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Abstract

We introduce two pieces of information (memes) into a diffusion process in which

memes are transmitted when agents meet and forgotten at an exogenous rate.

At most one meme can be transmitted at each meeting, which one depends

on preferences over memes. We find that the conditions under which a unique

meme becomes endemic are sufficient for both to become endemic. Segregation

according to information preferences leads to polarization, i.e., nobody is in-
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1. Introduction

Since the seminal works of Lazarsfeld et al. (1948) and Katz and Lazarsfeld

(1955), the importance of social networks in the diffusion of information has

been well documented. It is less well known how different pieces of information,

or memes,1 interact in this diffusion process. In the production of news, such

as in print or TV media, it is obvious that fixed coverage space is shared by

different news stories. Arguments about politicians aiming to “bury” unfavor-

able news arise from this. In the social diffusion process, a similar constraint is

present: Communication time is limited and has to be shared among everything

an individual talks about. Making use of Twitter data, Leskovec et al. (2009)

and Weng et al. (2012) have shown that the total volume of tweets is roughly

constant over time, despite significant variation in the topics of tweets. In ad-

dition, their data shows that (i) at any point in time numerous hashtags diffuse

simultaneously, (ii) there are significant differences in the number of times a

hashtag is retweeted, and (iii) hashtags crowd each other out. Diffusion models

of a unique information are not equipped to explain these patterns. Similarly,

it is not clear that these patterns are necessarily due to strategic choices in the

transmission of memes. The sheer volume of topics that are being transmitted

online suggests that, if agents face a choice about which meme to transmit,

this choice may well be between memes of entirely unrelated topics, for which

strategic considerations appear unlikely.2

The present paper introduces a parsimonious diffusion model of multiple

memes under a communication constraint, which reproduces the above patterns.

To keep the analysis tractable and to isolate the effect of limited communication

1The Merriam-Webster dictionary defines a meme as “an idea, behavior, style, or usage
that spreads from person to person within a culture”. It therefore provides a meaningful way
to talk about pieces or bits of information.

2Consider this concrete example: According to the NIFTY project, which tracks memes on
Twitter, in April 2015 the two most frequently tweeted memes were ”Star Wars: The Force
Awakens” (relating to the trailer release of the movie) and ”A Rape on Campus” (relating to
the veracity of a journal article). It is unlikely that strategic considerations played a role in
the decision to tweet one as opposed to the other of these. Other months similarly showcase
the breadth of topics that diffuse simultaneously online.
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time, we build on a standard diffusion process with epidemiological roots, the

Susceptible-Infected-Susceptible (SIS) framework.3 In the model, each period

each agent randomly meets a subset of other agents. At any meeting, there is

a chance that communication occurs, in which case an informed agent passes

a meme on. Agents forget memes at an exogenous rate. The novelty of our

process lies in the existence of two memes. At each meeting, if communication

occurs, each agent can pass on only one meme. Within the model, the choice of

what to talk about is determined by intrinsic information preferences of agents,

capturing the idea that individuals are more likely to talk about things that

interest them more.

Within a mean-field approximation of this process, the literature has estab-

lished the conditions under which a single meme exhibits a positive steady-state,

in which a constant fraction of the population is informed about it in the long

run. In our first main result, we show that the conditions that guarantee exis-

tence, uniqueness, and stability of a positive steady-state for either meme in our

model are identical to the ones previously derived. That is, we show that infor-

mation is extremely resilient. This result notwithstanding, we are able to rank

information steady-states according to interest: The meme that is preferred by

the majority of the population will exhibit a higher steady-state. We also show

that crowding out of information always occurs.

The resilience of information occurs in a society in which all agents interact

randomly. Instead, it is well documented that individuals exhibit homophily, a

tendency to interact relatively more with others that are similar to themselves.

We show that segregation according to information preferences leads to a seg-

regation of information: If groups do not interact with each other, within each

group, only the preferred meme exhibits a positive steady-state. Interestingly,

both memes exhibit lower steady-states in a segregated society than in a fully

integrated one, i.e., segregation leads to a loss of information overall.

3Within economics, this process has been employed by, e.g., Jackson and Rogers (2007b),
López-Pintado (2008), Jackson and Yariv (2010), and Jackson and López-Pintado (2013),
among others.
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While segregation implies a loss of information, we find that it increases the

fraction of the population informed about their preferred meme. Given this

result, we extend our model to endow agents with specific utilities from being

informed. In particular, we assume that being informed with the preferred

meme provides a utility flow that is larger than the utility flow of being informed

with the alternative meme. This extension allows us to analyze the factors that

influence the likelihood of segregation, as opposed to focusing only on its impact.

In fact, segregation may be a Nash equilibrium in our model. We find that

the likelihood of observing a segregated society is increasing in the extremism

of information preferences, and that it tends to be driven by members of the

smaller group. Segregation is less likely to be an equilibrium the more meetings

agents have per period, ceteris paribus.

2. Related Literature

Our paper is part of a growing literature that studies diffusion processes

on networks. The model we introduce is a direct extension of the SIS frame-

work that has been employed by various authors, among them Jackson and

Rogers (2007b), López-Pintado (2008), Jackson and Yariv (2010), Galeotti and

Rogers (2013) and Galeotti and Rogers (2015), as well as Izquierdo et al. (2018).

This literature itself builds on work on epidemiological and contagion models

in the natural sciences, such as Bailey (1975), Pastor-Satorras and Vespignani

(2001a,b), Pastor-Satorras and Vespignani (2002), Watts (2002), or Dodds and

Watts (2004).4 The simultaneous diffusion of multiple states in this framework

has been addressed by Pathak et al. (2010), Karrer and Newman (2011), Beutel

et al. (2012) and Prakash et al. (2012). In contrast to the present paper, in

these models infection with one virus/state provides full or partial immunity

4More broadly, the paper is also related to network processes of learning, best response
dynamics, or explicit adoption decisions. These processes however differ significantly from the
SIS model we employ. See, e.g., Jackson (2008) or Goyal (2012) for an excellent introduction
to the literature, as well as Acemoglu and Ozdaglar (2011) for a recent overview of models of
belief and opinion dynamics.
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against the other. Such immunity introduces a tendency for the more viru-

lent state to be the only one that survives in the population. This result is in

stark contrast to our findings of information resilience. Resilience seems to be

corroborated by the vast array of different topics that diffuse simultaneously

on online social networks. The difference in the results is interesting from a

technical point of view, as it highlights the importance of the stage at which

the diffusion constraint is placed (i.e., whether on the infection or on the trans-

mission likelihood). To the best of our knowledge, our paper is the first that

introduces two distinct pieces of information / memes that compete for lim-

ited communication time into the SIS framework. Outside this framwork and

complementary to our paper, Campbell et al. (2019) model the simultaneous

diffusion of “mainstream” and “niche” content on a network. The decision of

which type of content to transmit is modeled in the same way as in our paper,

but all communicating agents are informed of at least one type of content. This

creates a different evolutionary dynamic, in which the focus lies on transmission

rather than awareness of information.

Diffusion of competing products or innovations has been analyzed in models

of influence maximization, e.g., by Dubey et al. (2006), Bharathi et al. (2007),

Borodin et al. (2010) and Goyal et al. (2019). These models differ significantly

from an SIS diffusion process, both with respect to the modelling characteris-

tics, and the questions that they aim to answer. The above papers are based

on threshold models, in which contagion occurs on a fixed network and nodes

never recover. The central question in this strand of literature is which nodes a

player with a fixed budget would choose to infect to maximize the contagion of

his product. In Goyal et al. (2019), e.g., the focus is on how the efficiency of a

“seeding” strategy depends on the precise diffusion process and its interaction

with the network structure. A paper that does employ a random network is

Jiménez-Mart́ınez (2019). Their analysis highlights that adoption of a product

may be driven simply by the number of neighbors instead of their respective

adoption choice, reminiscent of how information spreads in our own model.

Similarly to previous work on the diffusion of multiple states in the SIS model,
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in all of these papers being infected with one product precludes infection with

another, differently from our model. Strategic targeting, albeit in a different

framework, is also the focus of Grabisch et al. (2017). The authors investigate

which nodes should be targeted by strategic agents with opposing (fixed) beliefs

that wish to influence the average opinion in a DeGroot model (DeGroot, 1974).

We are also related to the literature that has investigated the impact that ho-

mophily has on information diffusion and its potential to lead to polarization.

In existing models, homophily may either hinder diffusion, as in Granovetter

(1973) and Golub and Jackson (2012), or be beneficial, as in the adoption of

a behavior in Jackson and López-Pintado (2013). Studies such as Rosenblat

and Mobius (2004), Sunstein (2009), Baccara and Yariv (2010), Gentzkow and

Shapiro (2011) or Flaxman et al. (2013) have investigated the relationship be-

tween homophily and polarization. The focus of these studies has been predomi-

nantly the impact of biased news/information consumption, and its potential to

lead to polarization. Given the rise in internet usage, an important question is

whether this rise might increase segregation and hence polarization. Gentzkow

and Shapiro (2011) and Flaxman et al. (2013) find that online news consumption

is not substantially more segregated than offline consumption of news, provid-

ing an argument against a link between internet usage and polarization. On

the other hand, in a more recent paper Halberstam and Knight (2016) investi-

gate homophily among Twitter users, which is used both as an Online Social

Network (OSN) and as a tool to consume news. They find higher levels of ho-

mophily for the social network aspect. Our results on the importance of biases

in social interactions, as opposed to news consumption, complement those of

Halberstam and Knight (2016). Indeed, in our model, a complete segregation

in communication according to type will lead to a situation in which all agents

are only informed of their preferred meme. This is independent of the initial

seeding of information, which may proxy as consumption of news. Our results

are indicative that a driving force of polarization may be biased communication

patterns as opposed to biased news consumption.

We do not model links as costly. Homophily has been shown to arise en-
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dogenously if links to the same types are cheaper than links to agents of another

type (Jackson and Rogers, 2005; Galeotti et al., 2006; Dev, 2018), if the meet-

ing process is biased (Jackson and Rogers, 2007a; Bramoullé et al., 2012), or

if preferences are biased towards links within the same group such as in Cur-

rarini et al. (2009) or Currarini et al. (2010). In our model, own-type links

may provide greater benefits than links across types as agents are more likely

to become informed of their preferred meme, thus adding a different rationale

why own-type links may be preferred.

While we model communication of memes, the choice of which message to

transmit is non-strategic. Strategic information transmission has been the sub-

ject of, e.g., Hagenbach and Koessler (2010), Galeotti et al. (2013), or Bloch

et al. (2018).

The rest of the paper is organized as follows. Section 3 presents the model

and derives the steady-states of each meme, in particular, our result on infor-

mation resilience. Section 4 relates the ranking of steady-states to information

preferences and to network characteristics. Section 5 investigates the impact of

homophily and derives the conditions under which agents themselves wish to

segregate according to information interests. Section 6 provides extensions to

the main model and Section 7 concludes. Various proofs are relegated to the

Appendix.

3. The Model

3.1. Propagation Mechanism

There exists an infinite number of agents, indexed by i, who represent nodes

of a network. Time is continuous. Meetings between agents signify links, and

the degree of agent i, ki, denotes the number of meetings that i has at each point

in time. The distribution of degrees is P , such that P (k) is the probability that

a randomly drawn node has degree k. A fraction ga ∈ [0, 1] of the population

belongs to group A and the complement gb = 1−ga belongs to group B. Group

membership determines informational preferences: There exist two memes, A
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and B, and members of group A prefer meme A to meme B, and vice versa. We

assume that these preferences are common knowledge and that they encompass

both the consumption and the transmission of information, such that an agent

who, e.g., prefers the topic of football over political news prefers both to talk

about the most recent football results and to hear about them. We assume

that memes A and B are independent of each other, as with football news as

opposed to political news. With the exception of informational preferences,

there is no difference between members of the two groups, an assumption that

will be relaxed in Section 6.

Agents can be uninformed of both memes (susceptible, S), or informed of

either or both. We denote being informed of meme A only by Ia\b, and being

informed of only B by Ib\a, while being informed of both memes by Iab. Thus,

the set of states in which an agent can be is {S, Ia\b, Ib\a, Iab}. Transition

between states occurs in the following way. Agents in S transition into Ia\b if

they become informed of meme A and into Ib\a if they become informed of meme

B. Agents in Ia\b (Ib\a) transition into Iab if they become informed of meme

B (A). Similarly, they transition into S if they forget A (B). Agents in IAB

transition into Ia\b (Ib\a) if they forget meme B (A). We denote by ν the rate at

which information is transmitted at a meeting and by δ the rate at which it is

forgotten. In line with the previous literature and the epidemiological roots of

the model, we refer to ν as the (per contact) infection rate and δ as the recovery

rate.5

A central assumption is that at each meeting agents can communicate at

most one meme, as communication time is limited. We assume that in this

case, an agent transmits his preferred meme, conditional on communication

taking place at all.6 Note that if agents are either in state Ia\b or Ib\a, their

5If agents never forgot, all information would eventually be known by everybody. Apart
from being uninteresting, this does not seem to be a relevant case for many of the memes that
diffuse through social interactions. Much of the information that is transmitted as chit-chat
is not immediately payoff relevant. Such information may be a prime target to be forgotten
under memory limitations.

6This implies that a fraction gl of agents in state Iab will transmit meme l. Our results
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information preferences will not matter for the rate at which they pass on meme

l. In particular, agents are non-strategic in the way they pass on information.

They neither distort the meme they possess, nor do they strategically choose

to not transmit a meme. Aside from strategic considerations, other reasonable

frameworks to model information transmission clearly exist. It is worthwhile

highlighting that any such framework in which the existence of a second meme

does not impose any restriction on the transmission of the first and vice versa

will lead to a parallel diffusion of the memes in which each meme’s diffusion can

be studied individually. The standard one meme SIS model then applies.7 The

present model is kept deliberately simple with respect to further intricacies of

the transmission process of memes to clearly identify the role that competition

between memes in communication plays. Section 6 discusses the relaxation of

some of the simplifying assumptions employed here.

Following the literature, we model the diffusion of the memes under the

assumption that the network of meetings is realized every period and we solve for

the mean-field approximation of the system. Formally, we define ρa\b(k), ρb\a(k)

and ρab(k) as the proportion of degree-k agents in the three infection states,

Ia\b, Ib\a, and Iab, respectively. We denote the corresponding prevalences in the

population overall as ρa\b =
∑
k P (k)ρa\b(k), ρb\a =

∑
k P (k)ρb\a(k) and ρab =∑

k P (k)ρab(k). By definition, ρa(k) = ρa\b(k)+ρab(k), ρb(k) = ρb\a(k)+ρab(k),

and ρ(k) = ρa\b(k) + ρb\a(k) + ρab(k), with equivalent relationships for overall

prevalences.

Let 〈·〉 denote the expectation operator. Given the distribution of degrees,

P (k), the probability that a randomly encountered node has degree k is P̃ (k) =

P (k)k
〈k〉 . Our assumption that both groups are identical except for informational

will not change if we instead assume that gl is the probability that a single agent in state Iab
passes on information l. This assumption would not allow us to investigate questions of the
effect of segregation according to information preferences.

7An intuitive example is a model in which the rate at which an agent communicates a
meme depends on his type, such that an agent of type l communicates meme l at rate νl and
meme −l at rate ν-l with νl > ν-l. Given group sizes ga and gb, such a transmission protocol
would be identical to a model in which meme A is being transmitted at rate νA = gAνl+gBν-l
and meme B at rate νB = gAν-l + gBνl in a parallel fashion.
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preferences extends to the distribution of degrees, i.e., P (k) = Pa(k) = Pb(k).

It also extends to interaction patterns across groups being random, i.e., agents

of either group meet members of the same / the other group at a rate that

is determined by the relative sizes of the groups. Currarini et al. (2009) term

such interactions baseline homophily. While many social interactions exhibit a

tendency towards homophily beyond this level, we believe that this assumption

captures well the fact that social networks are likely to have formed long before

any particular pair of memes diffuses on them. In this case, we do expect that

the degree of homophily of the network is unrelated to the types of currently

diffusing memes. Denote by θl the probability that a randomly encountered

agent will transmit meme l for l ∈ {A,B}, if communication occurs. Then,

θa =
∑
k

P̃ (k) [ρa(k)− gbρab(k)] , (1)

θb =
∑
k

P̃ (k) [ρb(k)− gaρab(k)] . (2)

In the SIS model with only one meme, θl is equal to the probability that a

randomly encountered node is informed of meme l. Equations (1) and (2),

instead, show that in the present model, for gl ∈ (0, 1) and ρab(k) > 0, θl

is strictly lower than this probability. Thus, in our model the probability of

becoming informed of either meme is lower than in the standard SIS model.

Note that ρa(k), ρb(k), and ρab(k) are the same in either group. This is an

outcome of our assumption that interactions are random across groups and

it leads to the result that a fraction gl of informed agents (whether in ρa(k),

ρb(k), or ρab(k)) belongs to group l, which increases the tractability of the model

tremendously.8

Following the standard SIS model with a unique meme, we assume that

the infection rate ν is sufficiently small that it approximates the chance that an

agent becomes informed through his k independent interactions at t. The rate

8We return to this point in more detail in Section 5, where we look at the implications of
different levels of homophily.
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at which a susceptible agent becomes infected with either meme l is then kνθl.

Similarly, we assume that the recovery rate δ is sufficiently small such that δ

approximates the probability that an agent forgets a particular meme at time

t.9

As A and B are about independent topics, we assume that the two memes

diffuse through the population independently of each other. Knowledge of one

does not make knowledge of the other any more or less likely. The propagation

process exhibits a steady-state if the following three differential equations are

satisfied,

∂ρa(k)

∂t
= (1− ρa(k))kνθa − ρa(k)δ = 0, (3)

∂ρb(k)

∂t
= (1− ρb(k))kνθb − ρb(k)δ = 0, (4)

∂ρab(k)

∂t
= (ρa(k)− ρab(k))kνθb + (5)

+(ρb(k)− ρab(k))kνθa − 2ρab(k)δ = 0,

i.e., the proportion of agents who become aware of a meme at t equals the

proportion of agents who forget it.10

9In essence, this assumption implies that at most one information is forgotten at any
t. This seems reasonable for short time intervals. Importantly, as at most one meme can
be transmitted per meeting, it ensures that the setup is not exogenously biased against the
survival of a meme.

10We assume that δ is the unique rate at which both A and B are forgotten. There are
numerous alternative ways to model forgetting, e.g., the preferred meme might be forgotten
at a lower rate, or being aware of multiple memes increases the rate at which all of them
are forgotten. On the other hand, it might also be the complexity of a meme that is the
determining factor in forgetting, something that is entirely exogenous to the model. In this
case, the steady-state prevalences of the two memes would differ by construction. Instead, the
unique value of δ allows us to derive very cleanly the impact that the existence of a second
meme has on the diffusion process, without additional complications.
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3.2. Steady-States

Define λ = ν
δ as the diffusion rate of information. The steady-state condi-

tions of ρa(k), ρb(k), and ρab(k) can be written as

ρa(k) =
kλθa

1 + kλθa
, (6)

ρb(k) =
kλθb

1 + kλθb
, (7)

ρab(k) =
k2λ2θaθb

(1 + kλθa)(1 + kλθb)
= ρa(k)ρb(k), (8)

and substitution of these conditions into equations (1) and (2) yields:

HA(θa, θb) =
∑
k

P̃ (k)
kλθa

1 + kλθa

[
1− gb

kλθb
1 + kλθb

]
, (9)

HB(θa, θb) =
∑
k

P̃ (k)
kλθb

1 + kλθb

[
1− ga

kλθa
1 + kλθa

]
. (10)

Denote the steady-state values of θa and θb as θ̄a and θ̄b, respectively. These are

determined as the fixed points such that θ̄a = HA(θ̄a, θ̄b) and θ̄b = HB(θ̄a, θ̄b),

which by equations (6)-(8) determine the steady-states of ρl(k) (and hence ρl)

for l ∈ {A,B}, which we denote by ρ̄l(k) and ρ̄. Due to the inherent symmetry

of the model, in the remainder of the paper we focus, without loss of generality,

on the case in which ga ≥ gb.

Remark 1. For any given diffusion rate λ ≥ 0, there exists a steady-state in

which θ̄l = ρ̄l(k) = ρ̄l = 0 for either or both l ∈ {A,B}.

The existence of a steady-state in which nobody is informed is trivial. If the

initial conditions are such that no agent is informed of a meme, nobody ever

will be. Questions of interest concern the existence of a steady-state in which

ρ̄l > 0 for at least one l ∈ {A,B} and its characteristics. Henceforth, we will

denote, with slight abuse of notation, by ρ̄l(k) and ρ̄l the positive steady-state

values of meme prevalence, and by θ̄l the positive steady-state of θl for either

l ∈ {A,B}.
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3.3. Existence of Non-zero Steady-States

To analyze the existence of steady-states in which ρ̄l > 0 for either or both

l ∈ {A,B}, we adapt the following definition from López-Pintado (2008).

Definition 1. For each l ∈ {A,B}, let λdl be such that the following two con-

ditions are satisfied:

(i) For all λ > λdl , there exists a positive steady-state for meme l, i.e., a

steady-state in which a strictly positive fraction of the population is in-

formed about it, while it does not exist for λ ≤ λdl .

(ii) For all λ > λdl , starting from an infinitesimally small fraction of agents

informed about l, the dynamics converge to a positive steady-state, while

for λ ≤ λdl , they converge to a steady-state in which no agent is informed

about l.

We call λdl the diffusion threshold of meme l.11

Furthermore, we are interested in how the diffusion threshold and the preva-

lence of either meme compare to the case in which meme l is the unique meme

diffusing on the network. We therefore define the following concepts.

Definition 2. Let λd be the diffusion threshold in case a unique meme diffuses

through the network.

Definition 3. Let ρ̃ denote the positive steady-state prevalence of a meme if it

is the unique meme that diffuses through the network, with corresponding θ̃ and

ρ̃(k).

For the present diffusion process, it has been established12 that λd = 〈k〉
〈k2〉 .

We are now in a position to state our first set of results regarding the existence

and stability of positive steady-states for either meme l ∈ {A,B}.

11López-Pintado (2008) in fact defines a critical threshold above which a positive steady-
state exists, and a diffusion threshold above which a positive steady-state is stable. In the
present setting, these two thresholds always coincide.

12See, e.g., Jackson (2008) or López-Pintado (2008) and the references therein.
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Theorem 1. The existence and magnitude of a diffusion threshold λdl are as

follows:

(i) If gl ∈ (0, 1) for both l ∈ {A,B}, a diffusion threshold exists and is given

by λda = λdb = λd = 〈k〉
〈k2〉 .

(ii) If gl = 1 for either l ∈ {A,B}, a diffusion threshold exists and is given by

λdl = λd = 〈k〉
〈k2〉 . For λ > λdl , θ̄l = θ̃, ρ̄(k) = ρ̃(k), and ρ̄l = ρ̃. There does

not exist a diffusion threshold for the composite meme, −l.

Independent of the value of gl, for either l ∈ {A,B} there exists at most one

steady-state in which θ̄l > 0, and therefore ρ̄l > 0.

Proof. See Appendix A.

Our result that λdl is identical to λd for all interior values of gl highlights

an enormous resilience of information. Any combination of network structure

P (k) and λ that is sufficient to make a unique meme endemic is also sufficient

to make multiple memes endemic, provided that any interest exists in the pop-

ulation. This is despite the fact that, as evidenced by equations (1) and (2),

each individual meme is transmitted at a strictly lower rate than ν, the rate in

the standard SIS model. This suggests that λdl should be larger than λd for

at least one l. Briefly, the intuition as to why this is not the case is that the

negative externality the two memes impose on each other is determined through

ρab(k), which approaches zero faster as λ approaches λd from above than either

ρa(k) or ρb(k).

It is noteworthy that the results of Theorem 1 are the exact opposite of

the results in Prakash et al. (2012). They focus on the case of competing

viruses which endow the host with immunity against each other. In such a

framework, only the more infectious virus survives in the population. While

such immunity seems a realistic feature for some viruses or product adoption,

it appears less intuitive for the diffusion of information. In comparison with

previously established results, Theorem 1 highlights that the exact nature of
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competition between the diffusing states is crucial in determining the likelihood

of their survival.

Theorem 1 provides a possible argument for why such vast amounts of dif-

ferent topics are being discussed both offline and on OSNs, such as Twitter.

Assume that λ > λd. Then any meme that is deemed the most interesting by

a positive fraction of the population will survive on this network, no matter

how much of a niche topic it might be. Note that survival of a meme does not

necessarily imply that a sizeable fraction of the population will be informed of

it. We now turn to the magnitude of meme prevalences.

4. Information Prevalence and Network Structure

4.1. Relative Information Prevalence

Theorem 1 shows that the predictions of our model are in line with the ob-

servation that many memes survive simultaneously in a population. The second

aspect of communication that has been highlighted is that memes’ prevalences

differ. Ultimately, the prevalence of information l is determined by θ̄l, which is

the steady-state rate at which l is talked about. In general, it is not possible

to explicitly solve for θ̄l. Nevertheless, there are a number of positive results

that can be derived regarding relative meme prevalence. In the remainder of the

paper we focus on the case in which λ > λd and θ̄l > 0 for both l ∈ {A,B}.13

We also restrict ourselves to consider only finite values of λ. We refer to meme

l as the “majority” meme if gl > 1/2.

Proposition 1. Consider a given degree distribution P , λ > λd and gl ∈ (0, 1).

Then, θ̄a = ga
gb
θ̄b. That is, θ̄a ≥ θ̄b, ρ̄a(k) ≥ ρ̄b(k), and ρ̄a ≥ ρ̄b if and only if

ga ≥ gb. Inequalities are strict if ga > gb, and in the case of pl(k), if k is finite.

Proof. The relation between θ̄a and θ̄b is proven in Lemma 3 in Appendix A.

The ranking of steady-states follows directly from this relation and the fact that

13If we set θ̄l = 0 for either l ∈ {A,B}, the composite meme −l will uniquely diffuse on the
network and the results of López-Pintado (2008) apply.
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ρ̄l(k) is strictly increasing in θ̄l, while ρ̄l is increasing in ρ̄l(k).

Proposition 1 is independent of the type of degree distribution P , and in-

dependent of the diffusion rate λ, or degree k.14 It shows that relative interest

uniquely determines which meme exhibits a higher prevalence in the long run,

independent of any parameters of the diffusion process, including the network

structure. A driving force behind this result is the fact that random interac-

tions imply that all agents become informed about meme l at a higher rate

than meme −l if and only if gl > g-l. We show in Section 6 that the importance

of relative exposure in prevalence rankings remains intact also in environments

where groups are less symmetric. Proposition 1 also shows that relative commu-

nication rates, which is what is observed in data such as Twitter, are determined

entirely through relative interest. This is not true for relative meme prevalences.

Proposition 2. For each l ∈ {A,B} and gl ∈ (0, 1), θ̄l, ρ̄l(k), and ρ̄l are

strictly increasing in λ. Furthermore, for ga > gb:

(i) ρ̄a(k)
ρ̄b(k) and ρ̄a

ρ̄b
are strictly decreasing in λ.

(ii) ρ̄a(k)
ρ̄b(k) is strictly decreasing in k.

Proof. See Appendix B.

The fact that all steady-state measures (θ̄l, ρ̄l(k), and ρ̄l), are increasing

in λ is unsurprising, and in line with the one-meme model. The decrease in

prevalence ratios in both k and λ is driven by an increased importance of ρ̄ab(k)

in both memes’ prevalences. Through it, any increase in the diffusion rate λ

will increase the prevalence of the minority meme relatively more. We now turn

to investigate how changes in the degree distribution P affect relative meme

prevalence.

14Where we specify finite k for strict inequalities, it is due to the fact that an agent who
meets every other agent at t will become informed of both memes for sure.
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4.2. Stochastic Dominance and Relative Prevalence

To analyze the impact of the network structure, we focus on the effect of

a change in the degree distribution in the sense of first order stochastic dom-

inance.15 In particular, the degree distribution P ′ first order stochastically

dominates the distribution P if
∑Y
k=0 P

′(k) ≤
∑Y
k=0 P (k) for all Y with strict

inequality for some Y .

Proposition 3. Let P ′ and P̃ ′ first order stochastically dominate P and P̃

respectively. Let gl ∈ (0, 1) for both l ∈ {A,B} and λ > λd. Then,

(i) θ̄′l > θ̄l, ρ̄
′
l(k) > ρ̄l(k), and ρ̄′l > ρ̄l for each l ∈ {A,B}.

(ii)
ρ̄′a(k)
ρ̄′b(k) <

ρ̄a(k)
ρ̄b(k) and

ρ̄′a
ρ̄′b
< ρ̄a

ρ̄b
if and only if ga > gb.

Proof. See Appendix C.

Both Proposition 2 and 3 show that any form of improvements in the trans-

mission of information are relatively more important for memes that are, ex

ante, less likely to be transmitted. Compared to communication offline, OSNs

might be characterized by an increased λ or indeed a first order stochastic dom-

inant shift in P (allow agents to have more meetings). If so, our results predict

that increased online communication disproportionally benefits the prevalence

of minority memes.

4.3. Crowding Out of Information

The third aspect of information diffusion that is highlighted in the Twitter

data of Leskovec et al. (2009) is the fact that hashtags crowd each other out, a

fact that lies at the heart of the prospect of ”burying” news. This is a direct

15We focus on first order stochastic dominance as it appears a change that might naturally
occur with an increasing importance of online communication. Another change in the degree
distribution investigated by, e.g., Jackson and Rogers (2007b) would be a mean-preserving
spread. We omit this comparison here for two reasons. First, it seems a case less related to
the rise in OSN’s. Second, Jackson and Rogers (2007b) show that its impact depends on the
value of λ. As the value of λ above which a mean-preserving spread increases prevalence cannot
be explicitly solved for, our analysis cannot go beyond re-iterating the results of Jackson and
Rogers (2007b) for both memes individually.
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consequence of the fact that overall communication stays roughly constant, while

hashtags are retweeted at different rates.

In the context of our model, an intuitive measure of crowding out is the

difference between a meme’s prevalence without competition from another meme

and the one with it, i.e., ρ̃− ρ̄. Without solving explicitly for θ̄l, the exact level

of crowding out cannot be determined. We can, however, establish its existence,

and find boundaries on the relation between θ̄l and θ̃.

Proposition 4. For any P , λ > λd and gl ∈ (0, 1), crowding out is positive:

θ̄l ∈
(
glθ̃ ,

gl
1− glg-l

θ̃

)
.

As θ̃ > θ̄l, it follows that ρ̃(k) > ρ̄l(k) and ρ̃ > ρ̄l.

Proof. See Appendix D.

While it is clear from the bounds on θ̄l that gl is a significant determinant in

crowding out, its exact value depends on the degree distribution and λ in non-

obvious ways. Its extent can neither be ranked according to FOSD of degree

distributions, nor according to λ for a given degree distribution. Nevertheless,

the derived bounds show that it can be extensive.

5. Segregation and Integration

5.1. Information Prevalence under Segregation

In the preceding analysis, agents of groups A and B interact randomly with

each other, irrespective of group membership. Currarini et al. (2009) show that

homophily patterns in the data appear to go beyond random interactions, a

concept they term inbreeding homophily.16

To incorporate homophily into our model, we denote by βl ∈ [0, 1] the prob-

ability that an agent belonging to group l will meet another agent from the

16One of the earliest work on homophily in general is Lazarsfeld et al. (1954). See also the
survey by McPherson et al. (2001).
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same group. This parameter captures the level of homophily of group l. When

βl = 1, all meetings are within the same group, and at βl = 0 all meetings are

with members of the opposite group. We recover random interactions by setting

βl = gl. Interactions are homophilous if βl > gl. To ensure that meetings across

groups are well defined, we require that

ga(1− βa) = gb(1− βb),

i.e., the fraction of the population that is of type A and meets type B agents is

the same as the fraction who is type B and meets type A.

By allowing βl 6= gl, we have to keep track of how the prevalence of meme l

evolves in group l. We denote the prevalence of meme l among degree-k agents

in group l by ρll(k), where subscript l denotes meme l and superscript denotes

group l. Overall prevalences ρll and the probability of a type l agent transmitting

meme l when communication takes place (θll) are defined analogously. Any

steady-state of the system now has to be a solution to the following equations:

ρaa(k) =
λkθaa

1 + λkθaa
, (11)

ρba(k) =
λkθba

1 + λkθba
, (12)

ρab(k) =
λkθab

1 + λkθab
, (13)

ρbb(k) =
λkθbb

1 + λkθbb
, (14)

with

θaa =
∑
k

P̃ (k) [βaρ
a
a(k) + (1− βa)ρba(k)[1− ρbb(k)]] , (15)

θba =
∑
k

P̃ (k) [βbρ
b
a(k)[1− ρbb(k)] + (1− βb)ρaa(k)] , (16)

θab =
∑
k

P̃ (k) [βaρ
a
b(k)[1− ρaa(k)] + (1− βa)ρbb(k)] , (17)

θbb =
∑
k

P̃ (k) [βbρ
b
b(k) + (1− βb)ρab(k)[1− ρaa(k)]] . (18)
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Note that by setting βl = gl, we recover our original model. Furthermore, it

is apparent that βl only matters for prevalence as long as both memes diffuse

simultaneously. By setting, e.g., θab = θbb = 0, we see that θaa = θba = θ̃ is a

steady-state of the system for any value of βl. Similarly, there always exists a

steady-state in which the prevalence of both memes is zero. Without restricting

either βl further, we are able to derive the following result.

Lemma 1. Let ga ≥ gb and the degree of homophily be given by βl ∈ [0, 1]. For

all λ ≤ 〈k〉
〈k2〉 the steady-state in which no agent is informed about either meme l

is asymptotically stable. It is unstable for all λ > 〈k〉
〈k2〉 .

Proof. See Appendix E.

While Lemma 1 stops short of proving the existence or the stability of one (or

more) positive steady-state(s) for the system, it does establish that information

survival itself is independent of the level of homophily whenever some degree of

interaction takes place between groups. If β = 1 the population is split into two

separate groups, each of which homogeneously prefers one meme. Theorem 1 has

established the diffusion threshold in this scenario, and it follows in particular

that under full segregation, in each group only the preferred meme will survive.

The implications of segregation are thus stark: Independent of the amount of

initial media coverage (i.e., the “seed” of meme l), the degree distribution P , or

the diffusion rate λ, meme B will never exhibit a positive steady-state in group

A and vice versa. Our next Theorem establishes that this result is specific to

the case of full segregation.

Theorem 2. Let λ > λd and ga ≥ gb. For any degree of homophily such that

βl ∈ [0, 1) for both l ∈ {0, 1}, it is the case that if meme l exhibits a positive

prevalence in group l, it also exhibits a positive prevalence in group −l.

Proof. See Appendix F.

Theorem 2 mirrors qualitatively the main result of Theorem 1. As long as

some interaction between groups occurs, information will survive either in both

groups, or in neither.
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The corner case of full segregation can be employed for further analysis.

It serves as a useful benchmark against which to compare the case of random

interacions. In what follows, we refer to a segregated society as one in which

βa = βb = 1, and to an integrated society as one in which βl = gl. Our next

result establishes that the prevalence of either meme is lower in a segregated

society than in an integrated one.

Theorem 3. For gl ∈ (0, 1) and λ > λd, the prevalence of meme l is ρ̄l in an

integrated society and it is glρ̃ in a segregated society. The following holds:

(i) ρ̄l > glρ̃l; information prevalence is higher in an integrated society. The

information loss due to segregation is larger for meme A than meme B if

and only if ga > gb.

(ii) glρ̄l < glρ̃; the proportion of the population informed about their preferred

meme is higher in a segregated society.

Proof. The second point is immediate as ρ̃ > ρ̄l. The inequality and ranking of

information loss established in the first point are derived in Appendix G.

To the best of our knowledge, the result that segregation can lead to a de-

crease in total prevalence is novel in the literature. It goes beyond the polarizing

impact of having no agent informed about both A and B in the long run. In-

deed, if memes A and B are entirely unrelated, there might not be perceivable

benefits of being informed about both simultaneously. Nevertheless, even if seg-

regation does not lead to polarization, it has an impact on information. This

impact falls disproportionally on the prevalence of the majority meme, thus

segregation reduces particularly the steady-state prevalence of information that

might be considered mainstream.

The distinction between overall meme prevalence and meme prevalence within

each group is also noteworthy. If, e.g., A is a piece of celebrity gossip and B a

piece of political news, the value that agents in group A put on being informed

about B (and vice versa) might be limited. That is, while overall information

is lost due to segregation, it increases prevalence of memes among those that
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attach a higher value to it. This leads us to question under which conditions

agents themselves prefer a segregated society to an integrated one, which we

address now.

5.2. Welfare under Segregation and Integration

While segregation reduces information prevalence and leads to polarization,

the model so far is too general to allow for a concrete welfare analysis. To

this end, we impose additional structure on the utility agents gain from being

informed. To keep the analysis as tractable as possible, we assume that agents

derive utility directly from being informed about memes A and/or B. We

assume that an agent in group l receives a flow utility of h while he is informed

about meme l and a flow utility of s while he is informed about meme −l, where

h ≥ s ≥ 0. Such utility flows could arise if agents truly value information in

itself, but also if they value it because there is the possibility that it will be

useful at an uncertain, future, date.17 Agents then care about ρ̄l(k), which is

the time that an agent of degree k spends being informed about l in steady-

state. We also assume that agents care only about the steady-state values of

ρ̄l(k) and ρ̄-l(k). As the case of zero prevalences is uninformative, we focus again

on the case where λ > λd. The utility of an agent with degree k in group l in

an integrated and a segregated society is then

U(k)l|int = hρ̄l(k) + sρ̄-l(k), and (19)

U(k)l|seg = hρ̃(k). (20)

Following these utilities and the results of Theorem 3, it is immediate that

in a society in which all agents place positive utility only on one meme, i.e.,

17It is, e.g., possible that agents might value to be informed not so much because it pro-
vides them with any benefit in itself, but because there is a chance that these topics might be
discussed in their presence, and not being informed would brand them as ignorant. Alterna-
tively, the information might pertain to the state of the world and an agent knows that at an
uncertain point in the (distant) future he will have to take an action whose payoff depends on
the state. In either case, the expected utility of an agent would be increasing in the amount
of time he is informed, which is captured with our parsimonious utility function.
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h > 0 and s = 0, all agents are better off in a segregated society. Conversely, if

both memes are valued equally by all agents, h = s > 0, all agents are strictly

better off in an integrated society. For all other values of h and s, an agent of

group l and degree k is strictly better off in a segregated society if and only if

s

h
<
ρ̃(k)− ρ̄l(k)

ρ̄-l(k)
. (21)

This formalizes the intuitive idea that segregation is more likely to be ben-

eficial to agents who have more extreme preferences for the two memes. The

smaller the ratio s
h , the more likely it is that an agent with degree k and of

group l will prefer a segregated society to an integrated one. The exact value of

s
h at which agents are indifferent between segregation and integration depends

on the values of k, gl, λ, and P . Let ml(k) ≡ ρ̃(k)−ρ̄l(k)
ρ̄-l(k) . The larger ml(k),

the broader is the range of s
h for which an agent prefers a segregated society.

The effects of λ and P on ml(k) are interrelated and no general statements can

be made about them.18 However, we are able to state the following positive

results.

Theorem 4. For all λ > λd,

• ml(k) is decreasing in k for each l ∈ {A,B}. The higher an agents’ degree,

the broader is the range of s
h for which he prefers an integrated society.

• ma(k) < mb(k) if and only if ga > gb. Conditional on degree, an agent

that belongs to the minority group prefers an integrated society for a smaller

range of s
h .

Proof. See Appendix H.

Theorem 4 shows that for a fixed value of s
h , segregation is always more

likely to be preferred by members of the minority group, and/or by agents that

18Although it is noteworthy that there is a general tendency for λ to decrease ml(k), i.e., a
tendency for increases in information transmission to increase agents’ welfare of integration,
relative to segregation.
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have fewer meetings per period. With the exception of a regular network, in

which all agents have the same degree, segregation must not be unanimously

preferred by all members of a group. Furthermore, unless ga = gb, it is possible

for agents of one group (the minority group) to prefer segregation while similar

agents of the majority group prefer an integrated society.

5.3. Endogenous Segregation

We now turn to the question of the emergence of a segregated or integrated

society. In particular, we ask under which conditions either type of society is

a (strict) Nash equilibrium, if agents can choose whether to interact randomly

across types, or to restrict their interactions to members of their own group.19

In a society in which all interactions are governed by random interactions,

an agent of group l and degree k obtains a utility given by equation (19). If he

deviates and interacts only with members of his own group, this deviation will

have no impact on overall meme prevalence. By deviating, the agent becomes

informed of meme l at rate θ̂l =
∑
k P̃ (k)ρ̄l(k) at a meeting, and of meme −l

at rate θ̂-l =
∑
k P̃ (k)ρ̄-l(k)[1 − ρ̄l(k)] (both conditional on communicating).20

Therefore, his prevalence of meme l will be ρ̂l(k) = kλθ̂l
1+kλθ̂l

and that of meme

−l will be ρ̂-l(k) =
kλθ̂-l

1+kλθ̂-l
. This implies that random interactions are a strict

(and stable) Nash equilibrium if for both l and all k

hρ̂l(k) + sρ̂-l(k) < hρl(k) + sρ-l(k) ⇒
s

h
>

ρ̂l(k)− ρl(k)

ρ-l(k)− ρ̂-l(k)
≡ nl(k). (22)

If, on the other hand, s
h < nl(k) for at least some k, random interactions are

not an equilibrium.

19Given the lack of positive results for more general levels of homophily, we restrict the
action set of agents to a choice between full integration and full segregation. While this
is obviously restrictive, our results provide useful insights into whenever either interaction
pattern is not an equilibrium, which translate to richer action sets.

20As the agent only meets members of group l, everybody who is informed of l will pass
this on, while only those who are only aware of −l will pass meme −l on.
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In contrast, the utility an agent receives in a fully segregated society is given

by (20). If he deviates from this pattern and interacts randomly, he will meet

another member of group l at rate gl, and a member of group −l at rate g-l. In

the first case, conditional on communication, he will become informed of meme

l at rate θ̃ and will never hear meme −l. In the second, he will only ever be

told of meme −l, again at rate θ̃. Which implies that his prevalences when

interacting randomly with others will be ρ̌l(k) = glkλθ̃

1+glkλθ̃
and ρ̌-l(k) =

g-lkλθ̃

1+g-lkλθ̃

respectively. Segregation is a strict (and stable) Nash equilibrium if for all k in

at least one group

hρ̃(k) > hρ̌l(k) + sρ̌-l(k) ⇒
s

h
<

1 + g-lkλθ̃

(1 + kλθ̃)(1 + glkλθ̃)
≡ ηl(k). (23)

These results allow us various insights into the occurence of either an inte-

grated or a segregated society.

Proposition 5. For all λ > λd,

• na(k) < nb(k) and ηa < ηb if ga > gb, i.e., ceteris paribus, segregation is

more likely to be Nach equilibrium if group sizes are heterogenous.

• for both l, ηl(k) is strictly decreasing in k, λ, and a FOSD shift of the

degree distribution.

• if segregation is preferred to integration, i.e., s
h < ml(k), for at least some

k of either l, integration is not a Nash equilibrium. If s
h < ml(k) holds for

all members of either l, a segregated society is a stable Nash equilibrium.

Proof. See Appendix I. The ranking of ηl(k) is immediate from equation (23).

Lemmas 6 and 7, which are employed in the proof, establish that for any

(finite) k, l, and λ, both nl(k) > ml(k) and ηl(k) > ml(k). Thus, whenever

a segregated society is preferred by all members of either group, segregation is
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the unique Nash equilibrium. The converse does not hold. If ml(k) < s
h <

min{nl(k), ηl(k)} for all agents, an integrated society provides higher welfare

to all, yet segregation remains the only Nash equilibrium.21 It is similarly

interesting that segregation is more likely to be the unique Nash equilibrium if

group sizes are heterogeneous. In this sense, we expect segregation to be driven

by the minority group.

Insofar as OSNs might create a possibility to segregate where previously

none existed, our results of Section 5.1 indicate that increased popularity of

these networks has the potential to polarize a society and reduce information

prevalence. Section 5.2 establishes that segregation is more likely to be beneficial

to agents that are (i) particularly interested in niche or very specialized pieces of

information (small gl), (ii) are extreme in their valuation of information (small

s
h ), and/or (iii) are comparatively “anti-social”, in the sense that they have

few meetings per period (small k). The results of the present Section show

that preferences for segregation can be linked to the endogenous emergence of

a segregated society. In particular, a segregated society is also more likely to

emerge if s
h is small, and it is the unique Nash equilibrium if it is preferred by

all members of the minority group.

On the other hand, OSNs might do more than simply offer a possibility to

segregate. They might facilitate communication or interactions, i.e., increase

either λ, k, or lead to a FOSD shift in the distribution of meetings. Either

increase makes segregation less likely as an equilibrium as it decreases ηl(k).

Note that our results pertaining to either integration or segregation not being an

equilibrium are valid even if we allow for a richer action set of agents, including

more general levels of homophily.22

21A conflict between stability and efficiency in network formation has been shown to arise
in a variety of settings, see e.g., Jackson (2005) for an excellent overview. Masson et al.
(2018) is another recent example, albeit in a different setting. Izquierdo et al. (2018) have
found that homophily might be inefficiently high, reminiscent of our result regarding inefficient
segregation.

22In fact, for the case of equal group sizes and considering all potential levels of homophily,
we can show that random interactions are a Nash equilibrium if and only if s = h for all
agents. Thus, it seems likely that we should observe some form of biased interaction patterns.
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6. Extensions

6.1. Degree Distributions Depending on Type

The benchmark model assumes that types are identical except for their in-

formation preferences. In the present Section, we relax this assumption and

allow the two types to differ with respect to their degree distributions, such

that Pa(k) 6= Pb(k). We keep the assumptions that each meme is being com-

municated at rate ν and that only the preferred meme will be communicated

by an agent aware of both memes.

With different degree distributions across types, we define ĝl = gl〈k〉l
〈k〉 where

〈k〉 is the average degree in the whole network and 〈k〉l the average degree in

group l. Thus, ĝl describes the likelihood that an agent of type l is being met

at a meeting. A steady-state is determined by a fixed point of the system:

HA(θa, θb) = ĝa
∑
k

P̃a(k)
λkθa

(1 + λkθa)
+ ĝb

∑
k

P̃b(k)
λkθa

(1 + λkθa)(1 + λkθb)
, (24)

HB(θa, θb) = ĝa
∑
k

P̃a(k)
λkθa

(1 + λkθa)(1 + λkθb)
+ ĝb

∑
k

P̃b(k)
λkθb

(1 + λkθb)
. (25)

This allows us the following result.

Proposition 6. The steady-state in which θ̄l = 0 for both l ∈ {A,B} is asymp-

totically stable if and only if λ ≤ 〈k〉
ga〈k2〉a+gb〈k2〉b . For a steady-state to exist in

which θ̄a > 0 and θ̄b > 0, it is necessary that gl ∈ (0, 1).

Proof. The proof of Proposition 6 follows the steps outlined in Appendix A.

Proposition 6 highlights that our earlier results on the severe impact of segre-

gation on information survival are robust to asymmetries in degree distributions.

Similarly, the condition for asymptotic stability of the zero steady-state appears

an intuitive generalization of our earlier results. Finally, we are able to show

The relevant derivations are available on request.
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that it is no longer true that the meme preferred by the majority group will

automatically exhibit a larger prevalence. Instead, in the present generalization

the ratio θ̄a/θ̄b depends on the three factors that influence the likelihood that

an agent will be told meme l, namely group size, average degree per group, and

the relative degree distributions.23

6.2. Information Transmission to Please Neighbors

Within our model, strategic information transmission to influence other

agents’ beliefs or actions is not likely. Each agent knows that they are too

small to affect the overall prevalences of memes, and he is not affected by any

decision his neighbors take based on the information he passes on. It is more

likely that information transmission might be tailored to increase the utility

of neighbors, i.e., it is conceivable that an agent who is aware of both memes

passes on the preferred meme of his neighbor rather than his own. Under the

assumption that types are common knowledge and an agent can send a differ-

ent message to each of his neighbors, this change in assumption renders the

model intractable. If types are unobserved, however, the present analysis con-

tinues to hold. In that case, an agent puts probability gl (or βl, in the case

of homophily) that his neighbor is of type l, and the present model remains

unchanged. Unobserved types might describe the reality of chat rooms where

agents can form reasonable estimates of the likelihood that they will meet their

own types, but not necessarily observe these directly. Similarly, the analysis

would remain unchanged if an agent had to communicate the same meme to all

his neighbors (like a tweet) and would choose the frequency with which to send

meme l according to the composition of types in the neighborhood.

23The exact relationship is

θ̄a =
ga

gb
θ̄b ·
〈k〉a

∑
k P̃a(k)

(λk)2

(1+λkθ̄a)(1+λkθ̄b)

〈k〉b
∑
k P̃b(k)

(λk)2

(1+λkθ̄a)(1+λkθ̄b)

.
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7. Conclusion

The present paper introduces communication constraints into a standard

SIS diffusion model: While two memes diffuse simultaneously on the network,

at each meeting an agent can pass on at most one of these. The choice of

which meme to pass on is driven by intrinsic preferences, and agents can be

grouped according to which meme they prefer. In essence, the existence of

communication constraints introduces opportunity costs in the diffusion process.

To the best of our knowledge, communication costs of any type have not before

been analyzed in a SIS framework.

We find that our parsimonious model is in line with stylized communication

patterns found in Twitter data, such as differences in prevalences and crowd-

ing out of memes. Most importantly, our model predicts that information is

resilient, in the sense that the conditions under which a unique meme exhibits

a positive steady-state are identical to the conditions under which both memes

exhibit positive steady-states. Thus, it is able to provide one possible rational-

ization for why so many different topics are discussed simultaneously online.

When we allow for segregated interactions among agents, we find that segre-

gation leads to polarization, a loss of information overall, but an increase in the

fraction of agents informed of their preferred meme. We extend our model by

introducing explicit utility flows from being informed, which allows us to inves-

tigate the factors that drive segregation. We find that extremism of information

preferences and low number of meetings increase the likelihood of segregation.

The larger the size of the group that prefers a meme, the smaller are the in-

centives for agents of this group to segregate. In fact, we find that segregation

is more likely (and integration less likely) to be a Nash equilibrium the more

dispersed the group sizes are in the population.

We believe that our results relating to the impact (and the causes) of seg-

regation are of particular interest when applied to the rise of Online Social

Networks. Much information that diffuses on these is casual chit-chat, which

we think is well captured by our model. Our results imply that for otherwise

29



identical memes (with respect to, e.g., ν and δ) only the preferred meme will

survive in a segregated group and there is an overall loss of information, both

potential costs of segregation.

Our model is kept deliberately simple to highlight the impact of opportunity

costs in the diffusion of information. There are a number of extensions that we

believe would be promising areas of future research. One of these would be to

consider the incentives of players exogenous to the network that provide the

initial information ”seed” of each meme. The uniqueness and stability of meme

prevalences in the present model imply that there is no scope for strategic in-

formation seeding. Related to this is the question of how agents choose which

information to communicate. In our model, memes are unrelated to each other

and each agent is too insignificant to affect the steady-state prevalence of either

meme. As such, linking the communication choice to intrinsic preferences ap-

pears a valid approximation of the choice process. However, if either of these

conditions did not hold, strategic considerations will play a role in the transmis-

sion process. Alternatively, forgetting is a complex matter, and might depend

on preferences, or the number of memes an agent has been exposed to. We

believe that these are interesting aspects of the diffusion process that deserve

closer attention.
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Appendix A. Proof of Theorem 1

Generically, the potential steady-states of memes A and B can be of three

types: (i) a steady-state in which neither meme exhibits a positive prevalence,

(ii) a steady-state in which θ̄l > 0 for either l = A or l = B, and zero for

the other meme, and (iii) a steady-state in which θ̄l > 0 for both l ∈ {A,B}.

As highlighted in Remark 1, the case in which neither meme exhibits a positive

prevalence trivially always exists. Based on this, the second type of steady-state

also always exists. It is trivial to show that when setting θl = 0 for either l, the

model collapses to the one-meme model. Existence and magnitude of λdl for the

composite meme then follow immediately from the arguments in López-Pintado

(2008). So does the fact that at most one steady-state exists in which ρ̄l(k) > 0.

We therefore focus on proving the existence and magnitude of λdl for the case

where θl > 0 for both l. To do so, we employ four lemmas. Due to the symmetry

of memes A and B, we can change the labels of the information to apply any

arguments that we make about A also for B. For expositional simplicity, we

will therefore focus on meme A in these lemmas, without loss of generality.

In steady-state, both equation (1) and (2) must be satisfied. Under the

condition that θl > 0 for both l, these can be re-arranged to show that at any

positive steady-state, if one exists, the following equations must be satisfied,

1 =
∑
k

P̃ (k)
kλ(

1 + kλθ̄a
) (

1 + kλθ̄b
) (1 + gakλθ̄b), (A.1)

1 =
∑
k

P̃ (k)
kλ(

1 + kλθ̄a
) (

1 + kλθ̄b
) (1 + gbkλθ̄a). (A.2)

First, Lemma 2 proves the the existence and magnitude of λdl for gl = 1,

and that at most one steady-state exists in which θ̄ > 0.

Lemma 2. The arguments in López-Pintado (2008) are sufficient to show that

for gl = 1, θ̄l = θ̃ > 0 exists if and only if λ > 〈k〉
〈k2〉 , that there exists only one

steady-state in which θ̄l > 0, and that this state is stable. For gl = 0 there exists

no diffusion threshold.
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Proof. It is immediate that if ga = 1, the steady-state condition for θ̄a in equa-

tion (A.1) is identical to the condition when A is the only information on the

network. López-Pintado (2008) has proven existence and stability of a positive

steady-state in this case, as well as the fact that at most one positive steady-

state exists.

It is easy to see that if ga = 1 and gb = 0, there is no θ̄b > 0 that solves

equation (A.2) and (A.1) simultaneously, independently of the value of λ. Con-

sequently, for gl = 0 there exists no diffusion threshold.

The following Lemma is a useful step in the derivation of steady-states when

gl ∈ (0, 1).

Lemma 3. For gl ∈ (0, 1), any steady-state such that θ̄l > 0 for both l has the

property that

θ̄a =
ga
gb
θ̄b. (A.3)

Proof. Equations (A.1) and (A.2) show that for any ga ∈ (0, 1) any steady-state

has the property stated in equation (A.3), as this is the only condition under

which both (A.1)and (A.2) hold simultaneously.

Lemma 4. For gl ∈ (0, 1), a steady-state in which θ̄l > 0 exists if and only if

λ > 〈k〉
〈k2〉 . There exists at most one steady-state in which θ̄l > 0.

Proof. To prove Lemma 4, note that by Lemma 3, we can state that any poten-

tial pair of steady-states for θa and θb, which we denote θ́a and θ́b respectively,

has the property that θ́a = ga/gbθ́b. We can employ this relationship to write

the steady-state condition for θa as a function of θ́a.

HA(θ́a) =
∑
k

P̃ (k)
kλθ́a

1 + kλθ́a

1 + gbkλθ́a

1 + gb
ga
kλθ́a

. (A.4)

Fixed points such that HA(θ́a) = θ́a correspond to the steady-state θ̄a that is

consistent with θ̄b. We follow the arguments put forward in Jackson and Rogers

(2007b) and López-Pintado (2008) to show the existence of a fixed point in
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which θ̄a > 0, and that at most one such point exists. First, note that

HA(0) = 0, (A.5)

HA(1) =
∑
k

P̃ (k)
kλ

1 + kλ

1 + gbkλ

1 + gb
ga
kλ

< 1. (A.6)

The second result is immediate since
∑
k P̃ (k) = 1, and both factors that mul-

tiply P̃ (k) in HA(1) are less than 1 (strictly so if ga ∈ (0, 1)). Furthermore,

taking first and second order derivatives of HA(θ́a) with respect to θ́a yields

HA′
(θ́a) =

∑
k

P̃ (k)
kλ
[
1 + 2gbkλθ́a

]
(1 + kλθ́a)2(1 + gb

ga
kλθ́a)2

> 0, (A.7)

HA′′
(θ́a) =

∑
k

P̃ (k)

{
− 2k2λ2(1 + 2gbkλθ́a)

(1 + kλθ́a)3(1 + gb
ga
kλθ́a)2

+ (A.8)

+
2k2λ2

[
gb − gb

ga
− g2b

ga
kλθ́a

]
(1 + kλθ́a)2(1 + gb

ga
kλθ́a)3

 < 0,

i.e., HA(θ́a) is strictly increasing and concave in θ́a. This implies that θ̄a > 0

exists if HA′
(0) > 1, and that in this case, only one such positive point exists.

In fact,

HA′
(0) =

∑
k

P̃ (k)kλ =
∑
k

P (k)k2λ

〈k〉
= λ
〈k2〉
〈k〉

(A.9)

which is larger than 1 if and only if λ > 〈k〉
〈k2〉 , identical to the one-meme case.

This completes the proof of existence of a possible positive steady-state θ̄l > 0

for l ∈ {A,B}, and that at most one θ̄l > 0 exists.

In the one-meme case, concavity of H(θ) implies stability of the single posi-

tive steady-state as well as its existence. But since HA(θ́a) is derived under the

condition that θ́a = ga
gb
θ́b, convergence to the steady-state does not follow from

the above arguments. Instead, Lemma 5 is employed.

Lemma 5. Whenever θ̄l > 0 exists, it is asymptotically stable.

Proof. We conduct the stability analysis through the eigenvalues of the Jacobian
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of the system

HA(θa, θb)− θa = 0, (A.10)

HB(θa, θb)− θb = 0. (A.11)

The entries of the Jacobian are,

∂HA

∂θa
− 1 =

∑
k

P̃ (k)
kλ

(1 + kλθa)2

[
1− gb

kλθb
1 + kλθb

]
− 1, (A.12)

∂HA

∂θb
= −gb

∑
k

P̃ (k)
k2λ2θa

(1 + kλθa)(1 + kλθb)2
, (A.13)

∂HB

∂θa
= −ga

∑
k

P̃ (k)
k2λ2θb

(1 + kλθa)2(1 + kλθb)
, (A.14)

∂HB

∂θb
− 1 =

∑
k

P̃ (k)
kλ

(1 + kλθb)2

[
1− ga

kλθa
1 + kλθa

]
− 1. (A.15)

At θ̄a = θ̄b = 0, the eigenvalues of the Jacobian are ∂HA

∂θa
− 1 and ∂HB

∂θb
− 1,

both of which are equal to
∑
k P̃ (k)kλ− 1. I.e., the zero steady-state is stable

if λ < 〈k〉
〈k2〉 and unstable if λ > 〈k〉

〈k2〉 .

At θ̄a > 0, θ̄b = 0, again the eigenvalues are ∂HA

∂θa
− 1 and ∂HB

∂θb
− 1. In this

case,

∂HA

∂θa
− 1 =

∑
k

P̃ (k)
kλ

(1 + kλθ̄a)2
− 1 < 0, (A.16)

∂HB

∂θb
− 1 =

∑
k

P̃ (k)

[
kλ

1 + kλθ̄a
+ gb

k2λ2θ̄a
1 + kλθ̄a

]
− 1 > 0. (A.17)

Since at θ̄a > 0, θ̄b = 0, it is the case that
∑
k P̃ (k) kλ

1+kλθ̄a
= 1. I.e., this

steady-state is unstable, too. Symmetry implies that the same argument applies

for θ̄a = 0, θ̄b > 0.
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Finally, for θ̄a > 0, θ̄b > 0, the two eigenvalues of the Jacobian are

r1,2 =
1

2

{
∂HA

∂θa
+
∂HB

∂θb
− 2±[(

∂HA

∂θa
+
∂HB

∂θb
− 2

)2

− 4

(
(
∂HA

∂θa
− 1)(

∂HB

∂θb
− 1)− ∂HA

∂θb

∂HB

∂θa

)]1/2
 .

Note that ∂HA

∂θa
< HA

θa
and ∂HB

∂θb
< HB

θb
. Since at the steady-state, Hl

θ̄l
= 1,

this automatically implies that ∂HA

∂θa
− 1 < 0 and ∂HB

∂θb
− 1 < 0 at the steady-

state. Thus, for both eigenvalues to be negative, it is sufficient that (∂H
A

∂θa
−

1)(∂H
B

∂θb
− 1) − ∂HA

∂θb
∂HB

∂θa
> 0. For this to hold, in turn, it is sufficient that

1 − ∂HA

∂θa
> −∂H

B

∂θa
and 1 − ∂HB

∂θb
> −∂H

A

∂θb
. Given the partial derivatives, the

condition that 1− ∂HA

∂θa
> −∂H

B

∂θa
is equal to

1−
∑
k

P̃ (k)

[
kλ(

1 + kλθ̄a
)2 + (gb − ga)

k2λ2θ̄b(
1 + kλθ̄a

)2 (
1 + kλθ̄b

)] > 0. (A.18)

We know that at (θ̄a, θ̄b),

1 =
∑
k

P̃ (k)

[
kλ

1 + kλθ̄a
− gb

k2λ2θ̄b(
1 + kλθ̄a

) (
1 + kλθ̄b

)] . (A.19)

By substituting this expression into equation (A.18), all terms are sums over k.

For equation (A.18) to be satisfied, it is then sufficient that it is satisfied for all

individual terms of the sums, i.e.,

kλ

1 + kλθ̄a
− gb

k2λ2θ̄b(
1 + kλθ̄a

) (
1 + kλθ̄b

) − kλ(
1 + kλθ̄a

)2 + (A.20)

+(gb − ga)
k2λ2θ̄b(

1 + kλθ̄a
)2 (

1 + kλθ̄b
) > 0.

Simplifying equation (A.20), we find that it is equivalent to the condition that

1 + kλθ̄b > 0, (A.21)

which is always satisfied. Yet again due to symmetry, this also shows that
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1− ∂HB

∂θb
> −∂H

A

∂θb
, too. This completes the proof that for λ > 〈k〉

〈k2〉 , the uniquely

stable steady-state is the one in which θ̄l > 0 for both l ∈ {A,B}.

Appendix B. Proof of Proposition 2

To prove the first part of Proposition 2, note that ρ̄l is increasing in λ if

and only if ρ̄l(k) is increasing in λ. For ρ̄l(k) to be increasing in λ in turn it is

sufficient that θ̄l is increasing in λ. We prove this now for l = A. As

HA(θ́a) =
∑
k

P̃ (k)
kλθ́a

1 + kλθ́a

1 + gbkλθ́a

1 + gb
ga
kλθ́a

,

it follows that for given θ́a,

∂HA(θ́a)

∂λ
=

kθ́a

(1 + kλθ́a)2(1 + gb
ga
kλθ́a)2

[
1 + 2gbkλθ́a

]
> 0. (B.1)

Fix λ and λ′ and let θ̄a = HA(θ̄a) for λ and θ̄A′ = HA′
(θ̄A′) for λ′. Propo-

sition 2 states that for any λ′ > λ, θ̄A′ > θ̄a.

Suppose to the contrary that θ̄A′ ≤ θ̄a. Then, as HA(θ́a) is concave in θ́a, it

is the case that θ̄A′ ≤ HA(θ̄A′). However, from equation (B.1) we know that

HA(θ̄A′) < HA′
(θ̄A′) (B.2)

which contradicts the fact that θ̄A′ = HA′
(θ̄A′). Thus, for each λ′ > λ, θ̄A′ > θ̄a.

Hence, θ̄a is increasing in λ. The same argument holds for l = B.

To show that ρ̄a
ρ̄b

is decreasing in λ if and only if ga > gb, it suffices to show

that ρ̄a(k)
ρ̄b(k) is decreasing in λ if and only if ga > gb. If this is true, ρ̄b(k) is

increasing in λ faster than ρ̄a(k), which implies that also ρ̄b is increasing in λ

faster than ρ̄a. To this end, it is useful to employ the result that θ̄a = νa
νb
θ̄b,

which allows us to write ρ̄a(k)
ρ̄b(k) as

ρ̄a(k)

ρ̄b(k)
=

ga
gb

+ kλθ̄a

1 + kλθ̄a
. (B.3)
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This implies that

d ρ̄a(k)
ρ̄b(k)

dλ
=
k[θ̄a + λdθ̄adλ ]

(1 + kλθ̄a)2

(
1− ga

gb

)
. (B.4)

Which, as θ̄a is strictly increasing in λ, is negative if and only if ga > gb. Finally,

it is straightforward to show that

d ρ̄a(k)
ρ̄b(k)

dk
=

λθ̄a
(1 + kλθ̄a)2

(
1− ga

gb

)
(B.5)

which again is negative if and only if ga > gb, which completes the proof.

Appendix C. Proof of Proposition 3

For a single meme, Theorem 1 in Jackson and Rogers (2007b) proves that

the steady-states of θ, ρ(k), and ρ are increasing in a first order stochastic shift

in P and P̃ as H(θ) is concave and H(1) < 1. In the present model, Lemma

4 proves concavity for H l(θ̄l). The proof of the first point hence follows from

Theorem 1 in Jackson and Rogers (2007b).

To prove the second point, it is useful to again write

ρ̄a(k)

ρ̄b(k)
=

ga
gb

+ kλθ̄a

1 + kλθ̄a
.

Taking the derivative of this expression with respect to θ̄a yields

d ρ̄a(k)
ρ̄b(k)

dθ̄a
=
k[θ̄a + λdθ̄adλ ]

(1 + kλθ̄a)2

(
1− ga

gb

)
(C.1)

which is decreasing in θ̄a if and only if ga > gb. As this implies that ρ̄b(k) is

increasing in θ̄a faster than ρ̄a(k) if and only if ga > gb, it also implies that ρ̄b is

increasing in θ̄a faster than ρ̄a if and only if ga > gb. As a first order stochastic

dominant change in the degree distribution implies an increase in θ̄a, the second

point follows.
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Appendix D. Proof of Proposition 4

We focus on l = A with ga > gb > 0. Information prevalence in the one-

meme case is given by

ρ̃ =
∑
k

P (k)ρ̃(k), (D.1)

ρ̃(k) =
kλθ̃

1 + kλθ̃
(D.2)

θ̃ = H(θ̃) =
∑
k

P̃ (k)
kλθ̃

1 + kλθ̃
(D.3)

Therefore, ρ̃ is strictly increasing in ρ̃(k). Also,

ρ̄a(k) =
kλθ̄a

1 + kλθ̄a
,

which implies that ρ̃ > ρ̄a if and only if θ̃ > θ̄a.

To establish the bounds on θ̄a, we make use of the fact that at θ̃ > 0 and

θ̄a > 0, the following conditions are satisfied,

1 =
∑
k

P̃ (k)
kλ

1 + kλθ̃
, (D.4)

1 =
∑
k

P̃ (k)
kλ

1 + kλθ̄a

[
1− gb

kλθ̄b
1 + kλθ̄b

]
. (D.5)

Which means that the two sums are equal to each other, and we can write them

as ∑
k

P̃ (k)

{
kλ

1 + kλθ̃
− kλ

1 + kλθ̄a

[
1− gb

kλθ̄b
1 + kλθ̄b

]}
= 0. (D.6)

Some re-arranging shows that this implies

∑
k

P̃ (k)
k2λ2

(1 + kλθ̃)(1 + kλθ̄a)(1 + kλθ̄b)
· (D.7)

·
{

1

ga

[
θ̄a(ga + g2

b)− gaθ̃
]

+ kλθ̄b(θ̄a − gaθ̃)
}

= 0.
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If θ̄a < gaθ̃, then θ̄a(ga + g2
b) < gaθ̃ too, as ga + g2

b < 1. I.e., each individual

term in the sum in equation (D.7) would be negative, which contradicts the

assumption that both θ̄a and θ̃ are steady-states. Similarly, if θ̄a >
ga

1−gagb θ̃, then

both terms in the sum in equation (D.7) would be positive, again contradicting

the steady-state assumption. Due to symmetry, the result for θ̄b follows, as do

the bounds stated in Proposition 4.

Appendix E. Proof of Lemma 1

Existence of a steady-state in which θ̄aa = θ̄ba = θ̄ab = θ̄bb = 0 for the general

system is trivial. The corresponding Jacobian evaluated at the zero steady-state

is

J =


βaλ

〈k2〉
〈k〉 − 1 (1− βa)λ 〈k2〉

〈k〉 0 0

(1− βb)λ 〈k2〉
〈k〉 βbλ

〈k2〉
〈k〉 − 1 0 0

0 0 βaλ
〈k2〉
〈k〉 − 1 (1− βa)λ 〈k2〉

〈k〉

0 0 (1− βb)λ 〈k2〉
〈k〉 βbλ

〈k2〉
〈k〉 − 1

 (E.1)

Thus,

|J− rI| =[(
βaλ
〈k2〉
〈k〉 − 1− r

)(
βbλ
〈k2〉
〈k〉 − 1− r

)
− λ2(1− βa)(1− βb)

[
〈k2〉
〈k〉

]2
]2

. (E.2)

It follows that |J− rI| = 0 if r solves

(
βaλ
〈k2〉
〈k〉 − 1− r

)(
βbλ
〈k2〉
〈k〉 − 1− r

)
= λ2(1− βa)(1− βb)

[
〈k2〉
〈k〉

]2

⇒

(1 + r)

[
(1 + r)− βaλ

〈k2〉
〈k〉 − βbλ

〈k2〉
〈k〉

]
= λ2

[
〈k2〉
〈k〉

]2

[1− βb − βa] . (E.3)
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Solving equation (E.3), we find that the two eigenvalues are

r1 = λ
〈k2〉
〈k〉
− 1,

r2 = λ
〈k2〉
〈k〉

[βa + βb − 1]− 1.

As the maximum value that [βa + βb − 1] can take is 1, it is the case that

r2 ≤ r1 and therefore, also for all levels of homophily we find that the steady-

state in which no information survives is stable if and only if λ ≤ 〈k〉
〈k2〉 .

Appendix F. Proof of Theorem 2

Simple substitution shows that θ̄aa = θ̄ba = 0 is a solution to equations (15)

and (16), while θ̄ab = θ̄bb = 0 is a solution of equations (17) and (18) respectively.

This is true irrespective of the degree of homophily in the population.

Similarly, θ̄ba = 0 and θ̄aa > 0 solve equation (16) if and only if βa = 1.

The same argument can be applied to all equations (15)-(18). Thus, if a meme

exhibits a positive steady-state in the group that prefers it and groups interact

to some extent, the same meme must also exhibit a positive steady-state in the

complement group.

Appendix G. Proof of Theorem 3

Information loss due to segregation is glρ̃− ρ̄l. For this term to be negative,

it is sufficient that glρ̃(k) < ρ̄l(k) for all k. As the lower bound for θ̄l is glθ̃, we

know that

ρ̄l(k) > gl
∑
k

P̃ (k)
kλθ̃

1 + glkλθ̃
> glρ̃(k).

I.e., for agents of any degree, segregation leads to an information loss for each

meme l ∈ {A,B}, and hence glρ̃ − ρ̄l < 0. Furthermore, a sufficient condition

for |gaρ̃− ρ̄a| > |gbρ̃− ρ̄b| is that |gaρ̃(k)− ρ̄(k)| > |gbρ̃(k)− ρ̄b(k)|. Note that

gaρ̃(k)− ρ̄a(k)

gbρ̃(k)− ρ̄b(k)
=
ga
gb

ρ̃(k)− 1
ga

kλθ̄a
1+kλθ̄a

ρ̃(k)− 1
ga

kλθ̄a
1+kλθ̄b

(G.1)
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which is larger than 1 if and only if ga > gb, as then both terms on the right

hand side are larger than 1, while for gb > ga, they are both smaller than 1.

This immediately shows that

|gaρ̃(k)− ρ̄a(k)| > |gbρ̃(k)− ρ̄b(k)| (G.2)

if and only if ga > gb.

Appendix H. Proof of Theorem 4

Point 1:

An agent of degree k and group l prefers a segregated society over an integrated

one if
s

h
< ml(k),

where

ml(k) =
ρ̃(k)− ρ̄l(k)

ρ̄-l(k)
.

For l = A,

d ln(ma(k))

dk
=

λθ̄b
1 + kλθ̄b

− λθ̃

1 + kλθ̃
− λθ̄a

1 + kλθ̄a
(H.1)

=
λ

(1 + kλθ̄b)(1 + kλθ̄a)(1 + kλθ̃)
·

·
[
θ̄b − θ̃ − θ̄a − 2kλθ̄aθ̃ − k2λ2θ̄aθ̄bθ̃

]
which is always negative, as θ̃ > θ̄b. By symmetry, d ln(mb(k))

dk < 0 holds as well.

It is therefore the case that for each group, agents that have more meetings per

period prefer an integrated society for a broader range of s
h than agents with

fewer meetings.

Point 2:

The second claim of Theorem 4 is that for all k, mb(k) > ma(k) if and only if

ga > gb, i.e., for two agents with the same degree, the agent belonging to the

minority group prefers segregation for a broader range of s
h . This holds if, for
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ga > gb,
ma(k)

mb(k)
=
ρ̃(k)− ρ̄a(k)

ρ̃(k)− ρ̄b(k)

ρ̄a(k)

ρ̄b(k)
< 1. (H.2)

This condition can be re-written as

(ρ̃(k)− ρ̄a(k))ρ̄a(k) < (ρ̃(k)− ρ̄b(k))ρ̄b(k)

kλθ̄a
1 + kλθ̄a

[
kλθ̃

1 + kλθ̃
− kλθ̄a

1 + kλθ̄a

]
<

kλθ̄b
1 + kλθ̄b

[
kλθ̃

1 + kλθ̃
− kλθ̄b

1 + kλθ̄b

]

and through collecting terms, re-arranging, and making use of the fact that

θ̄b = gb
ga
θ̄a, it can be simplified to

θ̃
[
1− k2λ2θ̄aθ̄b

]
<

1

ga
θ̄a + 2kλθ̄aθ̄b. (H.3)

This is satisfied, as we know that θ̄a > gaθ̃, i.e., 1
ga
θ̄a > θ̃.

Appendix I. Proof of Proposition 5

For nl(k), we know from equation (I.3) and the definitions of θ̂l and θ̂-l that

na(k) =
(1 + kλθ̄b)(1 + kλ(θ̄b − gbθ̄ab))

(1 + kλθ̄a)(1 + kλ(θ̄a + gbθ̄ab))
, (I.1)

nb(k) =
(1 + kλθ̄a)(1 + kλ(θ̄a − gaθ̄ab))

(1 + kλθ̄b)(1 + kλ(θ̄b + gaθ̄ab))
. (I.2)

We also have the following relationships:

• θ̄a > θ̄b if and only if ga > gb.

• θ̄a + gbθ̄ab =
∑
k P̃ (k)ρ̄a(k) and θ̄b + gaθ̄ab =

∑
k P̃ (k)ρ̄b(k), i.e., θ̄a +

gbθ̄ab > θ̄b + gaθ̄ab if and only if ga > gb.

• θ̄a− gaθ̄ab =
∑
k P̃ (k)ρ̄a(k)[1− ρ̄b(k)] and θ̄b− gbθ̄ab =

∑
k P̃ (k)ρ̄b(k)[1−

ρ̄a(k)], i.e., θ̄a − gaθ̄ab > θ̄b − gbθ̄ab if and only if ga > gb.

This implies that if ga > gb, the numerator of equation (I.1) is smaller than

the numerator of equation (I.2), while the denominator of (I.1) is larger than

the denominator of (I.2). Thus, if ga > gb, then na(k) < nb(k).
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The fact that integration is not a Nash equilibrium whenever segregation is

preferred by some agents follows directly from the following Lemma:

Lemma 6. For both l and all k, λ and P (k), it is the case that nl(k) ≥ ml(k),

with strict inequality for finite λ.

Proof. Employ the definitions of ρ̂l(k) and ρ̂-l(k) to re-write nl(k) as

nl(k) =
θ̂l − θ̄l
θ̄-l − θ̂-l

(1 + kλθ̄-l)(1 + kλθ̂-l)

(1 + kλθ̄l)(1 + kλθ̂l)
. (I.3)

We define

θ̄ab ≡
∑
k

P̃ (k)
kλθ̄b

1 + kλθ̄b

kλθ̄a
1 + kλθ̄a

(I.4)

which allows us to write

θ̂l =
∑
k

P̃ (k)ρ̄l(k) = θ̄l + g-lθ̄ab, (I.5)

θ̂-l =
∑
k

P̃ (k)ρ̄-l(k)[1− ρ̄l(k)] = θ̄-l − g-lθ̄ab, (I.6)

and equation (I.3) becomes

nl(k) =
(1 + kλθ̄-l)(1 + kλθ̂-l)

(1 + kλθ̄l)(1 + kλθ̂l)
. (I.7)

In fact,

ml(k) =
ρ̃(k)− ρ̄l(k)

ρ̄-l(k)
=

1 + kλθ̄-l

1 + kλθ̄l

θ̃ − θ̄l
θ̄-l(1 + kλθ̃)

, (I.8)

which shows that nl(k) ≥ ml(k) if

1 + kλθ̂-l

1 + kλθ̂l
≥ θ̃ − θ̄l
θ̄-l(1 + kλθ̃)

. (I.9)

We know from Proposition 4 that θ̄l > glθ̃. Therefore, the numerator of the

right-hand side of equation (I.9) is smaller than g-lθ̃, while θ̄-l > g-lθ̃, i.e., the

denominator in equation (I.9) is larger than g-lθ̃(1 + kλθ̃). By applying these

bounds, we know that the right-hand side of equation (I.9) is strictly less than
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1
1+kλθ̃

. Consequently, equation (I.9) is satisfied for sure if

1 + kλθ̂-l

1 + kλθ̂l
≥ 1

1 + kλθ̃
⇒ (I.10)

(1 + kλθ̂-l)(1 + kλθ̃) ≥ 1 + kλθ̂l. (I.11)

This, however, is always satisfied as θ̃ > θ̂l and 1 + kλθ̂-l > 1. Finally,

we know that limλ→∞ml(k) = 0. As limλ→∞ ρ̄l(k) = 1 for both l, we find

that limλ→∞ θ̂-l = 0 and applying this we find that limλ→∞ nl(k) = 0, thus

ml(k) = nl(k) if and only if λ→∞.

Lemma 7. For both l, and all k, λ and P (k), it is the case that ηl(k) ≥ ml(k),

with strict inequality for finite λ and k. ηl(k) is decreasing in k, λ, and θ̃.

Proof. Lemma 7 is easiest proven by focusing on the fact that segregation is

preferred to integration if

hρ̄l(k) + sρ̄-l(k) < hρ̃(k), (I.12)

while segregation is a Nash equilibrium if

hρ̌l(k) + sρ̌-l(k) < hρ̃(k). (I.13)

By the definition of ρ̌l(k) and ρ̌-l(k), the fact that θ̄l > glθ̃ implies immediately

that ρ̄l(k) > ρ̌l(k) and ρ̄-l(k) > ρ̌-l(k). It is therefore true that whenever

segregation is preferred by all members of group l, it is also a Nash equilibrium.

It is also immediate that the numerator of ml(k) is smaller than the numerator

of ηl(k), while the denominator of ml(k) is larger than the one of ηl(k).

Finally, we know that ml(k) goes to zero if either k or λ go to infinity. It

is straightforward to take the same limits directly in equation (23) to establish

that also ηl(k) goes to zero if either k or λ go to infinity. Similarly, from equation

(23) it is obvious that changes in k, λ, and θ̃ have the same qualitative effect
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on ηl(k). If we denote kλθ̃ ≡ x, we find that

dηl(k)

dk
=

−gl
(1 + x)2(1 + glx)2

[
2 + 2x+ g-lx

2
] dx
dk

< 0, (I.14)

dηl(k)

dλ
=

−gl
(1 + x)2(1 + glx)2

[
2 + 2x+ g-lx

2
] dx
dλ

< 0, (I.15)

dηl(k)

dθ̃
=

−gl
(1 + x)2(1 + glx)2

[
2 + 2x+ g-lx

2
] dx
dθ̃

< 0. (I.16)

As a FOSD shift in the degree distribution implies an increase in θ̃, the last

derivative proves that ηl(k) is indeed decreasing in such a shift.
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