global financial crisis in 2007-2008.

INSERT FIGURES 10-11 HERE

Figure 10 includes on the left-scale the half life of disagreement on con-

nectedness (τξ/2(AD)) and the half life disagreement on the forecast operator

(τξ/2(AΦ)) while on the right-scale the cross-sectional standard deviation of

national ESI indicators(σ̂ESI).

Figure 11 shows the disagreement persistence on connectedness (µ(AD)),

the disagreement persistence on the forecast operator (µ(AΦ)) and the cross-

sectional standard deviation of national ESI indicators(σ̂ESI).

Table 1 shows the estimated models where the dependent variable is the

cross-sectional standard deviation of national ESI indicators σ̂ESI and the ex-

planatory variables are the total connectedness Ch, the half life of disagreement

on connectedness τξ/2(AD), the half life disagreement on the forecast opera-

tor τξ/2(AΦ), the disagreement persistence on connectedness µ(AD) and the

disagreement persistence on the forecast operator µ(AΦ). First, the total con-

nectedness (Ch) and the half life disagreement on the forecast operator τξ/2(AΦ

are not significantly different from zero both at 1% and 5% confidence level

while the half life of disagreement on connectedness τξ/2(AD) is significantly

different from zero at 5% with an estimated coefficient equal to 0.0160. Both

the disagreement persistence on connectedness µ(AD) and the disagreement

persistence on the forecast operator µ(AΦ) are significantly different from zero

at 1% confidence level with estimated coefficients equal to 0.8169 and 0.6529,

respectively. In all cases, the coefficients are positive indicating a positive rela-

tionship among disagreement in the financial network and the cross-sectional

standard deviation of national ESI indicators(σ̂ESI).
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INSERT TABLE 1 HERE

6 Conclusion

Networks extraction from financial time series relies on different techniques

(e.g., Granger causality, Sims causality, sparse VAR, graphical VAR). Build-

ing on financial theoretic literature, we study consensus dynamics on financial

weighted networks and propose two new measures: time to consensus and

disagreement persistence. Our results extend the existing consensus dynamic

to weighted directed networks, with signed weighting matrix. We provide an

empirical investigation of the adequateness of the proposed measures and a

comparison with a financial disagreement proxy. Our findings suggest that

the new measures outperform the simple total connectedness measure, and

are able to capture different characteristics of the data that better resemble

disagreement. Our disagreement proxy is based on a country aggregated sen-

timent index about economic expectation of which financial are only a part,

this could explain the small explanatory power of our regression analysis.
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Economic Sentiment Index St. Dev. σ̂ESI

(constant) 5.8976*** 5.8334*** 5.9352*** 5.7895*** 5.7982***

(0.0895) (0.0952) (0.0890) (0.0976) (0.0981)
Ch 0.1890

(0.1349)
τξ/2(AD) 0.0160**

(0.0069)
τξ/2(AΦ) 0.0002

(0.0028)
µ(AD) 0.8169***

(0.2775)
µ(AΦ) 0.6529***

(0.2388)

R2 0.0082 0.0225 0.0000 0.0351 0.0304
Adj-R2 0.0040 0.0184 -0.0042 0.0311 0.0264
AIC 815.05 811.55 817.02 808.44 809.60
BIC 822.01 818.52 823.98 808.49 816.56
LL -405.53 -403.78 -406.51 -402.22 -402.80

Table 1: Model specification where the dependent variable is the cross-sectional
standard deviation of national ESI indicators (σ̂ESI) and the explanatory vari-
ables are the total connectedness (Ch), the half life of disagreement on connect-
edness (τξ/2(AD)), the half life disagreement on the forecast operator (τξ/2(AΦ),
the disagreement persistence on connectedness (µ(AD)) and the disagreement
persistence on the forecast operator (µ(AΦ))). Significance level: 1% (***) and
5% (**). Standard errors in parentheses.
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Figure 1: Panel (a): directed graph G = (V,E) (top) with vertex set V =
{v1, v2, v3, v4} and edge set E = {e1, e2, e3, e4}, where e1 = {v2, v1}, e2 =
{v2, v3}, e3 = {v2, v4}, e4 = {v3, v4} and its adjacency matrix (bottom). Panel
(b): undirected graph G = (V,E) (top) with vertex set V = {v1, v2, v3, v4}
and edge set E = {e1, e2, e3}, where e1 = {v1, v2}, e2 = {v1, v4}, e3 = {v3, v4}
and its adjacency matrix (bottom). Panel (c): subgraph of the graph given in
panel (a).
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Figure 2: Example of complete graph K4 (a), empty graph E4 (b), path P2 (c)
and cycle C4 (d).
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Figure 3: Opinion dynamics over time (horizontal axis) for a system of n = 2
(top) and n = 100 (bottom) agents interacting on an signed network (left) and
on the associated unsigned network (right).
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Figure 4: Cross-autocorrelation for different levels of disagreement (horizontal
axis) and different levels of market volatility (different lines).
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Figure 5: Logarithmic price data generated with N = 40 assets, by assuming
σ2
M = 1, σ2

ε = 0.1, σ2
η = 0.1 if t < 6000 and σ2

η = 0.7 if t ≥ 6000. The vertical
line indicates the time of the structural change.

Figure 6: Estimated cross-autocorrelation value (gray lines) and average cross-
autocorrelation (solid line) over 100 not overlapping windows of 120 observa-
tions each. The vertical line indicates the time of the structural change.
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Figure 7: Estimated autoregressive coefficients (shaded blue area, left vertical
axis), network density (dashed line, right vertical axis) and spectral radius
(solid line, right vertical axis) over 100 not overlapping windows of 120 obser-
vations each. The vertical line indicates the time of the structural change.
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Figure 8: Estimated disagreement persistence τξ/2 (AD) (left axis), and half-life
disagreement µ (AD) (right axis). The vertical line indicates the time of the
structural change.
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Figure 9: Total connectedness Ch on the left-scale and the cross-sectional
standard deviation of national ESI indicators σ̂ESI on the right-scale over the
period 1996-2016.
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Figure 10: Half life of disagreement on connectedness (τξ/2(AD)) and half life of
disagreement on the forecast operator (τξ/2(AΦ)) on the left scale. On the right
scale, the cross-sectional standard deviation of national ESI indicators(σ̂ESI).
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Figure 11: Disagreement persistence on connectedness (µ(AD)), the disagree-
ment persistence on the forecast operator (µ(AΦ)) and the cross-sectional stan-
dard deviation of national ESI indicators(σ̂ESI).
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