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Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we
develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with
0xDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach
the time and length scales needed to study the assembly mechanisms of these structures. We test
the model by performing a detailed study of the assembly pathways for a two-dimensional target
structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable
parameters, the model reproduces a critical temperature for the formation of the assembly that is close
to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us
to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the
assembly of a single target structure. The assembly intermediates are compact and highly connected
(although not maximally so), and classical nucleation theory provides a good fit to the height and
shape of the nucleation barrier at temperatures close to where assembly first occurs. Published by AIP
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. INTRODUCTION

Multi-component self-assembly has emerged over the
past years as a promising route toward the fabrication of
supramolecular structures at the nanoscale. Unlike conven-
tional crystals and many self-assembling systems in soft matter
physics where a small number of building block types are
used many times to assemble a desired product, in such an
addressable assembly,'= the use of unique building blocks
(programmed to occupy a unique “address” in the desired tar-
get) offers direct control over the shape, size and functionality,
thus allowing for a much wider design space.

One of the most popular ways to achieve an addressable
multi-component assembly is with short strands of DNA, by
virtue of the specificity of its interactions.*® Typically, each
DNA strand is divided into various domains, each programmed
(through the choice of sequence) to hybridize with a different
neighbouring strand in the target structure. By designing which
of the strands hybridize with each of the other strands, the
shape and composition of the target structure can be uniquely
defined. Besides offering the necessary specificity to codify
interactions, the use of DNA also ensures that bonds between
building blocks also have a degree of reversibility, granting
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self-assembling systems some capacity for self-correction if
undesirable bonds eventually form.

DNA origami,> where many short strands are designed
to bind to a long single-stranded scaffold, has been the most
used technique for designing large self-assembling structures
in DNA nanotechnology.>’ More recently, a new scaffold-free
method that uses only short DNA strands has been developed
by the Yin group. The single-stranded tile (SST) (or DNA
brick) approach involves assembling large three-dimensional
structures with intricate shapes and complex functionalities
from thousands of unique strands, using a one-pot thermal
annealing protocol 0413

This addressable self-assembly method may, at first
glance, seem straightforward since each unit is designed to
be in just one unique position. In common with other exam-
ples of self-assembly of finite objects with highly specified
interactions,'®19 the relative rates of nucleation and growth
need to be carefully controlled. The nucleation barrier needs
to be low enough so that it can be crossed on experimen-
tally accessible time scales, whilst also being large enough
that the growth time for structures to reach their equilibrium
shape is significantly shorter than the time for the next nucle-
ation event. If the latter does not hold, the system will rapidly
grow many more partially formed nuclei than the maximum
number of possible assembled structures, thus using up
available monomers (monomer starvation).

Published by AIP Publishing.
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However, there are also additional hurdles to correct the
assembly that are specific to an addressable assembly. First, the
extra entropy associated with the large number of component
strands pushes the assembly transition down to lower tem-
peratures compared to an equivalent one-component system.
Second, although incorrect binding is a potential problem for
any kind of self-assembly, the number of pairs of components
between which misbonding could occur is vastly increased.
Thus, the strength of the correct interactions must be strong
enough in comparison to undesirable interactions to compen-
sate for the vastly larger number of potential incorrect inter-
actions. Although DNA provides an ideal material to have the
requisite specificity of interactions, it is not inherently obvious
that there will be an assembly window where the conditions
that there is sufficient thermodynamic driving force and yet
misbonding is not prevalent are both satisfied. Thus, the suc-
cess of the first demonstrations of the single-stranded tile (SST)
method was conceptually somewhat surprising.

The need to explain the success of the SST assembly
method inspired a range of important theoretical work.? For
example, Reinhardt and Frenkel, using a lattice model?® where
individual strands of DNA are modeled as patchy particles with
rigid patches representing binding domains, were the first to
demonstrate the successful assembly of a large structure in
a model of an addressable assembly. This same model was
later used to explore the effect of the coordination number on
the nucleation barriers and hence the assembly success.”! An
off-lattice model,?> which provides a somewhat more robust
description of the translational and rotational entropy of the
single strands, was also found to reproduce the main physical
phenomena observed in the simpler lattice model.

In parallel to these numerical investigations, theoretical
calculations by Jacobs et al.>® helped explain why a time-
dependent annealing protocol is necessary to achieve a fully
assembled structure. Due to the large combinatorial entropy
for these systems, as temperature is cooled and the critical
nucleation barrier is crossed, the free-energy minimum is for
a partially formed structure. Further cooling is needed for
the final structure to completely form. Thus an addressable
assembly differs from a more conventional assembly with
a small number of sub-units, where complete assembly can
typically occur at a single temperature. Similar theoretical cal-
culations®* were also used to predict how nucleation barriers
depend on the topology of the graph describing how the parti-
cles are connected in the assembled state. More recently, this
model was used to investigate strategies to optimize nucle-
ation and growth of unbounded, periodic structures.”> Another
strand of research into an addressable assembly, also using
simplified models,?® has suggested that using carefully cho-
sen non-stoichiometric abundances of assembly components
may help to mitigate aggregation and undesirable monomer
starvation effects.

While these calculations have provided important qual-
itative insights, these minimal models neglect important
aspects of these systems, such as the polymeric nature of the
constituents, thus preventing quantitative predictions. More
detailed modeling would be beneficial to help guide SST
experiments and to work out the relative importance and the
interplay of the various mechanisms that affect the addressable
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assembly of a large structure from a set of individual single
strands of DNA.

The fundamental reaction exploited by the SST assem-
bly method is the hybridization of different domains between
separate single strands. It is natural to model these reactions
using 0xDNA,?%2? a nucleotide-level model of DNA that has
successfully been applied to a diverse set of systems and pro-
cesses where hybridization plays a key role, ranging from DNA
devices such as nanotweezers®® and DNA walkers?!*? to the
dynamics of the displacement reaction®3* to the breaking
of duplex DNA under force®> to hybridization without*® and
with?’ secondary structure, and even to the assembly of small
origami.’® This success, and the good agreement (where com-
parison is possible) with experiment, suggests that oxDNA can
be used to understand SST assembly.

On the other hand, the scale of the challenge to model
self-assembly for these systems is evident. For example, the
two-dimensional SST rectangle, first presented in Ref. 6 and
illustrated in Fig. 1 using oxDNA, is made up of 334 unique sin-
gle strands each 42 nucleotides long giving 14 028 nucleotides
in total. Each strand is composed of four concatenated domains
of length 10-11-11-10 bases or 11-10-10-11 bases (depending
if the strand occupies an odd or even row) that bond with four
local neighbours during self-assembly. This rectangle serves as
a molecular canvas, from which custom shapes can be created
by removing certain strand types. Using this strategy, over one
hundred different shapes were successfully assembled using a
one-pot annealing protocol where the temperature is lowered
at a fixed rate.® While computer simulations with oxDNA can
be used to study structural properties of a fully assembled rect-
angle, as illustrated in Fig. 1, it is computationally unfeasible
to characterize the spontaneous self-assembly of this struc-
ture from a bath of single strands via direct simulations, as
the correspondent time scales are far too long even given the
speedups that coarse-graining at the level of oxDNA provides.
For example, the fastest experimental protocols that lead to a
correct assembly are on the order of 1 °C/h,* while oxDNA
time steps are on the order of several fs.

FIG. 1. A typical oxDNA configuration illustrating the fully assembled
molecular canvas at 7 = 25 °C. This snapshot was taken after allowing an
initially fully planar configuration to equilibrate using molecular dynamics
simulations with oxDNAZ,27 an extension of the original oxDNA that allows
for a better description of structural properties of large (kilobase-pair) struc-
tures. Distinct tile species are depicted using different colours. At this low
temperature, the entire 334-strand structure is highly prevalent in equilibrium
under typical conditions.
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To make progress, further coarse-graining is necessary.
We are assisted by the observation that the equilibrium ensem-
ble of two complementary DNA strands at ideal conditions is
dominated by states in which either most of the base pairs are
formed between complementary strands, or no base pairs are
formed, separated by a free-energy barrier that emerges mostly
due to the sudden reduction of translational freedom when the
first base pairs form. This feature of DNA hybridization is well
illustrated by the successes of a two-state model*” in predict-
ing the thermodynamic properties of DNA duplexes and other
DNA motifs.

This time-scale separation suggests that a kinetic model
at the level of the chemical master equation, with each state
specifying a bonding configuration, may capture the dominant
physics of assembly. We are inspired here by recent success
of a kinetic model for DNA origami,*'*> where excellent
agreement with experiment was achieved.

Our basic coarse-graining strategy for the SST assembly
of a 2D canvas is to first estimate the rates for key reac-
tions using oxDNA and then use these rates to parameterize
a coarser kinetic model that allows us to work out the full
dynamics of assembly. The ratio of the on to off rates can be
estimated using the free energy of hybridization together with a
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two-state approximation for the kinetics. While the connectiv-
ity network of assembly units seems to be in the natural level
of description from both kinetic and structural perspectives, a
problem arises because the number of possible non-equivalent
connectivity networks grows exponentially with the number
of subunits composing the target structure.

To circumvent this problem of determining transition rates
between every pair of configurations, we identify a finite
set of local changes in the connectivity network associated
with the binding/unbinding of a staple and parameterize all
transition rates according to which member of this finite
set they correspond. This approach means that we do not
need all theoretically possible transition rates but instead can
treat self-assembly using a limited database of tile associa-
tion/dissociation rates. We then use standard kinetic Monte
Carlo (KMC) techniques to sample over all possible states.

The full multi-scale procedure to coarse grain our kinetic
model and to calculate the dynamics of assembly is summa-
rized in Fig. 2. The resulting KMC trajectories can easily reach
the time scales of multiple hours used in the assembly experi-
ments®3? in just a few minutes of computer time. The only free
parameter is the on-rate k¥, which we assume to be tempera-
ture independent, and set by recent experiments of DNA strand
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FIG. 2. Multi-scale coarse-graining approach for tile-based self-assembly. [(I) and (II)—(top)] The free energy of the tile-association/dissociation reaction is
determined by considering the minimal assembly fragment that contains the first neighbours of the assembly site to which the tile associates/disassociates. In
this example, the site occupied by the (binding) green strand has two first neighbours (the blue and red strands). The yellow strand [(II)—top] is also used in
order to keep both strands arranged correctly. We use 0xDNA to determine the thermodynamics of this reaction: [(II)—bottom left)] The free-energy landscape
for tile association as a function of the number of bonded base pairs between complementary domains at 7 = 50 °C and for the strand concentration used in
experiments (100 nM). [(II)—bottom right] Probability profile at equilibrium as a function of the total number of base pairs between complementary domains
at T =50 °C. From the plot, P(N =0) = 0.07, P(1 <N < 11) 2 0.01, P(12 > N) = 0.92. Inset: the free-energy profile as a function of the total number of base
pairs between complementary domains at 7' = 50 °C. (III) The statistics of tile association derived using oxXDNA are used to parametrize a two-state description,
where a tile is considered to be either “bound” or “diffusing.” We model rates by assuming that tiles bind to a cluster, if a complementary domain is present, at
rate kO[s], where [s] is the concentration of strand-species s and k? is assumed to be independent of binding site and temperature, and use the free-energy change
of reaction to determine the respective dissociation rates. (IV) Having developed a database of tile-association/dissociation rates, we use a kinetic Monte Carlo
algorithm to propagate the system in time.
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displacement reactions.*? This parameter sets time scales, but
not free energies (and therefore transition temperatures). Our
calculations, which otherwise have no adjustable parameters,
predict a critical temperature that is only a few degrees Celsius
different from that measured in the experiment.

We proceed as follows. In Sec. I, we describe our coarse-
graining methods in more detail, explaining how we define
the key states of our model, how we calculate free-energy
differences using 0xXDNA, how we incorporate these thermo-
dynamic calculations into our kinetic rates model, and how
we use enhanced sampling KMC methods. We also discuss
the importance of some effects we neglect in our multi-scale
coarse-graining procedure, including a discussion of the role
of misbonding. In Sec. III, we first consider the assembly (and
disassembly) of a single target structure during both temper-
ature ramp and isothermal protocols. Next we consider the
nucleation pathway in more detail, calculating critical nucleus
sizes and free-energy profiles as a function of assembly size for
different temperatures. Finally, we present some conclusions,
pointing to future applications of our new method.

Il. METHODS
A. Definition of the states

In our simulations, we follow the assembly and disassem-
bly of a single structure through monomer association from,
and dissociation into, a large bath of monomers. We define the
state of the system as a single vector made up of N components
X = (x1,x2,...,xy), where x; = 1 if strand species i is in the
assembly and x; = 0 otherwise and N = 334 is the number of
42-base-long strands in the fully assembled 2D structure that
we are studying here. We can make the simplification that the
states only describe strands either fully on or off because of the
essential two-state nature of strand association: the subensem-
ble of states in which programmed hydrogen bonds are formed
between the incoming strand and its binding domains in the
assembly is statistically dominated by states in which all com-
plementary domains are hybridized and most of the base pairs
are formed (see details in Sec. II B 2).

The transition rates are denoted by k(X|y) for transitions
y — X. Possible transitions in the model are those in which
a single strand, from now on also called a monomer, either
binds to or is removed from the assembly. For consistency,
however, transitions in which the assembly is divided into two
disconnected parts due to the removal of a monomer are not
allowed as we do not describe the reverse process.

The kinetic simulations performed throughout this work
were initiated (unless stated otherwise) from the state
Xy = 0.y, where v was selected randomly from the set of 334
different tile species (v € [1, 334]) that corresponds to a single
tile. After the initial step of the simulation is performed (the
association of a second tile), the first tile is allowed to disas-
sociate, but we always keep at least one tile in the state vector.
Typically a great number of association and dissociation steps
occur before any nucleation events happen so that memory of
the identity of the initial tile is effectively erased.

By using the state definition described above, we focus our
attention on the assembly of a single target structure, while the
concentration of strand species is kept constant. Our model is
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therefore appropriate to describe the first stages of an experi-
mental assembly setup, when the first structures start to form
and there is little variation in the concentration of monomers.
To capture the full complexity of an assembly process, future
work needs to describe explicitly the variation with time of
the composition of the assembly mixture which contains mul-
tiple assembly fragments and (usually) a fixed number of
monomers. In the present work, we instead focus our atten-
tion on the nature of the assembly pathways for single-target
assembly and leave consideration of the collective aspects of
the assembly process for future work.

B. Transition rate model
1. Tile association rates

The state space of the model is based on the assump-
tion that the rearrangement of a strand to form secondary
domains is fast compared to the initial binding of the first
domain when a strand arrives from the dilute, well-mixed solu-
tion. Furthermore, association rates of duplexes are known
to be less sensitive to sequence and conditions than dissoci-
ation rates.’”*4 In the spirit of minimal parameterization
of the model, therefore, we assume that tile-association rates
do not vary with temperature and use the standard value for
the second-order rate constant of k) = 6 x 10° M~ s7! that
yields the best fit*? to a set of experimental data on second-
order hybridization reactions that are part of a displacement
reaction system (see details in Sec. S.X of the supplemen-
tary material). Therefore, for a state y that is obtained from
X by adding a single tile, we estimate the tile-association rate
as

k(F1%) = ks = k5], (1)
where [s] = 100 nM is the concentration of strand species s
(assumed the same for all strand species) in the systems studied
here.

2. Tile dissociation rates

If tile association is treated as a simple bimolecular bind-
ing reaction, as here, then dissociation rates for the reaction
¥y — X can be related to association rates via

KEY) _ kG _ paces 1M

k%) kOLs] [s]°
Here AG® (%,) is the standard free-energy change of for-
mation for the reaction X — ¥ and k_(X,y) is the rate of
dissociation of a strand from y to form X. This quantity takes
into account the balance between the entropic cost of bringing
a diffusing strand into contact, in the correct orientation, and
the enthalpic gain due to the formation of hydrogen bonds
and stacking interactions between adjacent bases upon tile
association.

The major biophysical input into our model is the use of
oxDNA simulations to estimate AG™® (¥, ¥), and hence k_(%, ),
for each tile dissociation reaction. While oxDNA can be used
to directly calculate relative rates using either direct molecu-
lar dynamics calculations or techniques, such as forward flux
sampling (FFS),33-34374748 for the relatively simple reaction
rates that we need to calculate, an equilibrium calculation of
free-energy difference in Eq. (2), combined with an estimate
of hybridization rates from the literature, is more practical.

@
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In principle, 0xXDNA could be directly used for all possi-
ble tile-association events, but since the assembly can proceed
in a very large number of different ways, there are far too
many possible transitions to make this direct approach feasible.
Additionally, for larger tile-fragments, a lot of the compu-
tational load would involve degrees of freedom that are far
from the site where hybridization is occurring. To simplify
our calculations, we apply a local environment approximation
in which we assume that the enthalpic and entropic factors
that govern AG® (#,¥) can be approximated by considering
the minimal assembly fragment that contains the first neigh-
bours of the attaching site in the assembly [see Figs. 2(I)
and 2(IT)].

Using this approximation, each possible transition in the
model falls within a relatively small number of distinct cases
(local environments), each specified by the number, size, and
position of binding domains that hybridize during tile asso-
ciation, and the number and position of bases adjacent to the
binding domains on the assembly that coaxially stack. Several
examples of local environments are illustrated in Fig. 3, and
the full set of 32 local geometries that we use is given in the
supplementary material (Sec. S.VI).

For each local environment, we determine the free energy
of tile association by simulating the minimal assembly frag-
ment that contains all first neighbours of the binding site,
and the incoming tile with the correct sequence, in a periodic
box using oxDNA. In the simulations, we use the average-
base version of the model?® which allows complementary
base-pairing between AT and CG bases but averages over
the hydrogen-bonding and stacking parameters. Although tile-
binding energies are expected to depend on the tile’s sequence,
we use this approximation in order to focus our attention on
generic mechanisms of tile association rather than the effect
of using a particular sequence. In addition, the simulations are
set up so that the formation of secondary structures for single
strands is prevented. The advantage of these simplifications is
that only one calculation is needed for each local geometry.
Sequence dependence can easily be included into oxDNA,*
but for simplicity we have not done this here. Future work may
include sequence dependence. This may shine light on conflict-
ing predictions in the literature, with some arguing that adding

a) b) c)
0 11)

FIG. 3. Examples of local environments for tile association. The red tiles
denote the assembly fragment that contains the first neighbours of the binding
site (coloured grey). The sections in the assembly fragment that are hybridized
are shown in blue. The numbers 10 and 11 indicate the length (in bases) of
the binding domains positioned above. The examples involve (a) one, [(b)—
(d)] two, (e) three, and (f) four binding domains. The full list of 32 local
environments used can be found in Sec. S.VI of the supplementary material.
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sequence heterogeneity stabilizes assembly intermediates,?*
while others predict that it hinders assembly.>"

The free-energy profiles were first sampled as a func-
tion of the number of native base pairs between the fragment
and incoming strand, using the virtual-move Monte Carlo
(VMMC) algorithm of Whitelam and Geissler®! that attempts
moves of dynamically selected clusters of nucleotides, greatly
accelerating sampling in oxDNA over Metropolis Monte Carlo
(see details in Sec. S.II.A of the supplementary material). In
addition, umbrella sampling>> was used in order to improve
the sampling of rare transitions between free-energy minima
(see details in Sec. S.II.B of the supplementary material). In
the simulations, a base-pair is considered bonded if the respec-
tive hydrogen bonding energy falls below —0.596 kcal mol™!
(which corresponds to about 15% of the typical hydrogen bond
energy). The number of base pairs between designed comple-
mentary domains is defined as the order parameter and used
to divide the configurational space into regions biased by the
umbrella potential. Base pairs that were not designed to be
part of the assembled structure are not allowed to form in the
simulations. Due to the complexity of reactions in which a
tile associates to the assembly through more than one binding
domain, the order parameter was augmented with other vari-
ables that specify the distance between the centre of mass of
each binding domain of the tile and the respective complemen-
tary sequence in the assembly fragment. To improve the effi-
ciency of the calculations, the order parameter space was split
into sampling windows, and the statistics were later combined
using the weighted histogram analysis method (WHAM).>3
The simulations were performed at 7' = 50 °C, which is within
the range where the transition temperature was expected to
be, and the statistics were extrapolated to other temperatures
using single histogram reweighting®” (see details in Sec. S.II.C
of the supplementary material).

For each local environment, the tile-association free
energy AGgin is defined as the free-energy difference between
the subensemble of states, in which at least one base pair
is formed between complementary domains (€2.), and the
subensemble of diffusive states, in which no base pairs
are formed between the assembly and tile (Qy): BAGgin
=-In[p(Q.)/p(€y)]. As an example, for the local environment
depicted in Fig. 2, Q. corresponds to the subensemble of states
satisfying N9 + N1 > 0 where N9 and N1; denote the num-
ber of base pairs formed between complementary domains that
are 10 (between green and blue tiles) and 11 (between green
and red tiles) nucleotides long, respectively, and €, corre-
sponds to the subensemble of states satisfying Nig + N1; =0.
To explore the accuracy of the two-state approximation, we
also consider free-energy landscapes in which the bound state
is further subdivided into states with different degrees of
bonding.

The simulations were performed in a small volume v,
implying a higher effective concentration 1/v than in experi-
ments, so as to reduce diffusion times. We made sure that the
systems were large enough so that periodic images could not
interact. Afterwards, the tile-association free energies and free-
energy profiles were extrapolated to concentrations relevant to
the experiment by adding the factor AAGyo = kpT In(u/ugp) to
the free energies of states with base pairs. Here, 1 is the desired
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tile concentration and u is the tile concentration used in the sim-
ulations, which varied between 4.38 x 107°M (for the smallest
systems) and 1.72 x 10~"M (for the largest ones). This extrap-
olation provides the best description for the thermodynamics
of the binding process under the relevant conditions. Finally,
we determined the effective tile-association free energies at
the standard concentration (AG®), as employed in the kinetic
model. To do so, we employed the method in Ref. 54 that
relates bonding probabilities observed in a high concentration,
single-replica simulation to AG™®.

In Fig. 2(II), we show a typical equilibrium free-energy
profile of tile association obtained from the simulations, deter-
mined here for local environment 7 (see Sec. S.VI of the sup-
plementary material). This same environment is used through-
out Fig. 2. We also present the respective probability profile,
projected along a single reaction coordinate that specifies the
total number of base pairs formed at 50 °C. The probability
profile in Fig. 2(I) helps illustrate that the ensemble is sta-
tistically dominated by states in which either most base pairs
are formed (and all complementary domains hybridized) or no
base pairs are formed. This feature is most pronounced in cases
in which the tile binds with the assembly fragment through 3
and 4 binding domains (see Sec. S.VI of the supplementary
material).

Given the simple two-state nature of the transitions, one
might ask whether a simpler approach could be used to esti-
mate the free energy of tile association. For example, the
nearest-neighbour (NN) model of SantaLucia,* the predic-
tions of which were used to fit the oxXDNA model, provides
an accurate description of the thermodynamics of hybridiza-
tion. This model could be used for binding events where atile is
only able to form a single domain [e.g., Fig. 3(a)]. However, the
NN model is unable to provide any estimate of the free-energy
barrier to initiating a second domain [Fig. 2(II)] or subsequent
domains (see Sec. S.VI of the supplementary material). The
accurate capturing of these barriers, which arise from the loss
of conformational entropy of the strands involved on initiating
the formation of these additional binding domains, is the key
extra ingredient that using the oxXDNA model provides.

Similarly, this is the key limitation of previously devel-
oped patchy-particle models for the SST assembly?*?! that
uses the NN model to provide the strength of the patch-patch
interactions. These models do exhibit a free-energy barrier for
the formation of a second domain, but this arises from the loss
in entropy of the patchy particle assembly (e.g., a patchy parti-
cle with only one bond is able to freely rotate about this bond,
but this degree of freedom becomes constrained on the forma-
tion of a second bond) and not from a realistic description of
DNA’s polymeric degrees of freedom. In Sec. III C, we will
highlight some of the effects that our more accurate descrip-
tion of the thermodynamics of multiple domain formation has
on the observed assembly pathways.

C. Simulation of the coarse-grained kinetic model
1. Kinetic Monte Carlo algorithm

Having developed a database of rates, the task shifts to
determine the time evolution of the assembly. For that purpose,
we implemented a standard KMC algorithm.>> Starting at the
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assembly state X, the algorithm determines the nearest neigh-
bourhood of tiles composing the fragment and binding sites
at the interface. For tiles composing the fragment, the algo-
rithm attributes the relevant dissociation rate from the kinetic
database determined in advance. If the fragment is composed
of only two tiles, a single dissociation rate is attributed that
corresponds to the dissociation of the dimer. For sites at the
interface, the algorithm attributes an association rate (which
we assumed to be independent of local environment and tem-
perature). Next, the algorithm determines the cumulative rate
function R(i) = Z;zl k(xj|X) of transitions X — x; allowed and
chooses which transition to carry out by generating a random
number u € [0, 1) and finding the transition i that satisfies
R(i — 1) < uR(nyans) < R(i), where R(nyups) is the cumu-
lative rate of leaving state ¥: R(nyans) = X" k(Xj|X).
In case the assembly state is a dimer, the rate for dimer
break-up is only counted once and the two possible des-
tination states are selected at random if dissociation is
picked by the algorithm. Time is then updated such that
ot follows the probability distribution for the time of the
first transition leaving X: P(X,t + 6t) = exp(—R(Myans)01),
which is satisfied by choosing 67 = —R(11;y4ns)~" logv where
v € [0, 1) is a random number.

2. The simulated ensemble

If the simulation is run for an arbitrarily long time under
constant conditions, it reaches a steady state. Here we discuss
the nature of that steady state and its relation to the equilibrium
yield of partial assemblies. In an ideal (dilute) solution, in
which partial assemblies evolve independently in a large bath
of tiles at fixed concentration [s], the steady-state concentration
of a cluster X is given by the equilibrium condition

Is]

Np—1
1M) exp (-BG° (@), (3)

[X] = [s] (
in which G*® (¥) is the free energy of the assembly of X from its
constituent strands at the standard concentrations and N¢ is the
number of strands in the assembly state X. Perfectly accurate
values of AG® (¥, ¥) would satisfy

AG®(®,5) =G () -GT®. “)

In principle, one could study the assembly process, given
by a well-defined AG® (%, ), k?, and [s] in a fixed volume,
and infer the equilibrium concentration of partial assemblies
from the frequency with which they are observed in the simula-
tion volume.>* Instead of simulating a fixed volume, however,
we pursue an “assembly-eye view” of the same process in
which we simply track the growth and shrinkage of a sin-
gle assembly. In this case, the steady-state probability of the
system occupying a given state X in equilibrium is given
by

peq(z) = l [S] N)?_l (5)
( ) exp (-BAGE (X)), Ng>1,

where Z is a normalising factor. Equation (5) can be verified
by observing that, given these probabilities, the net flux of
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trajectories between all X is zero under the simulation pro-
cedure (yielding a detailed-balanced steady state). We note
that p®4(x)/p®4(y) is consistent with the equilibrium concen-
trations in Eq. (3) unless either Ny = 1 or Ny = 1 (in this case,
the ratio deviates by a factor of two). In order for the equilib-
rium probabilities in the “cluster’s-eye view” to map directly
into concentrations, we correct, after sampling, the equilib-
rium probability of finding the system in a state X with Ny = 1
by a multiplicative factor 2.

In fact, due to the local approximation to AG® (¥, ¥), and
the finite sampling accuracy of oxDNA simulations, Eq. (4)
is only approximately satisfied. Detailed balance is therefore
marginally violated in simulations; we perform the following
calculation to gauge whether deviations from detailed balance
are significant.

Let X; and X; be two assembly states and p;; = X; —
Xis1 = Xig2 = -+ — Xj-| — X be a reaction pathway that
connects X; and 55, If detailed balance is satisfied exactly, the
total free-energy change

GE®-Go@) = ), AGZG.7) ©)

=
y—Zepi

should be pathway-independent. In Sec. S.VIII of the supple-
mentary material, we consider a few examples of assembly
states X; and X; and determine the factor on the RHS of Eq. (6)
for different paths g;;. We find the variation with paths to be
small for the examples considered (see Sec. S.VIII of the sup-
plementary material). While differences between paths imply
that detailed balance is not strictly satisfied, we find these dif-
ferences to be relatively small and assume that they can be
neglected as a first approximation for the remainder of this
manuscript. A similar approach was taken in a recent model
of DNA origami folding.*!*?

We further gauge the effect of detailed balance deviations
by determining free-energy profiles as a function of assembly
size using the biasing method introduced in Sec. I C 3, which s
based upon the assumption of detailed balance, and comparing
the resulting profiles with those obtained through unbiased
sampling (see Sec. S.IX of the supplementary material). We
find good agreement between both methods, which further
supports our assumption that deviations from detailed balance
can be neglected as a good approximation.

3. Enhanced KMC sampling

Using a KMC algorithm to determine equilibrium prop-
erties can be very inefficient if states of very low probability
need to be crossed frequently to obtain good statistics. Here,
we address this issue by devising a simple biasing scheme, sim-
ilar in spirit to umbrella sampling, which allows us to relate
equilibrium properties computed using biased transition rates
with equilibrium properties of the reference system. Suppos-
ing that the state space of the system is divided into windows
according to a certain order parameter @ if transition rates are
modified according to

I 4 12]6)) g
- ——
k(y1X) W) k(y1x), (N
then, assuming detailed balance in the underlying rates k(¥|X),
the probability distribution P’(Q) of the modified system
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relates to that of the reference system P(Q) through

PQ,) _ P'Q,) [W<Qb)r
P©Qy)  P(Qy W@’

where Q, and Q) denote any two points of the order parameter
space. In practice, the weights W(Q) were first adjusted so that
every value of the order parameter could be observed in the
simulations, regardless of the initial state. From the first esti-
mate of the probability distribution P(Q), a new set of weights
were derived from Eq. (8) by fixing P’(Q) = const. The simula-
tions were performed again using the new set of weights, and
the method was repeated until a final set of weights W(Q) is
found such that any two values of the distribution P’(Q) differ
by no more than 10%.

®)

D. Neglected effects

In our coarse-graining scheme, we ignore several effects
that we discuss below.

1. Long-range bridging effects

First, long-rage bridging effects can be relevant if a tile
either incorporates or disassociates from a position in the
assembly that acts as a bridge connecting two distant sec-
tions (an example is presented in Sec. S.VII of the supple-
mentary material). To gauge how important these cases are,
we performed independent simulations using two different
versions of the model. In the first version, the rates of addi-
tion or removal of “bridging-tiles” were assumed to be the
same as for an otherwise equivalent environment in which
both sections of the assembly are constrained and the local
approximation can be applied. As an example, the rates of
tile association or tile removal for the local environment in
Sec. S.VII of the supplementary material were assumed to be
the same as the rates for the environment in Fig. 3(b). In the
second version of the model, the addition (and removal) of
“bridging-tiles” was prohibited altogether. All the simulations
performed were repeated using both versions of the model.
As the entropic penalty for bringing together both sections
of the structure is not accounted for in the first version of
the model, bridge formation is artificially favored compared
to a (hypothetical) more complete version of the model where
non-local effects are treated correctly. Nevertheless, in the sim-
ulations performed with the first version of the model, bridge
formation occurred so sporadically that the overall time scales
and thermodynamic properties barely varied with relation to
those observed using the second version of the model. Thus, it
was concluded that bridge formation is rare enough that it can
be ignored. The results presented throughout this work were
obtained using the second version of the model, where bridge
formation was prohibited.

We note that throughout this work we study the assem-
bly under moderate supercooling conditions, where we find
growth to occur through a series of compact intermediates
with a high number of bonds between components. However,
athigher supercooling, the shape of intermediates is more ram-
ified as tile association tends to be more irreversible. In this
regime, bridge formation might become more relevant to the
assembly pathways and thus require an explicit treatment.
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2. Multiple copies of the same tile species
in a structure

Second, we ignore states in which multiple copies of the
same tile species are present in a structure, each copy bonded
through a different set of (programmed) binding domains.
During tile association, as the first contacts begin to form,
we expect further bonding to occur relatively quickly (it is a
localized first-order process) compared to the association of
a second tile, which is a second-order process whose rate we
expect to be much slower at strand concentrations typical of
experiment. Of course, at sufficiently high strand concentra-
tions, this approximation is likely to begin to break down, but
we expect this to only occur well above the range relevant to
experiments.

3. Local environment approximation

Third, we tested the local environment approximation for
a few simple cases with 1 or 2 binding domains where we
included a much larger number of strands in the assembly.
The differences in the respective free-energy profiles were very
small, and so we expect this to be a good approximation.

4. Misbonding

Fourth, we ignore misbonds in our kinetic model, assum-
ing interactions respect the domain-level description and only
occur between domains that are intended to be complementary.
This approximation greatly simplifies our calculations. In Sec.
S.III of the supplementary material, we sketch an upper bound
on the average effect of misbonds. We briefly summarize the
calculation below.

First, we attempt to identify an upper bound for the typical
binding probability of an unintended strand to an available
“site” within an assembly. We assume that this site has 42
available bases (in general, an overestimate) and further treat
these bases as if they were presented by a single contiguous
strand, rather than on separate tiles (again, overestimating the
stability of bonding by neglecting entropic penalties due to the
complexity of the environment). We generate a representative
set of 42-base sequences for the site by using the sequences of
the 334 tiles themselves.

For each of these representative sites, we consider the
total binding free energy of strands that are not intended to
bind to any of the domains in the site. We perform this calcu-
lation using the NN model,* considering the contribution to
the ensemble of all possible base-pairing configurations with
either one or two base-paired sections of 2 base pairs or more.

At the relevant temperatures, we find that the binding
free energies for a given strand and a given site are signif-
icantly higher than if the strand is designed to bind with
that site, with a few extreme sequences with free-energies of
association comparable to an N; = 1 local binding domain
(see Fig. S2 of the supplementary material). Averaging over
sequences, we can compare the relative probabilities that an
available site will bind to a correct strand or an incorrect
one in equilibrium. We find that at the range of temperatures
where self-assembly takes place, our upper bound on the mis-
bond probability falls below that of an Ny, = 1 local binding
domain (see Fig. S3 of the supplementary material), which is
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the weakest of the correct binding motifs. Because the binding
probability at equilibrium of tiles with a higher connectivity
Nyp > 1 is much higher than for tiles with a single binding
domain (Fig. S3 of the supplementary material), we con-
clude that misbonding has a negligible effect on assembly at
equilibrium.

We also estimate the effect of misbonding on dynamics by
employing a simplified variant of our assembly model where
correctly bonded tiles are not allowed to disassociate from the
structure once bonded, but incorrectly bonded tiles can asso-
ciate and disassociate with rates that were derived using our
upper bound on the average probability for misbonding. At
higher temperatures (45 °C-50 °C), we find assembly times
during an isothermal assembly protocol to be largely insen-
sitive to incorrect bonding (see Fig. S4 of the supplementary
material). At lower temperatures (typically 7 < 40 °C), we
find the assembly dynamics for an isothermal protocol to be
increasingly slowed down due to misbonding.

However, it should be kept in mind that at these low tem-
peratures, our approach of studying growth of a single cluster
is likely to be inappropriate, and the rapid nucleation of many
clusters that are unable to grow to completion because of
monomer starvation is likely to have a more dominant negative
effect on the assembly dynamics than misbonding.

Interestingly, the upper bound on misbonding does not
appreciably change if we simply take a set of random strands
(see Fig. S2 of the supplementary material). It should be kept
in mind that typical DNA design spaces are enormous’°—for
this system, there are 1.9 x 10 different possible sequences
of length 42—and so it is not hard to see that the probabil-
ity of finding two random sequences that have a significant
amount of complementarity is small. For example, the prob-
ability of two random sequences of length 42 having a com-
plementary section 10 bases long, the typical length of the
bonding domains in the assembly, is 6.2 x 107* (see Sec. S.V
of the supplementary material). Most complementary motifs
are short, and it is rare to find one more than about 5 bases
long between any two strands in a set of 334 randomly gener-
ated tiles. In the experiment,® it was also found that randomly
picking sequences (that is not trying to design out misbond-
ing) did not make the SST system more likely to aggregate,
which accords with our findings above. For the SST assem-
bly system, it appears to be the case that the exponentially
large design space means that misbonding, which in the past
was often thought to be a very significant barrier to the suc-
cess of an addressable assembly method, can be avoided quite
straightforwardly.

lll. RESULTS

A. Assembly with a thermal ramp protocol

The oxDNA model predicts a critical temperature of
T. = 51.64 °C, defined as the temperature where it first
becomes thermodynamically favourable for a large assem-
bly to form (the details of how T is calculated are given in
Sec. III C).

In the original experiments to which we are comparing,
a thermal annealing protocol with steps of 1 °C was used. For

6,39
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FIG. 4. Annealing and melting curves using different cooling/heating rates.
Also shown (dashed black curve) is the assembly size at equilibrium as a
function of temperature. Inset: derivatives with respect to temperature of the
curves in the main plot. The assembly peaks (inset) have maxima at 51.0 °C
for 3 h/°C, 50.7 °C for 1 h/°C, 49.4 °C for 5 min/°C, and 51.64 °C for
equilibrium. The melting peaks (inset) have maxima at 51.9 °C for 3 h/°C,
52.1 °C for 1 h/°C, and 53.4 °C for 5 min/°C.

a cooling protocol of 3 h/°C, the maximum assembly rate was
measured at 53 °C by Sobzak et al.** Given the resolution
of the 1 °C steps, we estimate that for experiments, the crit-
ical temperature is somewhat above 53 °C, possibly close to
54 °C, where structure growth was first observed in the assem-
bly mixture. A full comparison with the dynamics of assembly
in the experiments would need to reflect the correct ensemble,
which means a fixed number of tiles, so that the change in
the concentration of tiles with assembly growth can be taken
into account. Nevertheless, the critical temperature observed
in single target simulations corresponds to the onset tempera-
ture where it first becomes thermodynamically favourable for
structures to form in an assembly scenario and so should be
accurately represented by our single-target system. The agree-
ment with our calculated critical temperature is remarkable
given that no adjustable parameters are used in the model that
affect its thermodynamic predictions (note that the forward
reaction constant k0 only affects the time scales). In Kelvin,
the appropriate temperature scale for statistical mechanical
models, this agreement is better than 1%. Note that this
agreement also implies that the oxDNA model is accurately

N=7

t=1920 s
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capturing the magnitude of the barriers to multiple domain
formation.

Keeping in mind that our current single-target assembly
approach does not take into account the effects of a fixed
number of monomers as in experiments, it is nevertheless
instructive to study the effect of cooling and heating proto-
cols. Starting at 7 = 60 °C, we simulate an annealing process
by decreasing the temperature in discrete steps (assumed to be
instantaneous) of 67 = 0.1 °C until the temperature reaches T
=40 °C. This is then followed by a melting protocol where the
temperature is increased back to 7' = 60 °C using the same tem-
perature step. For each cooling/heating rate used, we produced
10* independent trajectories, each initiated from the assembly
state x,, = 0, where v was selected randomly from the set of
334 different tile species (v € [1, 334]). In Fig. 4, we present
the average assembly sizes observed at the end of each tem-
perature step for both annealing and melting. Also shown in
Fig. 4 are the (finite) derivatives of both annealing and melting
curves (inset) and the equilibrium assembly size. For each of
the cooling/heating rates used (15 min/°C-3 h/°C), we find
differences between the peaks for assembly and melting, i.e.,
the system is not at equilibrium and exhibits hysteresis. Inter-
estingly, melting is found to occur closer to 7, than assembly.
Also, we find the melting peaks to be sharper than the assem-
bly peaks [Fig. 4 (inset)], which suggests that melting has a
higher degree of cooperativity than assembly.

B. Isothermal assembly

We also simulated isothermal assembly by producing 103
uncorrelated trajectories at several (constant) temperature val-
ues in the range 45°C-51°C. In Fig. 5, we show typical
oxDNA representations of states of the assembly taken at dif-
ferent time slices from one of the trajectories at 51 °C. The time
evolution of the assembly yield, presented in Fig. 6, shows a
number of interesting features. First, at lower temperatures,
the size of assembly increases quickly after the trajectories are
started. However, at higher temperatures, the system exhibits
increasingly longer waiting times in which the assembly does
not grow beyond a few tiles, followed by a relatively quick
growth toward large stable intermediates. Note also the large
range of waiting times in Fig. 6. For example, at the critical
temperature, we measure a waiting time on the order of several
years. A small drop in temperature to 51 °C yields much faster

FIG. 5. Tllustrative oxDNA configura-
tions for the states of the system during
an isothermal trajectory at 7 = 51 °C.
Note that for this isothermal protocol,

a complete assembly is never reached,
but rather equilibrium is for an average
size of 297 tiles. Lower temperatures are
needed for a full assembly.
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FIG. 6. Assembly size versus time curves from isothermal simulations at
different temperatures.

assembly on the order of hours. By 49 °C, the waiting time
is reduced to just a few minutes. All the above are consistent
with a nucleation barrier to assembly that rapidly decreases in
size with decreasing temperature.

At the critical temperature of 51.64 °C, the final structure
has an average size of around 260 tiles, with large fluctua-
tions (see Figs. 6 and 7). As the temperature is dropped, the
assembly grows to a larger final state, with smaller fluctua-
tions. Fully assembled structures involving all 334 strands only
appear with a probability greater than 50% at temperatures of
36 °C and below.

It should be kept in mind that these calculations were per-
formed for the single target assembly in a constant background
concentration of unbound tiles, and thus, structure growth is
not hindered by the consumption of monomers by compet-
ing nuclei. However, we can infer from our isothermal curves
(Fig. 6) that there is a narrow temperature window, between
~49 °C and 51.64 °C, where monomer starvation will be
avoided in an isothermal assembly scenario, as there is a clear
timescale separation between waiting times and growth.

C. Free energy of assembly and nucleation barriers

In order to further understand the behaviour observed in
Figs. 6 and 7, free-energy profiles were obtained using the
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FIG. 7. Equilibrium assembly size (blue diamonds) as a function of temper-
ature and the respective size fluctuations. The vertical bars indicate the range
of sizes that are observed at equilibrium with 95% probability. Note that the
fluctuations in size are not symmetric, and fluctuations are larger to smaller
than average sizes.
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FIG. 8. Free-energy profiles as a function of assembly size for different
temperatures.

biased KMC simulation method described in Sec. II C. In the
calculations, we used the size of the assembly (V) as the biasing
parameter (see Sec. II C). The results (Figs. 8 and 9) confirm the
existence of a nucleation barrier that increases quickly as the
temperature approaches the critical temperature from below.
The critical nucleus size for each temperature was confirmed
by using unbiased simulations to verify that for trajectories
initiated at the critical nucleus 50% go on toward the formation
of alarge assembly, whilst in the other 50% the nucleus shrinks
back down.

The nucleation behaviour changes rapidly over just a few
degrees. The largest critical nucleus is N* = 50 at the critical
temperature of 7' = 51.64 °C, but by 7' =51 °C it has already
dropped to N* = 16. Just a few degrees lower, at 49 °C, the
critical nucleus is only N* = 3 so that the nucleation time will be
very fast and no longer significantly limit the rate of assembly.

The free energy exhibits a minimum at an assembly size
that is less than that of the full 334-strand structure, and the
size at this minimum grows with decreasing temperature. This
behaviour arises due to the finite size of the target structure.
Close to completion, the number of possible combinations of
tiles for a given assembly size decreases rapidly, reaching 1 for
the complete assembly. This entropic effect is characteristic of
finite-size assemblies and is absent, for example, in conven-
tional crystal nucleation, where growth is solely limited by
supersaturation.

48°C —— 49°C —— CNT -------
50°C 51°C 51.64°C (T,)
T T
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FIG. 9. Higher resolution plot that shows the nucleation barriers for different

temperatures and the respective CNT fits (obtained using the free energy values

for N < 200). The dashed vertical lines indicate the critical nucleus sizes for

the nucleation barriers simulated: N* = 3, 7, 16, 50 for T = 49 °C, 50 °C,
51 °C, 51.64 °C, respectively.
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This feature of the free-energy curves explains the final
assembly sizes observed in Figs. 6 and 7. The changing loca-
tion of this minimum also explains why a thermal cooling
ramp is needed for full assembly of the SST system.” At tem-
peratures where the nucleation barrier is large enough that a
separation of time scales emerges between nucleation (slow)
and further growth (fast), the final equilibrium structure is
smaller than the fully formed structure. At lower tempera-
tures, where a fully formed structure is thermodynamically
stable, the nucleation barrier is so small that nucleation will
be fast compared with growth, leading to many partially
formed structures and to monomer starvation if assembly
is conducted under isothermal conditions. Thus, an anneal-
ing process is needed that enables controlled nucleation and
growth toward near completion at high temperatures, fol-
lowed by the growth toward completion as the temperature is
decreased.

To characterize the assembly reaction pathways in more
detail, biased simulations were performed at several tempera-
tures to determine the free-energy landscape as a function of
the size (N) and connectivity (E) of an assembly, the latter
defined as the number of bonded domains in the structure. In
the calculations, we used the size of the assembly (V) and the
connectivity (E) as the biasing parameters (see Sec. I C). As
can be seen in Fig. 10, for a fixed size, higher connectivity is
generally favoured, as this means a more favourable enthalpy.
But entropy also plays a role and disfavours structures with
full connectivity, so the most likely connectivity typically lies
just below the maximum. In Fig. 11, we illustrate this entropic
effect for the N = 16 critical nucleus size at 7 = 51 °C and
for the N* = 50 critical nucleus size at the critical temperature
(T. =51.64 °C) in Fig. S.IV of the supplementary material.
This entropic effect is increasingly relevant for larger nuclei
because the number of possible alternative structures with
connectivity just below that of the maximum increases with
size.

60
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— 40
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Free energy/kT

20

Nucleus Size (N)

FIG. 10. Free-energy landscape for assembly, as a function of the size (V) and
number of bonded domains (E) between tiles, at 7 = 51 °C. The bubbles show
typical examples of assembly states representative of the respective macrostate
(N, E). The critical nucleus size at T = 51 °C is N = 16 (dashed vertical line).
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FIG. 11. Probability of a nucleus as a function of the number of bonded
domains (E) between tiles for structures with N = 16 components (critical
size at T =51 °C). Above the curve are depicted examples of assembly states,
representative of states (N = 16, F) with different connectivities.

For example, if we look closely at the free-energy profiles
in Fig. 9, we see some small features at small nucleus size with
nuclei with 4, 6, and 9 strands showing deviations to lower free
energy but with the curves quickly becoming smooth beyond
this point. These sizes correspond to complete 2 X 2, 2 X 3,
and 3 X 3 rthomboids. For example, as illustrated in Fig. 12,
the extra stability of the N = 6 cluster is because the last strand
that binds to form this cluster gains two binding domains in
contrast to the previous or next strand to add to the growing
assembly, which can only bind with one domain.

In summary, these results show that, for all but the smallest
nuclei, the most likely assembly pathways are through a set of
highly connected structures with a near rhomboidal shape, but
which are not the most connected structures.

This behaviour contrasts with previous theoretical work,?*
using a more coarse-grained approach where it was found that
maximally connected structures have the lowest free energy
and are the most likely to be formed and where the free-
energy profiles show much stronger features associated with
sizes where cycles of connections can be completed that per-
sist to significantly larger sizes. The reason for these dif-
ferences with the current work is the comparative size of
the free-energy barriers associated with initiating the sec-
ond and subsequent domains. In the previous patchy parti-
cle models, these barriers are significantly lower, leading to
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FIG. 12. Cooperative growth of a closed motif. Closed motifs are structures
where each tile is connected with the remaining through at least two binding
domains, and the binding sites at the interface have a single domain available
for binding. In order for a closed motif to grow, one tile first needs to bind
through a single binding domain (i) that creates one binding site with two
domains available for binding [(ii)—dark gray] and that have a chance of being
occupied if a second tile further associates, with extra stabilization effect (iii).
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a greater stabilization for those strands that bind with two
domains and hence to a stronger preference for both nuclei
that are fully connected and sizes for which compact, “closed”
motifs are possible. By contrast, when the full entropic cost
of initiating the second and subsequent domains is properly
accounted for, as we do here, the free-energetic advantage of
strands that can bind with multiple domains is significantly
diminished.

We next consider whether the main features of the nucle-
ation barrier can be captured by classical nucleation theory
(CNT) which models the competition between the addition of
monomers, which lowers the free energy and the formation of
a surface (or line in 2D), and which costs free energy. For a
circular structure free of anisotropies, this leads to a simple
expression

AG(N) = —|Au|N + AN'2, )

where N is the number of monomers forming the structure,
Apu < 01is the chemical potential difference between monomers
forming the structure and monomers in the reservoir, and
A = 2n1/2p;1/2/l, where A is the line tension and py is the
number density of monomers forming the structure.

To estimate the number density of monomers, we sim-
ulate a fully assembled structure (Fig. 1) using molecular
dynamics simulations with 0oxDNA2,?’ an extension of the
original oxDNA model that allows for a better description of
the structural properties of large (kilobase-pair) DNA nanos-
tructures. The simulations were performed at 7 = 25 °C, and
after a period of equilibration, we measured the average dis-
tance between the centres of mass of contiguous tiles. We
then estimate the area occupied by each tile by assuming
that contiguous tiles can be considered to be contained in the
same plane. Using this method, we obtain the value p; = 5.82
x 10'® m=2 for the surface density of monomers.

We use the CNT expression to fit our free-energy curves
for assemblies with up to 200 monomers; we exclude larger
sizes as CNT is not able to capture the entropic effects that lead
to a minimum in the free energy near to the fully assembled
state. Note also that in order for the CNT fit to coincide with
our free-energy curves at N = 1 [where we defined G(1) =0
for all temperatures], we use the fitting variable N’ =N + 1 in
Eq. (9).

In Fig. 9, we show that the nucleation barrier for several
temperatures is fit well by the classical CNT expression with
the values of the parameters |[Aul and A given in Table I. Of
course, this simple expression will not capture the size-specific
features observed for very small nuclei, and the minimum at
larger sizes, but it is nevertheless remarkable how well it fits
the overall curve. As is found for many other systems, the
surface (line) tension does not change much with temperature.

TABLE I. CNT fit parameters.

T (°C) BlAul A (pN)
49 1.26 1.42
50 0.99 1.61
51 0.67 1.51
51.64 (Te) 0.36 1.58
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Instead, the rapid drop in the barrier height with temperature
is mainly caused by the rapid change in SA .

Although experimental measurements on the line tension
of DNA assemblies have not to our knowledge been made,
it is interesting that predictions are fairly similar to typical
experimental measurements on various lipid bilayers which
range from A = 1 pN°7 to A = 4 pN®, as well as predictions
using Monte Carlo simulations for a coarse grained lipid model
(1=3+2pN¥»).

IV. CONCLUSIONS

In this work, we develop a two-step coarse-graining
approach that uses extensive thermodynamic calculations with
a nucleotide-level model of DNA, to parametrize a coarser
kinetic model that is able to reach the time and length scales
needed to describe explicitly the self-assembly of a two-
dimensional 334-strand SST structure first produced exper-
imentally by the Yin group.® The resulting kinetic model
provides a detailed description of the assembly trajectories,
and without using adjustable parameters, it predicts a transition
temperature which is consistent with previous experimental
observations. The model used to calculate the thermodynamics
of tile association, oxDNA, describes explicitly the polymeric
degrees of freedom of DNA, which makes it more suitable
to capture the entropic penalties associated with initiation of
second and subsequent domains during tile association than
previous patchy-particles models.?’>!

For the SST system, we show that there exists a narrow
temperature regime where the nucleation barrier is low enough
to be crossable on experimental time scales, but large enough to
allow a time-scale separation between growth and nucleation.
Atthe same time, the exponentially large design space for DNA
means that misbonds do not overwhelm correct assembly at
experimentally relevant temperatures.

We find that the critical nuclei are made up of an ensem-
ble of structures that are highly, but typically not maximally,
connected. The nucleation barrier near the temperature where
assembly first occurs is surprisingly well described by CNT,
with the fits providing reasonable estimates for the surface
(line) tension and chemical potential difference. At lower tem-
peratures and for smaller nuclei, the full model exhibits a
structure due to cooperative effects not included in CNT. In
contrast to systems with only a few components, the only
way to achieve a full assembly is to use a cooling proto-
col, where the system first crosses the nucleation barrier to
a partially formed assembly, and further cooling stabilizes
the full assembly. While our calculations are quantitative for
a specific 334 strand SST system, a number of the basic
qualitative results above are also found with simpler mod-
els’*> and are likely to generically hold for a wider range
of target structures®~'# that use the addressable SST assembly
method.

There are a number of possible extensions of our cal-
culations. A particular important direction will be to perform
simulations in an NVT ensemble which would allow for a more
careful comparison to collective properties (such as yield) that
are measured in experiments, in particular, the role of monomer
starvation in reducing the yield at higher cooling rates could
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be quantitatively elucidated. Extending our kinetic model to
consider this situation is in principle straightforward. Future
tests to our approach may include a careful compassion
between the distribution of structure sizes observed in the
experimental samples and that predicted by the kinetic model
for a similar background concentration of monomers.

Making different shapes, as done in Ref. 6 by leaving out
certain tiles, would also be straightforward to investigate, and it
would be interesting to see how the nucleation pathway might
change for a more complex shape. Extending the method to
consider SST structures in 3 dimensions is also feasible but
would of course require the detailed thermodynamics of the
different local environments relevant to this new geometry to
be characterized.

In this paper, we used an average-base model that enables
us to look at the generic behaviour of these SST systems. How-
ever, it should be relatively uncomplicated to extend the model
to investigate a specific set of sequences by using the NN model
to estimate how the relevant AG™® would differ from that calcu-
lated for the average-base model. The model could then be used
to study how sequence might affect the nucleation pathway—
one might imagine that nucleation is more likely to occur in
regions with higher GC content—and how it could be used to
optimize the assembly of particular structures.

Our methodology, where 0xDNA is used to parameterize
the rates for a limited set of geometries, which are then fed
into a KMC scheme, can also be extended to other DNA tile
systems such as 2D double-crossover tiles®” which are widely
used for studying molecular computation.

Finally, we point out that our modeling approach is
based upon the assumption that interactions relevant for tile-
incorporation are typically local and to a good approximation
only involve components in the local neighbourhood of the
binding site; as a consequence, our modeling strategy may
not be adequate to address self-assembling systems where
relevant interactions are typically long ranged. In particular,
the description of DNA origami, in which strand incorpora-
tion typically involves bringing into close proximity distant
sections of the circular scaffold strand (and is further compli-
cated by other strands already incorporated in the structure*?),
is at present beyond the scope of our multi-scale modeling
approach.

SUPPLEMENTARY MATERIAL

See supplementary material for further details on the sim-
ulations performed with oxDNA (Secs. S.I and S.II), misbond
formation calculations (Secs. S.III and S.V), the structure of
the critical nucleus at 7. = 51.64 °C (Sec. S.IV), the full set of
32 local geometries and respective free energy profiles (Sec.
S.VI), an example of a bridging tile (Sec. S.VII), the tests per-
formed to gauge the effect of detailed balance deviations (Secs.
S.VIII and S.IX), and additional details on the experimental
system considered to parametrize k? (Sec. S.X).
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