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Abstract

Interest in underwater wireless sensor networks (UWSNs) based on acoustic communication has rapidly grown over the
last decade. In this field, the design of energy-efficient communication protocols is a crucial task as battery replacement
may be unfeasible in practical scenarios. While routing protocols play a pivotal role in determining the efficiency of
UWSNs, only a few studies investigate analytical stochastic models for their quantitative analysis and optimization. In
this work, we consider a popular routing protocol for UWSNs, namely Depth Based Routing (DBR), and introduce a
stochastic model for numerically deriving important performance indices, like the end-to-end delay, the energy consump-
tion and the delivery probability, in terms of the configuration parameters. The model accounts for peculiar factors of
UWSNs, including the impact of node deployment and mobility, and the high transmission loss of the acoustic channel.
We present insights that are useful in setting DBR configuration parameters to optimize the trade-off between delivery
probability, energy consumption and end-to-end delay.
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1. Introduction

Over the last two decades, underwater applications like
seabed management, sea-mine detection, environmental
monitoring, etc. have motivated the adoption of Under-
water Wireless Sensor Networks (UWSNs) as a commu-
nication infrastructure. As a consequence, many research
effort has been devoted to study their performance and
derive guidelines for their design. In contrast to most ter-
restrial wireless networks, UWSNs widely adopt acoustic
communication as its intrinsic properties like low signal
interference and large transmission coverage make it suit-
able for the underwater environment. Like their terres-
trial counterparts, UWSNs adopt multi-hop routing pro-
tocols that aim at delivering the harvested data packets
to on-surface sink nodes. The design of these routing pro-
tocols must account for the energy consumption of the
network — battery replacement is considered unfeasible
or prohibitively expensive — as well as for common per-
formance indices like the expected end-to-end delay, the
packet delivery probability and the network throughput.

Among routing protocols for UWSNs, an important role
is played by localization-free protocols [1]. These assume
that nodes only know their depth (and potentially that
of their neighbours) when taking routing decisions. Such
protocols are mostly adopted for networks with high node
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mobility, channel fading etc. as they are capable of find-
ing new routes for each transmission. While such proto-
cols provide a high network resilience, this may come at
the expense of considerable energy consumption caused by
redundant packet transmissions and the hidden terminal
problem. Therefore, it is crucial that the parameters of
the protocol are configured to balance the various perfor-
mance indices. For a given cost, the optimal configuration
achieves the best trade-off between energy consumption,
mean end-to-end delay, throughput, delivery probability,
etc.

One of the most widely used localization-free routing
protocols is Depth Based Routing (DBR) [2]. DBR uses
the depth information of nodes to build a route from the
source sensor node to the on-surface sink. The nodes es-
timate their depth by on-board pressure sensors and add
this information to any packet they send out, such that all
receivers can calculate the depth difference between them-
selves and the transmitter. DBR adopts a receiver-based
forwarding scheme in which the potential forwarders are
chosen on the basis of the depth difference between the
sender and the receiver. In order to reduce redundant
transmissions, DBR introduces the concept of a packet
holding time, i.e., a time that a potential forwarder waits
before sending the packet. The holding time is inversely
proportional to the depth difference between sender and
receiver. For a given transmission range, this mechanism
enables the protocol to cover the longest distance towards
the surface at each forwarding step, as receivers further
away from the surface wait longer and then drop the packet
if they overhear the communication of the nodes closer to
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the surface. Fig. 1 illustrates the basic operation of DBR.
The optimal configuration of DBR depends on a set of
parameters, among which a pivotal importance is played
by the choice of the transmission power and the holding
time. Specifically, the transmission power determines the
distance over which the packet can be received correctly,
which in turn affects the number of hops needed to reach
the sink, the overall energy consumption, the packet deliv-
ery probability and the end-to-end delay. In general, there
is a trade-off between long and short distance transmis-
sions, i.e., too many hops to the destination lead to high
end-to-end delays while too few require a high transmis-
sion power that consumes the nodes’ batteries too fast.

In this paper, we study this trade-off by proposing and
analyzing a stochastic model for DBR. In particular, we
propose a numerically tractable stochastic model that can
accurately capture the dynamics of DBR. For this model,
we show that one can efficiently calculate the main perfor-
mance metrics including the mean end-to-end delay, the
delivery probability and the expected energy consumption.
In comparison to simulation, these performance measures
can be calculated much faster, which in turn allows for
speeding up the optimization procedure to find the opti-
mal configuration of the UWSN. With respect to previous
work that addresses the problem of assessing DBR perfor-
mance, this is the first analytical model taking into account
node deployment and mobility, as well as the the intrin-
sic properties of acoustic transmissions including the path
loss and the bit error rate. The model is validated by com-
paring its results with the estimates obtained by resorting
to stochastic simulations.

The remainder of this paper is structured as follows. In
Section 2 and 3, we relate the contribution of the present
paper to the literature by discussing related work and in-
troducing the motivation for the model at hand, respec-
tively. Section 4 then presents the stochastic model and
the numerical algorithm to efficiently calculate the key per-
formance measures of the model. In Section 5, we illustrate
our approach by some numerical examples before drawing
conclusions in Section 6.

2. Related work

In the last decade, the performance analysis of UWSNs
and their optimization and control have drawn the atten-
tion of many researchers (see, e.g., [3]), simulation rather
than analytical models being the primary tool to study
performance. In general, while simulation models can
be very accurate, obtaining performance metrics is of-
ten time consuming and their adoption for optimization
purposes can be very expensive. Among the analytical
models, Guan et al. [4] examine the spatial and temporal
uncertainty of the underwater acoustic channel and de-
velop a statistical model that is used to propose a novel
distributed MAC scheme with an optimized transmission
strategy. Pignieri et al. [5] propose an analytic model for
channels in underwater networks. In these papers, neither

the computation of the mean end-to-end delay and energy
consumption nor the impact of the routing protocols on
the networks performance is considered.

UWSNs are different in many aspects from their ter-
restrial counterparts. For example, energy consumption
is higher due to longer distances that need to be crossed
and due to complex signal processing (see, e.g., [6, 7, 8]
for some works that improve the energy consumption at
the physical and MAC layers). Since the communication
speed is equal to the speed of sound, the propagation de-
lay is also much higher than the speed in the terrestrial
networks. De Souze et al. [9] propose a model to ana-
lyze the energy consumption in multi-hop UWSNs. Some
works study stochastic scheduling of data transmissions
to deal with network latency while accounting for energy
consumption. Among these, Marinakis et al. [10] formulate
the channel access problem in terms of directed graphs and
provide a heuristic to obtain the minimum latency. How-
ever, the acoustic absorption (as in Thorp’s experimen-
tal formula [11]) and routing protocols in the computa-
tion of the transmission loss are abstracted out. Similarly,
Li et al. [12] develop a new routing protocol based on a
Markov model used to optimize the trade off between the
packet delivery probability and the energy consumption.
While the authors provide an energy-aware routing path
selection, the unreliability of the links and the impact of
node mobility on data transmissions are ignored. The opti-
mality of opportunistic protocols in UWSNs is considered
in [13].

In UWSNs, full localization schemes are difficult to im-
plement since nodes consume considerable energy to access
the localization services. Yu et al. [14] propose a Weighting
Depth and Forwarding Area Division DBR routing proto-
col which accounts for the depth difference of two hops:
not only the depth difference of the current hop but also
the depth difference of the next expected hop. It achieves
an improved packet delivery ratio as it tackles the issue
of coverage holes during transmission towards the sink.
More recent work from Rehman et al. [15] proposes an
energy efficient cooperative opportunistic routing proto-
col which improves the network lifetime by applying fuzzy
logic for relay node selection towards the network sink.
Chao et al. [16] minimize the expected number of trans-
missions for successful delivery of a packet to the sink. In
[17], the authors have proposed a novel routing scheme
Channel Aware routing protocol (CARP) in which reliable
communication between the hops is preferred on the basis
of the transmission history of the nodes. Shadow zones
in the network are also identified and network through-
put is increased. Xie et al. [18] propose a Segmented data
transport protocol (SDRT) which mainly employs block by
block packet transmission. They combine FEC and ARQ
to formulate their hybrid approach along with improving
the channel utilization. Some other works [19, 20] exploit
extra capabilities of a node, e.g., the ability to move au-
tonomously in order to minimize the energy consumption
in the deployed sensor network.
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3. Problem Motivation and contribution

In this paper, we consider the DBR scheme and intro-
duce a stochastic model to analyze its performance. In
contrast to previous work which relies on simulation, we
provide an algorithm to efficiently calculate various per-
formance indices, including the distribution of the number
of hops it takes to send from a point other than the bot-
tom of the network to a surface node, the level dependent
energy consumption and the mean end-to-end delay. As
the model accounts for the impact of node deployment and
the high transmission loss of the acoustic channel, it can be
used to understand the behaviour of DBR at the network
level.

Although many stochastic models have been proposed
and analyzed to study the characteristics of underwater
channels, only few results are available for studying and
optimizing routing protocols of UWSNs. We aim to fill this
gap by devising a probabilistic model to assess the perfor-
mance of DBR. Analytic models of UWSNs are important
tools that provide insight into the dynamic behavior of
the communication schemes at the physical, the MAC as
well as at higher network layers. The model proposed here
finds practical applications in designing a UWSN equipped
with DBR. It can support the roll-out of such a UWSN by
finding the optimal configuration parameters without re-
sorting to time-expensive simulation studies. Therefore,
we can summarize our contribution as follows:

• We propose a two-dimensional probabilistic model of
DBR which captures its key characteristics, including
transmission delays, the acoustic channel, node mo-
bility and holding times based on depth differences.

• We show that the key performance indices can be cal-
culated quickly. We devise computation schemes to
calculate the hop-distribution, the delivery probabil-
ity, the level-dependent energy consumption and the
end-to-end delay.

• By means of a numerical example, we discuss how
the network performance depends on environmental
characteristics like the node density and the overall
transmission loss, thereby showing that the model at
hand can support the design of UWSNs.

4. DBR and its Stochastic Model

In this section, we present DBR and introduce a stochas-
tic model to assess its performance.

4.1. Depth based routing
DBR [2] is a packet forwarding protocol for UWSNs

which uses depth information to relay information from
underwater sensors to data sinks at the surface. In DBR,
every node has a pressure sensor which enables the node to
estimate its depth while the nodes are in general unaware
of their exact 3D position.

Figure 1: Methodology of DBR

The key determinant which decides which node will for-
ward the information is the depth difference between the
sender and the receiving node. More precisely, when a
node transmits a packet, it includes its own depth informa-
tion in the header. Among the (possible multiple) nodes
that correctly receive the packet, the next forwarder is
decided by two mechanisms. First, a depth threshold is in-
stalled. This is the minimum depth difference that allows
a receiver node to become an eligible forwarder. Secondly,
with the aim of maximizing the distance covered by one
hop, a depth-difference dependent holding time is intro-
duced. That is, every packet to be forwarded is kept at the
receiver node for a time interval which decreases linearly
with the depth difference between the sender (as indicated
in the packet header) and itself. In this way, nodes closer
to the surface have shorter holding times and actually for-
ward the packet if they correctly receive the packet. Once a
node overhears a re-transmission of a packet that is stored
in its priority queue, it removes this packet and cancels its
holding time in order to prevent redundant transmissions.

In accordance with [2], the holding time DH for a certain
depth difference d can be expressed as follows,

DH (d) =
(2τ
δ

)
(Tr − d) ,

where Tr is the maximal transmission range of a node, τ is
the maximum propagation delay of one hop, i.e., τ = Tr/v0
where v0 denotes the sound propagation speed in water,
and δ is a scaling factor which is chosen in order to achieve
optimal performance of the network and to minimize the
hidden terminal problem. We choose δ = Tr/4 in the re-
mainder in accordance with literature [2].

4.2. Node location model

For the sake of readability, we present a model for DBR
in a two-dimensional environment. The extension to 3
dimensions is straightforward and summarized in section
4.7.
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Table 1: List of Notations used in the model
Notation Definition
U Total number of deployed nodes in the network
L Total number of depth levels in the network for a node
∆d Total depth of the network
∆w Total width of the network
M Number of horizontal positions on a particular level for a node
S Horizontal position of the source node at the bottom level of the network
T Horizontal position of the sink node at the top level of the network
(i, j) Location of a node with position j at level i in the network
bj Probability that the node occupies position j at a particular level in the network
di′ j′

i j Euclidean distance between nodes at locations (i, j) and (i′, j ′)
Tr Transmission Range of a node
N i j Set of nodes within the transmission range of node at (i, j)
pm (d) Probability that the packet is successfully delivered over distance d
Pi′ j′

i j Acceptance probability of a packet from location (i, j) to (i′, j ′)
hk (i, j) Probability that packet is accepted at (i, j) in k-hops
DP (i, j; i′, j ′) Propagation delay when the packet is sent from (i, j) to (i′, j ′)
DH (i, j; i′, j ′) Holding time when the packet is sent from (i, j) to (i′, j ′)
wk
i j Mean delay of k-hop communication to reach (i, j)

cki j (i
′, j ′) Mean energy consumption at position (i′, j ′) from (i, j) in k-hop communication

We consider an UWSN with U nodes. The target or sink
node is located at the surface level whereas the source node
is located at the bottom. While assuming fixed positions
for source and sink, we allow for movement of the nodes
that relay the information. In particular, we divide the
total depth difference ∆D between source and sink into
L + 1 depth levels, level 0 being the level of the source and
level L being the level of the sink. One node is present
at each depth level, we have U = L + 1, which randomly
moves in the horizontal direction.

The nodes can move, but remain at a fixed depth level.
To simplify the analysis, we divide the range ∆W in which
the nodes move horizontally into M slots with the same
length, and assume that the node is always located at one
of the M +1 slot boundaries (which we label from 0 to M).
The horizontal position of the node at each level is assumed
to be an independent random variable. Let bj denote the
probability that the node is in horizontal position j. We
here assume that the distribution of the horizontal position
of the node is independent of the level ( j ∈ {0,1, . . . ,M }).
In the remainder, the notation “node (i, j)” refers to the
node at level i and horizontal position j. For ease of refer-
ence, we enlist the major notations of the model in Table
1.

4.3. Delivery probability of a node

We consider the underwater acoustic channel that is
described in [21]. The path loss A(d, f ) of the acoustic
channel over a Euclidean distance d for a signal having
frequency f can be expressed as,

A(d, f ) = dsa( f )d .

The path loss A(d, f ) is expressed in decibels referenced
to 1 micro-Pascal (dB re 1 µPa) where d is expressed in
km and f in kHz [22]. The spreading factor s describes
the geometry of the propagation; a spreading factor s = 2
corresponds to spherical spreading while a spreading factor
s = 1 corresponds to cylindrical spreading. Finally, the
absorption coefficient a( f ) depends on the frequency and
is expressed in dB/km using Thorp’s experimental formula,
see [11].

We can then express the average Signal-to-Noise ratio
(SNR) over the distance d in terms of the path loss,

Γ(d) =
eb

N0 A(d, f )
=

eb
N0 ds a( f )d

.

Here, eb and N0 are constants that represent the average
transmission energy per bit and noise power density of
the additive white Gaussian noise channel. We assume
binary phase shift keying modulation which is widely used
in acoustic modems [23]. In accordance with [24], the bit
error probability over distance d can then be expressed as,

qe (d) =
1
2
*.
,
1 −

√
Γ(d)

1 + Γ(d)
+/
-
.

For a data packet with m bits, the probability that the
packet is successfully delivered over a distance d therefore
equals,

pm (d) = (1 − qe (d))m .

For ease of notation, we introduce notation for the Eu-
clidean distance between nodes. Let di′ j′

i j represent the
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distance between nodes (i, j) and (i′, j ′),

di′ j′

i j =

√(
∆D

L

)2

(i − i′)2 +
(
∆W

M

)2

( j − j ′)2 .

In addition, let N i j = {(i′, j ′) : di′ j′

i j ≤ Tr } be the set of
nodes within transmission range of node (i, j).

In DBR, a packet is accepted by a node at position (i′, j ′)
if (i) node (i′, j ′) is in the transmission range of the sender
node (i, j), (ii) node (i′, j ′) successfully receives the packet
and (iii) all the nodes located in N i j that are above (i′, j ′)
do not accept the packet. Let Pi′ j′

i j denote the probability
that a data packet is successfully received at (i′, j ′) when
sent from (i, j), we then have,

Pi′ j′

i j = bj′ pm
(
di′ j′

i j

) L∏
`=i′+1

(1 −Q(`; i, j)) ,

for (i′, j ′) ∈ N i j and where Q(`; i, j) is the probability that
the packet is successfully delivered at level `,

Q(`; i, j) =
M∑
k=0

bk pm
(
d`k
i j

)
1{(`,k )∈N i j } .

Here 1{ · } denotes the indicator function which equals 1
if its argument is true, and 0 if its argument is false. In
other words, the sum above only includes nodes within the
transmission range of the node at position (i, j).

4.4. Analysis of k-hop communication
We now focus on the of number of hops needed for the

data to be successfully delivered from source to sink. We
first calculate the probability that any node in the net-
work accepts the data packet from the source in one hop.
Clearly nodes situated at an immediate upper level of the
source will have zero probability to receive the data in one
or more hops, as only direct communication is possible.
Let S be the horizontal position of the source at the bot-
tom level and T be the horizontal position of the sink at
the surface level of the network. Let hk (i, j) represent the
probability that the data is accepted by node (i, j) in k
hops. The one-hop probability can be written as,

h1(i, j) =
i−1∑
i′=1

M∑
j′=1

Pi j
i′ j′ Pi′ j′

0S .

Note that the terms in the sum are only non-zero for
(i′, j ′) ∈ N0S ∪ N i j .
Similarly, the delivery probability in two hops can be

written as:

h2(i, j) =
i−1∑
i′=1

M∑
j′=1

Pi j
i′ j′ h1(i′, j ′) ,

while the delivery probability of k hop communication can
be written by induction as,

hk (i, j) =
i−1∑
i′=1

M∑
j′=1

Pi j
i′ j′ hk−1(i′, j ′) .

Given the values hk (i, j), we can now easily express the
delivery probability at the sink. Indeed, the packet reaches
the sink if it is delivered in any number of hops,

h̄ =
L∑

k=0

hk (L,T ) .

For these calculations as well as for the delay and en-
ergy consumption calculations below, we implicitly make
the simplifying assumption that the position of the nodes
at the different levels is independent from hop to hop. This
is indeed an approximation: the acceptance at a certain
level depends on the position of the nodes at higher lev-
els, as it is more probable to accept at a level if nodes
at higher levels are at a larger horizontal distance from
the transmitter. While we retain the position of the node
that accepted the packet, we resample the positions of the
nodes at higher levels. We will verify by simulation that
this simplification does not void our results in section 5.

4.5. Computation of the mean end-to-end delay
The propagation speed of the acoustic signal in water

is v0 = 1500m/s which is much lower than that of terres-
trial radio-frequency based signals. Thus, the propagation
delay is significant in UWSN and can have a considerable
impact on the performance of the system. Apart from the
propagation delay, we also need to account for the effect
of holding times which depend on the depth difference be-
tween sending and receiving nodes. Let DP (i, j; i′, j ′) and
DH (i, j; i′, j ′) denote the propagation and holding time de-
lays when the packet is sent from (i, j) to (i′, j ′), then,

DP (i, j; i′, j ′) =
di′ j′

i j

v0
,

and,

DH (i, j; i′, j ′) =
2τ
δ

(
Tr −

∆D

L
(i′ − i)

)
,

for i′ > i and (i′, j ′) , (L,T ). Furthermore, DH (i, j; L,T ) =
0, as there is no holding time at the sink.

In order to find the mean delay, each possible path of
the network needs to be explored. To this end, let Wi, j

denote the waiting time for a packet to reach (i, j) and let
Hi, j denote the number of hops it takes. We now calculate
the mean delays wk

i j , given that it takes k hops to reach
(i, j),

wk
i j = E

[
Wi, j1{Hi, j=k }

]
.

We again use a recursive scheme, similar to that for the
delay calculations, for calculating the acceptance proba-
bility for the data packets in k hops. To start, we find the
delay for one hop communication,

w1
i j =

i−1∑
i′=1

M∑
j′=0

(
DH (0,S; i′, j ′) + DP (0,S; i′, j ′)

+ DH (i′, j ′; i, j) + DP (i, j; i′, j ′)
)

Pi′ j′

0S Pi j
i′ j′ .
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To calculate wk
i j for k > 1, we condition on the position of

the last hop. That is, to reach (i, j) in k hops, we need to
reach some (i′, j ′) in k − 1 hops, and then reach (i, j) by
direct communication. The waiting time is then the sum
of the waiting time to reach (i′, j ′) and the transmission
and holding times to reach (i, j) from (i′, j ′),

wk
i j =

i−1∑
i′=1

M∑
j′=0

(
wk−1
i′ j′ + DH (i′, j ′; i, j)hk−1(i′, j ′)

+ DP (i′, j ′; i, j)hk−1(i′, j ′)
)
Pi j
i′ j′ .

Finally, we can calculate the mean end-to-end waiting
time, conditional on the packet reaching the sink, by sum-
ming over the number of hops that it takes to reach (L,T ),
and by dividing by the probability that the packet reaches
the sink,

W̄ =
1
h̄

L∑
k=0

wk
LT .

4.6. Energy consumption
In order to study the expected energy consumption in

the network, we recursively calculate the energy consump-
tion for all node positions in the network to transmit to a
particular node in a fixed number of hops. More precisely,
let Ci j (i′, j ′) denote the energy consumption in position
(i′, j ′) for transmitting from the source to node (i, j) and
let Hi . j denote the number of hops to transmit to node
(i, j) as before, we then study the mean energy consump-
tion given the number of hops,

cki j (i
′, j ′) = E

[
Ci j (i′, j ′)1{Hi, j=k }

]
.

Note that cki j (i
′, j ′) = 0 for i ≤ i′ since nodes above (i, j)

cannot forward to (i, j).
To start with one hop communication, we have

c1
i j (i
′, j ′) = γ Pi j

i′ j′ Pi′ j′

0S .

Here γ denotes the amount of energy a single transmission
takes. That is, Ci j (i′, j ′) = γ if the single forwarding hop is
in position (i′, j ′) and Ci j (i′, j ′) = 0 if this is not the case.

We further calculate the values cki j (i
′, j ′) for k > 0 recur-

sively. There is energy consumption at position (i′, j ′) if it
is reached in k−1 hops, followed by direct communication,
or if (i′, j ′) is part of a (k −1)-hop path to some intermedi-
ate node (above level i′), from which (i, j) is reached. We
have,

cki j (i
′, j ′) = γ hk (i′, j ′) Pi j

i′ j′ +

i−1∑
`=i′+1

M∑
m=0

ck−1`m (i′, j ′) Pi j
`m

.

We can finally calculate the energy consumption at each
level in the network, by summing over the number of hops
to reach the destination, and by summing over the different
positions at the same level,

c(i) =
L∑

k=0

M∑
m=0

ckLT (i,m) .

4.7. Extension to 3 dimensions
We briefly discuss how the model can be extended to 3

dimensions (3D). We still consider an UWSN with L + 1
nodes with sink at the surface and source at the bottom.
While assuming fixed positions for source and sink, we al-
low for movement of the nodes that relay the information.
In particular, we divide the total depth difference ∆D be-
tween source and sink into L+1 depth levels, level 0 being
the level of the source and level L being the level of the
sink.

At each horizontal level, the node can be in M posi-
tions. As the horizontal level is a plane, there are e.g. M
positions on a square grid, or M discrete positions evenly
distributed on a disk. The distance calculations are the
key difference between the 2D and 3D model. For ease of
notation, we introduce a common coordinate system on all
levels, and let (x( j), y( j)) denote the (horizontal) coordi-
nates of position j. The distance between node j on level
i and node j ′ on level i′ can then be expressed as follows,

di′ j′

i j =

√(
∆D

L

)2

(i − i′)2 + (x( j) − x( j ′))2 + (y( j) − y( j ′))2 .

Given this modification of the distance calculations, the
remainder of the calculations remain valid. Note however
that the summations in sections 4.3 till 4.6 now run over
all positions in a horizontal plane.

5. Numerical Results

In this section, we numerically study different perfor-
mance measures of the model at hand. We assume that
the total depth of the network is ∆D = 500m with L = 50
depth levels. Note that there is only one sensor node at
each depth level meaning there are 50 nodes in the net-
work. We keep the values of the numerical parameters in
line with the values in [2]: we set s = 2, v0 = 1500m/s,
δ = Tr/4 and τ = Tr/v0. Finally, we assume data packets
of 50 bytes. These parameter values are used in all plots.

5.1. Delivery probabilities
We first investigate the delivery probabilities for direct

communication. The source is fixed at bottom level of
the network at horizontal position S. We assume that
each node can move horizontally to M = 50 locations over
a range of ∆W = 500m, each horizontal position being
equally likely. We further choose the transmission energy
such that eb/N0 = 57dB, and assume that the transmission
range is only bounded by transmission errors (Tr = ∞).

Fig. 2(a) shows the delivery probability by a direct
transmission from the source to a node at level 10 vs. the
horizontal position of this node for different source posi-
tions S as indicated. As expected, the maximal delivery
probability is obtained when source and destination are
aligned, as this corresponds to the shortest distance be-
tween these nodes.
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Figure 2: Delivery probability for direct transmission from source to sink (a) for different horizontal positions of the destination and (b) for
different levels of destination
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Figure 3: Delivery probability (a) for different total number of depth levels and (b) for different eb/N0
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Figure 4: Mean Delay (a) for different total number of depth levels and (b) for different eb/N0
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Figure 5: Total delivery probability and mean end-to-end delay

Fig. 2(b) shows the same delivery probability, but we
now fix the horizontal position of the destination node at
10 and vary its depth level. Again, different source posi-
tions S are assumed as indicated. There is an outspoken
optimal depth level: at first the delivery probability is
small as it is likely that the packet will be delivered to
higher nodes. The delivery probability therefore first in-
creases with the depth level. However, if the depth level
is already high, the chance to successfully transmit is low.
Hence, the delivery probability decreases with increasing
depth levels.

For the remaining plots, we assume that the node can
move into M = 15 slots spanning a range ∆W = 150m. We
set the transmission range to one-fifth of the total range of
the network i.e., Tr = ∆D/5 = 100m and fix the horizontal
position of the source and sink: S = T = 10.

We now focus on the number of hops needed for the data
to be delivered at the sink. Note that the number of hops
cannot exceed the number of depth levels as no downward
transmissions are allowed in DBR. Fig. 3(a) and Fig 3(b)
depict the probability mass function of the number of hops
needed to deliver the packet from source to sink. In 3(a),
we depict the probability mass function for networks with
different levels L. In 3(a), we depict the probability mass
function for different transmission powers eb/N0.

From the figures, we can observe that the delivery prob-
ability is zero for the first 4 hops which is not surprising
as the transmission range is 100m. Moreover, most of the
probability mass is between 5 and 9 hops, which is again
in line with the transmission range. Finally, it is seen that
end-to-end communication with fewer hops is more likely
if there are more nodes (i.e., by increasing L, see Fig. 3(a)),
or if the transmission power increases (see Fig. 3(b)).

5.2. Mean end-to-end delay

Fig. 4 depicts the mean delay conditioned on the number
of hops required for the data to reach the sink. Figure

4(a) fixes eb/N0 to 57dB and shows the mean delay for
different numbers of depth levels L between the source and
the sink. On the other hand Fig. 4(b) fixes the number of
depth levels to L = 50 and varies the transmission power
as indicated. It is readily seen that the the conditional
end-to-end delay grows almost linearly with the number of
hops, and is largely insensitive to changes in transmission
power and the number of depth levels. This is not entirely
unexpected as the end-to-end delay is largely dominated
by the holding times at the nodes.

In Fig. 5, we depict the delivery probability at the sink
and the corresponding mean end-to-end delay (conditional
on the packet reaching the sink). We again set the total
depth to ∆D = 500m and vary the number of depth levels.
As we fix the total depth, increasing the number of levels
means that the depth difference between adjacent levels
decreases. Fig. 5(a) depicts the delivery probability at the
sink vs. the number of depth levels for different eb/N0 as
indicated. It can be seen from the figure that the total
delivery probability in general increases when the number
of depth levels increases. This is expected as we add ad-
ditional sensors, making it less likely that the packet is
lost. The curve is not monotone increasing though, which
can be explained by the interplay between the depth levels
and the fixed transmission range Tr . Fig. 5(b) shows that
the mean end-to-end delay decreases when the number of
depth levels increases. Moreover, while the delivery prob-
ability increases with eb/N0, it has the opposite effect on
the mean end-to-end delay.

In Fig. 6(a), we study the effect of the scaling parame-
ter δ on the mean delay. The parameter δ is key for the
holding times. Larger δ implies shorter holding times at
each intermediate node and thus reduces the mean delay.
Fig. 6(a) depicts the mean end-to-end delay, conditional
on the number of hops. As previously noted, the end-to-
end delay grows approximately linearly with the number
of hops. It can now clearly be seen that the slope of the
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Figure 6: Mean Delay and Energy consumption
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Figure 7: Comparison of stochastic model and Monte-Carlo simulation for hops distribution and Mean delay
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Figure 8: Comparison of stochastic model and Monte-Carlo simulation for Total delivery probability and Mean end-to-end delay
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conditional end-to-end delay depends on δ.

5.3. Energy consumption
Finally, Fig. 6(b) depicts the energy consumption at the

different depth levels of the network. We assume that the
amount of energy for one transmission is γ = 1, such that
the plot depicts the mean number of times the nodes at
each level participate in the transmission. Ideally, one aims
for uniform energy expenditure such that the life time of
all nodes is approximately equal. It is however clear from
the figure that the energy consumption at levels close to
both source and sink is higher, compared to the energy
consumption by nodes in the middle of the network. This
suggests that it is beneficial to increase the density of the
nodes near sink and source.

5.4. Model validation by simulation
We now evaluate the performance of the model through

simulations and compare its time complexity with the
stochastic model.

Recall that the analytical model made the following sim-
plifying assumption. The position of the nodes above a
transmitting node, is assumed independent of their po-
sitions during preceding transmissions. In reality, these
positions may largely remain the same, and therefore we
need to verify that this assumption does not compromise
the accuracy of our results. To this end, we compare our
results with results obtained by Monte Carlo simulation,
where it is assumed that the positions of the nodes do
not change throughout the multi-hop transmission of the
packet.

In particular, the details of the simulation study are as
follows. We consider K replications of a multi-hop trans-
mission from source to sink. For each replication, we first
randomly draw the positions of the nodes at all levels. We
then calculate the performance measures using the analyt-
ical model of section 4, for the given fixed node positions.
As the positions of the nodes are fixed, the calculations of
section 4 are exact. Each replication yielding values for
the various performance measures, we finally calculate the
sample averages, and corresponding confidence intervals
for these performance measures.

Analytic and simulation results are numerically com-
pared in Figs. 7 and 8. We keep the same size of the
network: a depth of 500 m and a width of 150 m. The
number of available positions that a node can take at a
particular depth level are fixed to M = 15 in accordance
with the stochastic model. We sample K = 1000 times,
which is sufficient to obtain a confidence 95% confidence
interval of ±0.5% the sample mean. Although the source
and sink can be randomly located at bottom and surface
level of the network respectively, we place them both at a
position 10 for consistency in the experiment. All the other
network parameters are similar to those in the stochastic
model.

Fig. 7(a) depicts the comparison of the number of hops
distribution where Fig. 7(b) shows the comparison of the

mean delay for different number of deployed nodes in the
network. Furthermore, fig. 8(a) depicts the the total de-
livery probability and fig. 8(b) shows the mean end-to-end
delay for both models. It can be seen from the figure that
the difference between the results obtained by simulation
and analytically is negligible.

To compare the efficiency of the analytical model and
the simulation model, we compare their time complexity.
For the stochastic model, most of the time is spent on the
calculation of the delivery probability and hops distribu-
tions. In the worst case scenario, the time complexity of
the stochastic model is O(L3M2), where L is the number
of depth levels in the network and M is the number of
positions that a node can take horizontally. For the sim-
ulation study, we only sample the positions of the nodes,
and then calculate the performance measures by the ana-
lytic approach to reduce the variance of the Monte-Carlo
simulation. This technique is referred to as variance reduc-
tion by conditioning, see e.g. [25]. Hence, the time com-
plexity of a single iteration is O(L3), which corresponds
to the complexity of the stochastic model with M = 1 (as
the nodes are at a fixed position in each iteration). For
moderate M, the number of samples K that are needed
in the Monte Carlo simulations considerably exceeds M2,
which implies that the stochastic model can calculate the
various performance measures faster, even after applying
the variance reduction technique (which also relies on the
model).

6. Conclusion

In this paper, we have proposed a numerically tractable
stochastic model for the performance evaluation of DBR.
Specifically, we have considered four performance metrics:
the hop-distribution, the packet delivery probability, the
expected energy consumption and the expected end-to-end
delay. The model has been validated by comparing the av-
erage performance indices obtained by its analysis with the
estimates obtained by a stochastic simulation. By a nu-
merical example, we have illustrated that our model can
be used to assess the impact of various network configu-
ration parameters (e.g., the transmission power and the
scaling factor δ defined by DBR) on these indices. Our
analysis showed that the number of hops in the route can
dramatically affect the performance of the protocol. The
proposed model can be further used for optimization pur-
poses given the limited computational effort required, in
comparison to underwater sensor network simulations.
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