
Completeness of Abstract Domains for
String Analysis of JavaScript Programs

Vincenzo Arceri1, Martina Olliaro2,3, Agostino Cortesi2, and Isabella Mastroeni1

1 University of Verona, Italy
{ vincenzo.arceri | isabella.mastroeni }@univr.it

2 Ca’ Foscari University of Venice, Italy
{ martina.olliaro | cortesi }@unive.it

3 Masaryk University of Brno, Czech Republic

Abstract. Completeness in abstract interpretation is a well-known prop-
erty, which ensures that the abstract framework does not lose information
during the abstraction process, with respect to the property of interest.
Completeness has been never taken into account for existing string ab-
stract domains, due to the fact that it is difficult to prove it formally.
However, the effort is fully justified when dealing with string analysis,
which is a key issue to guarantee security properties in many software
systems, in particular for JavaScript programs where poorly managed
string manipulating code often leads to significant security flaws. In this
paper, we address completeness for the main JavaScript-specific string
abstract domains, we provide suitable refinements of them, and we dis-
cuss the benefits of guaranteeing completeness in the context of abstract-
interpretation based string analysis of dynamic languages.

Keywords: String Abstract Domains, Abstract Interpretation Com-
pleteness, String Analysis

1 Introduction

Despite the growth of support for string manipulation in programming lan-
guages, string manipulation errors still lead to code vulnerabilities that can be
exploited by malicious agents, causing potential catastrophic damages. This is
even more true in the context of web applications, where common programming
languages used for the web-based software development (e.g., JavaScript), offer
a wide range of dynamic features that make string manipulation challenging.

String analysis is a static program analysis technique that computes, for each
execution trace of the program given as input, the set of the possible string values
that may reach a certain program point. String analysis, as others non-trivial
analyses in the programming languages field, is an undecidable task. Thus, a
certain degree of approximation is necessary in order to find evidence of bugs
and vulnerabilities in string manipulating code. In the recent literature, different
approximation techniques for string analysis have been developed, such as [7]:
automata-based [6,9, 37,38], abstraction-based [2–4,11,12,39], constraint-based

2 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

[1,25,32,34], and grammar-based [28,36], and used, inter alia, with the purpose
of detecting web application vulnerabilities [36–38].

In this paper we focus on string analysis by means of the abstract interpre-
tation theory [13, 14]. Abstract interpretation has been proposed by P. Cousot
and R. Cousot in the 70s as a theory of sound abstraction (or approximation)
of the semantics of computer programs, and nowadays it is widely integrated
in software verification tools and used to rigorous mathematical proofs of ap-
proximations correctness. Since the introduction of the abstract interpretation
theory, many abstract domains that represent properties of interest about nu-
merical domains values have been designed [8,10,13,15,18,19,29,30,33]. On the
other hand, just in the last few years, scientific community has taken an interest
in the development of abstract domains for string analysis [2,4,11,12,22,26,31],
some of them language specific, such as those defined as part of the JavaScript
static analysers: TAJS [20], SAFE [24], and JSAI [21].

Desirable features of abstract interpretation are soundness and complete-
ness [14]. If soundness (or correctness), as a basic requirement, actually is often
guaranteed by static analysis tools, completeness is frequently not met. If com-
pleteness is satisfied, it means that the abstract computations do not lose infor-
mation, during the abstraction process, with respect to a property of interest,
and so the abstract interpretation can be considered optimal. In [17], authors
highlighted the fact that completeness is an abstract domain property, and they
presented a methodology to obtain complete abstract domains with respect to
operations, by minimally extending or restricting the underlying domains.

1.1 Paper contribution

Due to the important role played by JavaScript in the current landscape, its
extensive use of strings, and the difficulties in statically analyse it, we believe that
an improvement in the accuracy of JavaScript-specific string abstract domains
can lead to a preciser reasoning about strings.

Thus, in this paper, we study the completeness property, with respect to some
string operations of interest, of two JavaScript-specific string abstract domains,
i.e., those defined as part of SAFE [24] and TAJS [20] static analysers. Finally,
we define their complete versions, and we discuss the benefits of guaranteeing
completeness in the context of abstract interpretation based string analysis of
dynamic languages.

1.2 Paper structure

Section 2 gives basics in mathematics and abstract interpretation. Section 3
presents important concepts related to the completeness property in abstract
interpretation [17], that we will use through the whole paper. Moreover, a moti-
vating example is given to show the importance to guarantee completeness in an
abstract interpretation-based analysis with respect to strings. Section 4 defines
our core language. Section 5 presents the completion of the string abstract do-
main integrated into SAFE [24] and TAJS [20] static analysers with respect to

Completeness of Abstract Domains for String Analysis of JS Programs 3

two operations of interest. Section 6 highlights the strengths and usefulness of
the completeness approach to abstract-based static analysis of JavaScript string
manipulating programs. Section 7 concludes and points out interesting aspects
for future works.

2 Background

Mathematical notation. Given a set S, we denote by S∗ the set of all the finite
sequences of elements of S and by Sn the set of all finite sequences of S of length
n. If s = s0 . . . sn ∈ S∗, we denote by si the i-th element of s, and by |s| = n+1
its length. We denote by s[x/i] the sequence obtained replacing si in s with x.
Given two sets S and T , we denote with ℘(S) the powerset of S, with S \T
the set difference, with S ⊂ T the strict inclusion relation, and with S ⊆ T the
inclusion relation between S and T . A set L with ordering relation ≤ is a poset
and it is denoted by 〈L,≤〉. A poset 〈L,≤〉 is a lattice if ∀x, y ∈ L we have
that x ∨ y and x ∧ y belong to L, and we say that it is also complete when for
each X ⊆ L we have that

∨
X,

∧
X ∈ L. Given a poset 〈L,≤〉 and S ⊆ L, we

denote by max(S) = {x ∈ S | ∀y ∈ S. x ≤ y ⇒ x = y} the set of the maximal
elements of S in L. As usual, a complete lattice L, with ordering ≤, least upper
bound (lub) ∨, greatest lower bound (glb) ∧, greatest element (top) >, and least
element (bottom) ⊥ is denoted by 〈L,≤,∨,∧,>,⊥〉. An upper closure operator
on a poset 〈L,≤〉 is an operator ρ : L → L which is monotone, idempotent,
and extensive (i.e., x ≤ ρ(x)) and it can be uniquely identified by the set of its
fix-points. The set of all closure operators on a poset L is denoted by uco(L).
Given f : S → T and g : T → Q we denote with g◦f : S → Q their composition,
i.e., g ◦ f = λx.g(f(x)). Given f : Sn → T , s ∈ Sn and i ∈ [0, n), we denote by
f is = λz.f(s[z/i]) : S → T a generic i-th unary restriction of f .

Abstract interpretation. Abstract interpretation [13, 14] is a theoretical frame-
work for sound reasoning about program semantic properties of interest, and
can be equivalently formalized either as Galois connections or closure operators
on a given concrete domain, which is a complete lattice C [14]. Let C and A be
complete lattices, a pair of monotone functions α : C → A and γ : A→ C forms
a Galois Connection (GC) between C and A if for every x ∈ C and for every
y ∈ A we have α(x) ≤A y ⇔ x ≤C γ(y). The function α (resp. γ) is the left-
adjoint (resp. right-adjoint) to γ (resp. α), and it is additive (resp. co-additive).
If 〈α, γ〉 is a GC between C and A then γ ◦α ∈ uco(C). If C is a complete lattice,
then 〈uco(C),v,t,u, λx.C, id〉 forms a complete lattice [35], which is the set of
all possible abstractions of C, where the bottom element is id = λx.x, and for
every ρ, η ∈ uco(C), ρ is more concrete than η iff ρ v η iff ∀y ∈ C. ρ(y) ≤ η(y)
iff η(C) ⊆ ρ(C), (ui∈Iρi)(x) = ∧i∈Iρi(x); (ti∈Iρi)(x) = x iff ∀i ∈ I. ρi(x) = x.
The operator ρ ∈ uco(C) is disjunctive when ρ(C) is a join-sublattice of C which
holds iff ρ is additive [14]. Let L be a complete lattice, then X ⊆ L is a Moore
family of L if X =M(X) = {∧S | S ⊆ X}, where ∧∅ = >. The condition that
any concrete element of C has the best abstraction in the abstract domain A,

4 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

implies that A is a Moore family of C. We denote byM(X) the Moore closure
of X ⊆ C, that is the least subset of C, which is a Moore family of C, and
contains X. If 〈α, γ〉 is a GC between C and A and f : C → C a concrete
function, then f] = α ◦ f ◦ γ : A→ A is the best correct approximation of f in
A. Let 〈α, γ〉 be a GC between C and A, f : C → C be a concrete function and
f] : A → A be an abstract function. The function f] is a sound approximation
of f if ∀c ∈ C. α(f(c)) ≤A f](α(c)). In abstract interpretation, there exist two
notions of completeness. Backward completeness property focuses on complete
abstractions of the inputs, while forward completeness focuses on complete ab-
stractions of the outputs, both w.r.t. an operation of interest. In this paper, we
focus on the more typical notion of completeness, i.e., backward completeness.
Hence, when we will talk about completeness, we mean backward completeness.
Given a GC 〈α, γ〉 between C and A, a concrete function f : C → C, and an
abstract function f] : A → A, then f] is backward complete for f (for short
complete) if ∀c ∈ C. α(f(c)) = f](α(c)). If the backward completeness property
is guaranteed, no loss of information arises during the input abstraction process,
w.r.t. an operation of interest.

3 Making abstract interpretations complete

In this section, we give the notions and methodologies that we will use through
the whole paper (and proposed in [17]), in order to constructively build, from
an initial abstract domain, a novel abstract domain that is complete w.r.t. an
operation of interest. Finally, a motivating example showing the usefulness of
completion of abstract domains for string analysis is given.

As reported in [17], it is worth noting that completeness is a property related
to the underlying abstract domain. Starting from this fact, in [17], authors pro-
posed a constructive method to manipulate the underlying incomplete abstract
domain in order to get a complete abstract domain w.r.t. a certain operation. In
particular, given two abstract domains A and B and an operator f : A→ B, the
authors gave two different notions of completion of abstract domains w.r.t. f :
the one that adds the minimal number of abstract points to the input abstract
domain A or the other that removes the minimal number of abstract points
from the output abstract domain B. The first approach captures the notion of
complete shell of A, while the latter defines the complete core of B, both w.r.t.
an operator f .

Complete shell vs complete core. We will focus on the construction of complete
shells of string abstract domains, rather than complete cores. This choice is
guided by the fact that a complete core for an operation f removes abstract
points from a starting abstract domain, and so, even if it is complete for f , the
complete core could worsen the precision of other operations.

On the other hand, complete shells augment the starting abstract domains
(adding abstract points), and consequently it can not compromise the precision
of other operations.

Completeness of Abstract Domains for String Analysis of JS Programs 5

Below, we provide two important theorems proved in [17] that give a con-
structive method to compute abstract domain complete shells, defined in terms
of an upper closure operator ρ. Precisely, the latter theorems present two notions
of complete shells: i. complete shells of ρ relative to η (where η is an upper clo-
sure operator), meaning that they are complete shells of operations defined on ρ
that return results in η, and ii. absolute complete shells of ρ, meaning that they
are complete shells of operations that are defined on ρ and return results in ρ.

Theorem 1 (Complete shell of ρ relative to η). Let C and D be two posets and
f : Cn → D be a continuous function. Given ρ ∈ uco(C), then Sρf : uco(D) →
uco(C) is the following domain transformer:

Sρf (η) =M(ρ ∪ (
⋃

i∈[0,n)
x∈Cn,y∈η

max({z ∈ C | (f ix)(z) ≤D y})))

and it computes the complete shell of ρ relative to η.

As already mentioned above, the idea under the complete shell of ρ (input
abstraction) relative to η (output abstraction) is to refine ρ adding the minimum
number of abstract points to make ρ complete w.r.t. an operator f . From Theo-
rem 1, this is obtained adding to ρ the maximal elements in C, whose f image is
dominated by elements in η, at least in one dimension i. Clearly, the so-obtained
abstraction may be not an upper closure operator for C. Hence, Moore closure
operator is applied. On the other hand, absolute complete shells are involved in
the case in which the operator f of interest has same input and output abstract
domain, i.e., f : Cn → C. In this case, given ρ ∈ uco(C), absolute complete shells
of ρ can be obtained as the greatest fix-point (gfp) of the domain transformer
Sρf (see Theorem 1), as stated by the following theorem.

Theorem 2 (Absolute complete shell of ρ). Let C be a poset and f : Cn → C
be a continuous function. Given ρ ∈ uco(C), then Sρf : uco(C) → uco(C) is the
following domain transformer:

Sρf = gfp(λη.Sρf (η))

and it computes the absolute complete shell of ρ.

The completeness property for the sign abstract domain, which approximates
numerical values, has been discussed in [17]. The sign abstract domain is com-
plete for the product operation, but it is not complete w.r.t. the sum. Indeed, the
sign of e1+e2 cannot be defined by simply knowing the sign of e1 and e2. In [17],
authors computed the absolute complete shell of the sign domain w.r.t. the sum
operation, and they showed it corresponds to the interval abstract domain [13].

3.1 Motivating example

A common feature of dynamic languages, such as PHP or JavaScript, is to be
not typed. Hence, in those languages, it is allowed to change the variable type

6 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

(a)

>

IntBool Float StringNull

⊥

(b)

>

IntBool Float

String

StrFloatStrIntNull

⊥

Fig. 1: (a) Coalesced sum abstract domain for PHP. (b) Complete shell of coa-
lesced sum abstract domain w.r.t. the sum operation.

through the program execution. For example, in PHP, it is completely legal
to write fragments such as $x=1;$x=true;, where the type of the variable x
changes from integer to boolean. The first attempt to static reasoning about
variable types was to track the latter adopting the so-called coalesced sum ab-
stract domain [5, 23], in order to detect whether a certain variable has constant
type through the whole program execution. In Fig. 1a, we report the coalesced
sum abstract domain for an intra-procedural version of PHP [5], that tracks null,
boolean, integer, float and string types4. Consider the formal semantics of the
sum operation in PHP [16]. When one of the operand is a string, since the sum
operation is feasible only between numbers, implicit type conversion occurs and
converts the operand string to a number. In particular, if the prefix of the string
is a number, it is converted to the maximum prefix of the string correspond-
ing to a number, otherwise it is converted to 0. For example, the expression
e = "2.4hello" + "4" returns 4.4. Let +] be the abstract sum operation on
the coalesced sum abstract domain. The type of the expression e is given by:

α({"2.4hello"}) +] α({"4"}) = String +] String = >

The static type analysis based on the coalesced sum abstract domain returns >
(i.e., any possible value), since the sum between two strings may return either
an integer or a float value. Precisely, the coalesced sum abstract domain is not
complete w.r.t. the PHP sum operation, since for any string σ and σ′, it does not
meet the completeness condition: α(σ + σ′) = α(σ) +] α(σ′), e.g., α(σ + σ′) =
Float 6= α(σ) +] α(σ′) = >. Intuitively, the coalesced sum abstract domain is not
complete w.r.t. the sum operation due to the loss of precision that occurs during
the abstraction process of the inputs, since the domain is not precise enough to
distinguish between strings that may be implicitly converted to integers or floats.

Fig. 1b shows the complete shell of the coalesced sum abstract domain w.r.t.
the sum. The latter adds two abstract values to the original domain, namely
StrFloat and StrInt, that correspond to the abstractions of the strings that may be
4 Closing the coalesced sum abstract domain by the powerset operation, a more precise
abstract domain is obtained, called union type abstract domain [23], that tracks the
set of types of a certain variable during program execution.

Completeness of Abstract Domains for String Analysis of JS Programs 7

a ::= n ∈ Int∪Float | a + a |
| a - a | a * a | a / a
| toNum(s)
b ::= true | false | b && b
| b || b | ! b
s ::= "s"
| concat(s1,s2)
e ::= x | a | b | s
bl ::= { } | { S }
S ::= x = e; | ; | bl
| if (b) bl1 else bl2
| while (b) bl
| S1 S2

where x ∈ Id, c ∈ Σ, s ∈ Σ∗

Fig. 2: µDyn syntax.

Jx = e; Kξ = ξ[x← JeKξ]

Jif (b) bl1 else bl2Kξ =

{
Jbl1Kξ JbKξ = true

Jbl2Kξ JbKξ = false

Jwhile (b)blKξ = Jif (b) {bl while (b)bl} else {}Kξ
J{}Kξ = J; Kξ = ξ J{S}Kξ = JSKξ

JS1S2Kξ = JS2K(JS1Kξ)

Jconcat(s, s′)Kξ = JsKξ · Js′Kξ

JtoNum(s)Kξ =

{
N (JsKξ) JsKξ ∈ Σ∗Num
0 otherwise

Fig. 3: µDyn semantics.

implicitly converted to floats and to integers, respectively. Notice that, the type
analysis on the novel abstract domain is now complete w.r.t. the sum operation.
Indeed, the completeness condition also holds for the expression e, as shown
below.

α({"2.4hello" + "4"}) = Float

= α({"2.4hello"}) +] α({"4"})
= StrFloat +] StrInt

= Float

As pointed out above, guaranteeing completeness in abstract interpretation is a
precious and desirable property that an abstract domain should aim to, since it
ensures that no loss of precision occurs during the input abstraction process of
the operation of interest. It is worth noting that guessing a complete abstract
domain for a certain operation becomes particularly hard when the operation
has a tricky semantics, such as in our example or, more in general, in dynamic
languages operations. For this reason, complete shells become important since
they are able to mathematically guarantee completeness for a certain operation,
starting from an abstract domain of interest.

4 Core language

We define µDyn, an imperative toy language expressive enough to handle some
interesting behaviors related to strings in dynamic languages, e.g., implicit type
conversion, and inspired by the JavaScript programming language [27]. µDyn
syntax is reported in Fig. 2. The µDyn basic values are represented by the set
Val = Int ∪ Float ∪Bool ∪ Str, such that:

• Int = Z denotes the set of signed integers

8 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

• Float denotes the set of signed decimal numbers5

• Bool = {true, false} denotes the set of booleans
• Str = Σ∗ denotes the set of strings over an alphabet Σ

We consider Σ∗ composed of two sets, namely Σ∗ = Σ∗Num∪Σ∗NotNum, where:
- Σ∗Num is the set of numeric strings (e.g., "42", "-7.2")
- Σ∗NotNum is the set of non numeric strings (e.g., "foo", "-2a")

Moreover, we consider Σ∗Num additionally composed of four sets:

Σ∗Num = Σ∗UInt ∪Σ∗UFloat ∪Σ∗SInt ∪Σ∗SFloat
which correspond to the set of unsigned integer strings, unsigned float strings,
signed integer strings and signed float strings, respectively.

µDyn programs are elements generated by S syntax rules. Program states
State : Id → Val, ranging over ξ, are partial functions from identifiers to
values. The concrete semantics of µDyn statements follows [5], and it is given by
the function J·K· : Stmt×State→ State, inductively defined on the structure
of the statements, as reported in Fig. 3. We abuse notation in defining the
concrete semantics of expressions: J·K· : Exp × State → Val. Fig. 3 shows
the formal semantics of two relevant expressions involving strings we focus on:
concat, that concatenates two strings, and string-to-number operation, namely
toNum, that takes a string as input and returns the number that it represents
if the input string corresponds to a numerical strings, 0 otherwise. We denote
by N (σ) ∈ Int ∪ Float the numeric value of a given string. For example,
toNum("4.2") = 4.2 and toNum("asd") = 0.

5 Making JavaScript string abstract domains complete

In this section, we study the completeness of two string abstract domains in-
tegrated into two state-of-the-art JavaScript static analysers based on abstract
interpretation, that are SAFE [24] and TAJS [20]. Both the abstract domains
track important information on JavaScript strings, e.g., SAFE tracks numeric
strings, such as "2.5" or "+5", and TAJS is able to infer when a string corre-
sponds to an unsigned integer, that may be used as array index.

For the sake of readability, we recast the original string abstract domains for
µDyn, following the notation adopted in [4]. Fig. 4 depicts them. Notice that
the original abstract domain part of SAFE analyser treats the string "NaN" as
a numeric string. Since our core language does not provide the primitive value
NaN, the corresponding string, i.e., "NaN", has no particular meaning here, and
it is treated as a non-numerical string.

For each string abstract domain D, we denote by αD : ℘(Σ∗) → D its
abstraction function, by γD : D → ℘(Σ∗) its concretization function, and by
ρD : ℘(Σ∗)→ ℘(Σ∗) ∈ uco(D) the associated upper closure operator.
5 Floats normally are represented in programming languages in the IEEE 754 double
precision format. For the sake of simplicity, we use instead decimal numbers.

Completeness of Abstract Domains for String Analysis of JS Programs 9

(a)

⊥SF

"0" "+2.7" . . .

Numeric

"foo" "NaN" . . .

NotNumeric

>SF

(b)

⊥T J

"0" "1" "2" . . .

Unsigned

"foo" "bar" . . .

NotUnsigned

>T J

Fig. 4: (a) SAFE, (b) TAJS string abstract domains recasted for µDyn.

5.1 Completing SAFE string abstract domain

Fig. 4a depicts the string abstract domain SF , i.e., the recasted version of the
domain involved into SAFE [24] static analyser. It splits strings into the ab-
stract values: Numeric (i.e., numerical strings) and NotNumeric (i.e., all the other
strings). Before reaching these abstract values, SF precisely tracks each string.
For instance, αSF({"+9.6", "7"})=Numeric, and αSF({"+9.6", "bar"})= >SF .

We study the completeness of SF w.r.t. concat operation. Fig. 5 presents
the abstract semantics of the concatenation operation for SF , that is:

Jconcat(•, •)KSF : SF × SF → SF

In particular, when both abstract values correspond to single strings, the stan-
dard string concatenation is applied (second row, second column). In the case
in which one abstract value, involved in the concatenation, is a string and the
other is Numeric (third row, second column and second row, third column) we
distinguish two cases: if the string is empty or corresponds to an unsigned integer
we can safely return Numeric, otherwise NotNumeric is returned. This happens
because, when two float strings (hence numerical strings) are concatenated, a
non-numerical string is returned (e.g., concat("1.1", "2.2") = "1.12.2"). For
the same reason, when both input abstract values are Numeric, the result is not
guaranteed to be numerical, indeed, Jconcat(Numeric,Numeric)KSF = >SF .

Lemma 1. SF is not complete w.r.t. concat. In particular6, ∀S1, S2 ∈ ℘(Σ∗)
we have that:

αSF(Jconcat(S1, S2)K) (Jconcat(αSF(S1), αSF(S2))KSF

Consider S1 = {"2.2", "2.3"} and S2 = {"2", "3"}. The completeness prop-
erty does not hold:

αSF(Jconcat(S1, S2)K) = Numeric 6= >SF = Jconcat(αSF(S1), αSF(S2))KSF

6 We abuse notation denoting with J·K the additive lift to set of basic values of the
concrete semantics, i.e., the collecting semantics.

10 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

Jconcat(s1, s2)KSF ⊥SF σ2 ∈ Σ∗ Numeric NotNumeric >SF

⊥SF ⊥SF ⊥SF ⊥SF ⊥SF ⊥SF

σ1 ∈ Σ∗ ⊥SF σ1 · σ2


Numeric σ1 = "" or

σ1 ∈ Σ∗UInt
NotNumeric otherwise

NotNumeric >SF

Numeric ⊥SF


Numeric σ2 = "" or

σ2 ∈ Σ∗UInt
NotNumeric otherwise

>SF NotNumeric >SF

NotNumeric ⊥SF NotNumeric NotNumeric NotNumeric >SF

>SF ⊥SF >SF >SF >SF >SF

Fig. 5: SAFE concat abstract semantics.

⊥Sf

"" "1" "2" . . . "1.3""2.5". . . "-0.2""+2" . . . "foo" "bar" . . . ""

UInt UFloat SignedNum NotNumNotEmpty

UIntε UNum NotUnsignedNotEmpty NotNumeric

NumericUNumε NotUIntNotEmpty

>Sf

Fig. 6: Absolute complete shell of ρSF w.r.t. concat.

The SF abstract domain loses too much information during the abstraction
process; information that can not be retrieved during the abstract concatenation.
Intuitively, to gain completeness w.r.t. concat operation, SF should improve
the precision of the numerical strings abstraction, e.g., discriminating between
float and integer strings. Following Theorem 2, we can formally construct the
absolute complete shell of ρSF w.r.t. concat operation SρSF

concat, and we denote it
by Sf. This leads to a novel abstract domain, given in Fig. 6, that is complete
for concat.

In particular, the points inside dashed boxes are the abstract values added
during the iterative computations of Sf, the points inside standard boxes are
instead obtained by the Moore closure of the other points of the domain, while
the remaining abstract values were already in SF . The meaning of abstract val-
ues in Sf is intuitive. In order to satisfy the completeness property, Sf splits the
Numeric abstract value, already taken into account in SF , into all the strings
corresponding to unsigned integer (UInt), unsigned floats (UFloat), and signed

Completeness of Abstract Domains for String Analysis of JS Programs 11

numbers (SignedNum). Moreover, particular importance is given to the empty
string, since the novel abstract domain specifies whether each abstract value con-
tains "". Indeed, the UIntε abstract value represents the strings corresponding
to unsigned integer or to the empty string, and the UNumε abstract value repre-
sents the strings corresponding to unsigned numbers or to the empty string. An
unexpected abstract value considered in Sf is NotUnsignedNotEmpty, such that:

γSf(NotUnsignedNotEmpty) = {σ ∈ Σ∗ | σ ∈ Σ∗SInt ∪Σ∗SFloat ∪ (Σ∗NotNum \ {""})}

Namely, the abstract point whose concretization corresponds to the set of any
non-numerical string, except the empty string, and any string corresponding
to a signed number. This abstract point has been added to Sf following the
computation of the formula below:

NotUnsignedNotEmpty ∈ max({Z ∈ ℘(Σ∗) | Jconcat(Numeric, Z)K}
⊆

γSF(NotNumeric))

Informally speaking, we are wondering the following question: which is the max-
imal set of strings s.t. concatenated to any possible numerical string will pro-
duce any possible non-numerical string? Indeed, in order to be sure to obtain
non-numerical strings, the maximal set doing so is exactly the set of any non-
numerical non-empty string, and any string corresponding to a signed number,
that is NotUnsignedNotEmpty.

Theorem 3. ρSf is the absolute complete shell of ρSF w.r.t. concat operation
and it is complete for it.

For example, consider again S1 = {"2.2", "2.3"} and S2 = {"2", "3"}.
Given Sf, the completeness condition holds:

αSf(Jconcat(S1, S2)K) = UFloat = Jconcat(αSf(S1), αSf(S2))KSf

= Jconcat(UFloat,UInt)KSf

5.2 Completing TAJS string abstract domain

Fig. 4b depicts the string abstract domain T J , the recasted version of the do-
main integrated into TAJS static analyser [20]. Differently from SF , it splits the
strings into Unsigned, that denotes the strings corresponding to unsigned num-
bers, and NotUnsigned, any other string. Hence, for example, αT J ({"9", "+9"})
= >T J and αT J ({"9.2", "foo"}) = NotUnsigned. As for SF , before reaching
these abstract values, T J precisely tracks single string values.

In this section, we focus on the toNum (i.e., string-to-number) operation. Since
this operation clearly involves numbers, in Fig. 7 we report the TAJS numerical
abstract domain, denoted by T J N. The latter domain behaves similarly to T J ,
distinguishing between unsigned and not unsigned integers. Below we define the
abstract semantics of the string-to-number operation for T J . In particular, we
define the function:

12 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

⊥T JN

0 1 2 3 . . . −5 +6 −2.2 3.4 . . .

UnsignedInt NotUnsignedInt

>T JN

Fig. 7: TAJS numerical abstract domain.

JtoNum(•)KT J : T J → T J N

that takes as input a string abstract value in T J , and returns an integer abstract
value in T J N.

JtoNum(s)KT J =


⊥T JN

JsKT J = ⊥T J

JtoNum(σ)K JsKT J = σ

UnsignedInt JsKT J = Unsigned

>T JN
JsKT J = NotUnsigned ∨ JsKT J = >T J

When the input evaluates to⊥T J , bottom is propagated and⊥T JN
is returned

(first row). While, if the input evaluates to a single string value, the abstract
semantics relies on its concrete one (second row). When the input evaluates to the
string abstract value Unsigned (third row), the integer abstract value UnsignedInt
is returned. Finally, when the input evaluates to NotUnsigned or >JS , the top
integer abstract value is returned (fourth row).

Lemma 2. T J is not complete w.r.t. toNum. In particular, ∀S ∈ ℘(Σ∗) we
have that:

αT J (JtoNum(S)K) (JtoNum(αT J (S))KT J

Consider S = {"2.3", "3.4"}. The completeness property does not hold:

αT J (JtoNum(S)K) = NotUnsignedInt 6= >T JN
= JtoNum(αT J (S))KT J

Again, the completeness condition does not hold because the T J string abstract
domain loses too much information during the abstraction process, and the latter
information cannot be retrieved during the abstract toNum operation. In partic-
ular, when non-numeric strings and unsigned integer strings are converted to
numbers by toNum, they are mapped to the same value, namely 0. Indeed, T J
does not differentiate between non-numeric and unsigned integer string values,
and this is the principal cause of the T J incompleteness w.r.t. toNum. Addi-
tionally, more precision can be obtained if we could differentiate numeric strings
holding float numbers from those holding integer numbers. Thus, in order to

Completeness of Abstract Domains for String Analysis of JS Programs 13

"0" "1" "2" . . . "foo" "bar" . . . "1.2" "-5" "+6.1" . . .

Unsigned NotNumeric SignedOrFloats

UnsignedOrNotNumeric NotUnsigned

>Tj

⊥Tj

Fig. 8: Complete shell of ρT J relative to ρT JN
w.r.t. toNum.

make T J complete w.r.t. toNum, we have to derive the complete shell of the T J
string abstract domain relative to the T J N numerical abstract domain, apply-
ing Theorem 1. In particular, let ρT J and ρT JN

be the upper closure operators
related to T J and T J N abstract domains, respectively. By applying Theorem
1, we obtain SρT J

toNum(T J N) (depicted in Fig. 8), i.e., the complete shell of ρT J

relative to ρT J N
w.r.t. toNum, and we denote it by Tj.

In particular, the abstract points inside dashed boxes are the abstract values
added during the iterative computations of Tj, the points inside the standard
boxes are instead obtained by the Moore closure of the other points of the do-
main, while the remaining abstract values were already in T J . A non-intuitive
point added by Tj is SignedOrFloats, namely the abstract value s.t. its con-
cretization contains any float string and the signed integers. This abstract point
is added during the iterative computation of Tj, following the formula below:

SignedOrFloats ∈ max({Z ∈ ℘(Σ∗) | JtoNum(Z)K ⊆ γT J (NotUnsigned)})

Informally speaking, we are wondering the following question: which is the max-
imal set of strings Z s.t. toNum(Z) is dominated by NotUnsigned? In order to
obtain from toNum(Z) only values dominated by NotUnsigned, the maximal set
doing so is exactly the set of the float strings and the signed strings. Other
strings, such that: unsigned integer strings or not numerical strings are excluded,
since they are both converted to unsigned integers, and they would violate the
dominance relation.

Similarly, the abstract point UnsignedOrNotNumeric is added to the absolute
complete shell Tj, when the following formula is computed:

UnsignedOrNotNumeric = max({Z ∈ ℘(Σ∗) | toNum(Z) ⊆ γT J (Unsigned)})

In order to obtain from toNum(Z) only abstract values dominated by Unsigned,
the maximal set doing so is exactly the set of the unsigned integer strings and
the non-numerical strings, since the latter are converted to 0.

14 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

Theorem 4. ρTj is the complete shell of ρT J relative to ρT JN
w.r.t. toNum op-

eration and hence it is complete for it.

For example, consider again the string set S = {"2.3", "3.4"}. Given Tj,
the completeness condition holds:

αTj(JtoNum(S)K) = NotUnsignedInt

= JtoNum(αTj(S))KT J

= JtoNum(SignedOrFloats)KT J

6 What we gain from using a complete abstract domain?

Now, we discuss and evaluate the benefits of adopting the complete shells re-
ported in Section 5 and, more in general, complete domains, w.r.t. a certain
operation. In particular, we compare the µDyn versions of the string abstract
domains adopted by SAFE and TAJS with their corresponding complete shells,
we discuss the complexity of the complete shells, and finally we argue how adopt-
ing complete abstract domains can be useful into static analysers.

Precision. In the previous section, we focused on the completeness of the string
abstract domains integrated into SAFE and TAJS, for µDyn, w.r.t. two string
operations, namely concat and toNum, respectively. While string concatenation
is common in any programming language, toNum assumes critical importance in
the dynamic language context, mostly where implicit type conversion is provided.
Since type conversion is often hidden from the developer, aim to completeness
of the analysis increases the precision of such operations. For instance, let x
be a variable, at a certain program execution point. x may have concrete value
in the set S = {"foo", "bar"}. If S is abstracted into the starting TAJS string
abstract domain, its abstraction will corresponds to Unsigned, losing the informa-
tion about the fact that the concrete value of x surely does not contain numerical
values. Hence, when the abstract value of S is used as input of toNum, the result
will return >T JN

, i.e., any possible concrete integer value. Conversely, abstract-
ing S in Tj (the absolute complete shell of T J relative to toNum discussed in
Section 5.2) leads to a more precise abstraction, since Tj is able to differentiate
between non-numerical and numerical strings. In particular, the abstract value
of S in Tj is NotNumeric, and JtoNum(NotNumeric)KT J will precisely return 0.

Adopting a complete shell w.r.t. a certain operation does not compromise the
precision of the others. For example, consider again the original string abstract
domain into TAJS static analyser and the following JavaScript fragment.

1 var obj = {
2 "foo" : 1,
3 "bar" : 2,
4 "1.2" : 3,
5 "2.2" : "hello"
6 }
7

8 y = obj[idx];

Completeness of Abstract Domains for String Analysis of JS Programs 15

Suppose that the value of idx is the abstraction, in the starting TAJS string
abstract domain, of the string set S = {"foo", "bar"}, namely the abstract value
NotUnsinged. The variable idx is used to access the property of the object obj at
line 8 and, to guarantee soundness, it accesses all the properties of obj, included
the fields "1.2" and "2.2", introducing noise in the abstract computation, since
"1.2" and "2.2" are false positives values introduced by the abstraction of the
values of idx. If we analyse the same JavaScript fragment with the absolute com-
plete shell (w.r.t. toNum operation) of the TAJS string abstract domain defined
in Section 5.2, we obtain more precise results. Indeed, in this case, the value of
idx corresponds to the the abstract value NotNumeric, and when it is used to
access the object obj at line 8, only "foo" and "bar" are accessed, since they
are the only non-numerical string properties of obj.

Complexity of the complete shells. We evaluate the complexity of the complete
shells we have provided in the previous section. As usual in static analysis by
abstract interpretation, there exists a trade-off between precision and efficiency:
choose a preciser abstract domain may compromise the efficiency of the abstract
computations. A representative example is reported in [17]: the complete shell of
the sign abstract domain w.r.t. addition is the interval abstract domain. Hence,
starting from a finite height abstract domain (signs) we obtain an infinite height
abstract domain (intervals). In particular, fix-point computations on signs con-
verge, while on intervals may diverge. Indeed, after the completion, the interval
abstract domain should be equipped also with a widening [13] in order to still
guarantee termination. A worst-case scenario is when the complete shells w.r.t.
a certain operation exactly corresponds to the collecting abstract domain, i.e.,
the concrete domain. Clearly, we cannot use the concrete domain due to unde-
cidability reasons, but this suggest us to change the starting abstract domain,
since it is not able to track any information related to the operation of interest.
An example is the suffix abstract domain [12] with substring operation: since
this abstract domain tracks only the common suffix of a strings set, it can not
track the information about the indexes of the common suffix, and the complete
shell of the suffix abstract domain w.r.t. substring would lead to the concrete
domain. Hence, if the focus of the abstract interpreter is to improve the precision
of the substring operation, we should change the abstract domain with a more
precise one for substring, such as the finite state automata [6] abstract domain.

Consider now the complete shells reported in Section 5. The obtained com-
plete shells still have finite height, hence termination is still guaranteed without
the need to equip the complete shells with widening operators. Moreover, the
complexity of the string operations of interest is preserved after completion. In-
deed, in both TAJS and SAFE starting abstract domains, concat and toNum
operations have constant complexity, respectively, and the same complexity is
preserved in the corresponding complete shells. It is worth noting that also the
complexity of the abstract domain-related operations, such as least upper bound,
greatest lower bound and the ordering operator, is preserved in the complete
shells. Hence, to conclude, as far as the complete shells we have reported for
TAJS and SAFE are concerned, there is no worsening when we substitute the

16 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

original string abstract domains with the corresponding complete shells, and this
leads, as we have already mentioned before, to completeness during the input
abstraction process w.r.t. the relative operations, namely concat for SAFE and
toNum for TAJS.

False positives reduction. In static analysis, a certain degree of abstraction must
be added in order to obtain decidable procedures to infer invariants on a generic
program. Clearly, using less precise abstract domains lead to an increase of false
positive values of the computed invariants. In particular, after a program is
analysed, this burdens the phase of false positive detection: when a program is
analysed, the phase after consists to detect which values of the invariants derived
by the static analyser are spurious values, namely values that are not certainly
computed by the concrete execution of the program of interest. In particular, us-
ing imprecise (i.e., not complete) abstract domains clearly augment the number
of false positives in the abstract computation of the static analyser, burdening
the next phase of detection of the spurious values. On the other hand, adopt-
ing (backward) complete abstract domains w.r.t. a certain operation reduce the
numbers of false positives introduced during the abstract computations, at least
in the input abstraction process. Clearly, in this way, the next phase of detection
of false positives will be lighten since less noise has been introduced during the
abstract computation of the invariants. Consider againt the JavaScript fragment
reported in the previous paragraph. As we already discussed before, using the
starting TAJS abstract domain to abstract the variable idx leads to a loss of
precision, since the spurious value "foo" and "bar" are taken into account in its
abstract value, namely Unsigned. Using the complete shell of TAJS w.r.t. toNum
instead does not add noise when idx is used to access obj.

7 Conclusion

This paper addressed the problem of backward completeness in JavaScript-
purpose string abstract domains, and provides, in particular, the complete shells
of TAJS and SAFE string abstract domains w.r.t. concat and toNum operations.
Our results can be easily applied also to JSAI string abstract domain [21], as it
can be seen as an extension of the SAFE domain. The next issue we would like to
investigate concerns forward completeness [17], meaning that no loss of precision
occurs during the output abstraction process of a certain operation, and the in-
tegration of the completeness methodologies. As a final goal of our research, we
aim to integrate the notion of complete shell into an industrial JavaScript static
analyzer, so that, depending on the target program, an optimal string abstract
domain is automatically selected from a set of domains and their complete shells,
based on the specific string operations the program makes use of.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Holík, L., Rezine, A., Rümmer, P., Stenman,
J.: Norn: An SMT Solver for String Constraints. In: CAV ’15. pp. 462–469 (2015)

Completeness of Abstract Domains for String Analysis of JS Programs 17

2. Amadini, R., Gange, G., Gauthier, F., Jordan, A., Schachte, P., Søndergaard, H.,
Stuckey, P.J., Zhang, C.: Reference Abstract Domains and Applications to String
Analysis. Fundam. Inform. 158(4), 297–326 (2018)

3. Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A Novel Approach to String
Constraint Solving. In: CP ’17. pp. 3–20 (2017)

4. Amadini, R., Jordan, A., Gange, G., Gauthier, F., Schachte, P., Søndergaard, H.,
Stuckey, P.J., Zhang, C.: Combining String Abstract Domains for JavaScript Anal-
ysis: An Evaluation. In: TACAS ’17. pp. 41–57 (2017)

5. Arceri, V., Maffeis, S.: Abstract Domains for Type Juggling. Electr. Notes Theor.
Comput. Sci. 331, 41–55 (2017)

6. Arceri, V., Mastroeni, I.: Static Program Analysis for String Manipulation Lan-
guages. In: VPT’19. To appear. (2019)

7. Bultan, T., Yu, F., Alkhalaf, M., Aydin, A.: String Analysis for Software Verifica-
tion and Security. Springer (2017)

8. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Do-
main. In: APLAS ’08. pp. 3–18 (2008)

9. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Static Analysis, 10th International Symposium, SAS 2003, San Diego,
CA, USA, June 11-13, 2003, Proceedings. pp. 1–18 (2003)

10. Clarisó, R., Cortadella, J.: The Octahedron Abstract Domain. Sci. Comput. Pro-
gram. 64(1), 115–139 (2007)

11. Cortesi, A., Olliaro, M.: M-String Segmentation: A Refined Abstract Domain for
String Analysis in C Programs. In: TASE’18. pp. 1–8 (2018)

12. Costantini, G., Ferrara, P., Cortesi, A.: A Suite of Abstract Domains for Static
Analysis of String Values. Softw., Pract. Exper. 45(2), 245–287 (2015)

13. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In:
POPL’77. pp. 238–252 (1977)

14. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
POPL’79. pp. 269–282 (1979)

15. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: POPL’78. pp. 84–96 (1978)

16. Filaretti, D., Maffeis, S.: An Executable Formal Semantics of PHP. In: ECOOP
2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Swe-
den, July 28 - August 1, 2014. Proceedings. pp. 567–592 (2014)

17. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making Abstract Interpretations Com-
plete. J. ACM 47(2), 361–416 (2000)

18. Granger, P.: Static Analysis of Arithmetical Congruences. International Journal of
Computer Mathematics - IJCM 30, 165–190 (01 1989)

19. Granger, P.: Static Analysis of Linear Congruence Equalities among Variables of a
Program. In: Abramsky, S., Maibaum, T.S.E. (eds.) TAPSOFT ’91". pp. 169–192.
Springer Berlin Heidelberg, Berlin, Heidelberg (1991)

20. Jensen, S.H., Møller, A., Thiemann, P.: Type Analysis for JavaScript. In: SAS ’09.
pp. 238–255 (2009)

21. Kashyap, V., Dewey, K., Kuefner, E.A., Wagner, J., Gibbons, K., Sarracino, J.,
Wiedermann, B., Hardekopf, B.: JSAI: a Static Analysis Platform for JavaScript.
In: FSE ’14. pp. 121–132 (2014)

22. Kim, S., Chin, W., Park, J., Kim, J., Ryu, S.: Inferring Grammatical Summaries
of String Values. In: APLAS ’14. pp. 372–391 (2014)

23. Kneuss, E., Suter, P., Kuncak, V.: Phantm: PHP Analyzer for Type Mismatch. In:
FSE ’10. pp. 373–374 (2010)

18 Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Isabella Mastroeni

24. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: Formal Specification and Im-
plementation of a Scalable Analysis Framework for ECMAScript. In: FOOL’12
(2012)

25. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An ef-
ficient SMT solver for string constraints. Formal Methods in System Design 48(3),
206–234 (2016)

26. Madsen, M., Andreasen, E.: String Analysis for Dynamic Field Access. In: CC ’14.
pp. 197–217 (2014)

27. Maffeis, S., Mitchell, J.C., Taly, A.: An Operational Semantics for JavaScript. In:
APLAS ’08. pp. 307–325 (2008)

28. Minamide, Y.: Static Approximation of Dynamically Generated Web Pages. In:
WWW ’05. pp. 432–441 (2005)

29. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

30. Oucheikh, R., Berrada, I., Hichami, O.E.: The 4-Octahedron Abstract Domain. In:
NETYS ’16. pp. 311–317 (2016)

31. Park, C., Im, H., Ryu, S.: Precise and Scalable Static Analysis of jQuery Using a
Regular Expression Domain. In: DLS ’16. pp. 25–36 (2016)

32. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A Symbolic
Execution Framework for JavaScript. In: S&P ’10. pp. 513–528 (2010)

33. Simon, A., King, A., Howe, J.M.: Two Variables per Linear Inequality as an Ab-
stract Domain. In: LOPSTR ’02. pp. 71–89 (2002)

34. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic Regular Expression Ex-
plorer. In: ICST ’10. pp. 498–507 (2010)

35. Ward, M.: The Closure Operators of a Lattice. Annals of Mathematics 43(2),
191–196 (1942)

36. Wassermann, G., Su, Z.: Sound and Precise Analysis of Web Applications for In-
jection Vulnerabilities. In: PLDI’07. pp. 32–41 (2007)

37. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based Symbolic String
Analysis for Vulnerability Detection. Formal Methods in System Design 44(1),
44–70 (2014)

38. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic String Verification: An
Automata-Based Approach. In: SPIN ’08. pp. 306–324 (2008)

39. Yu, F., Bultan, T., Hardekopf, B.: String Abstractions for String Verification. In:
SPIN ’11. pp. 20–37 (2011)

	Completeness of Abstract Domains for String Analysis of JavaScript Programs

