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Distance Measures for Portfolio Selection
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Abstract The classical Markowitz approach to the portfolio selection problem
(PSP) consists of selecting the portfolio that minimises the return variance for a
given level of expected return. By solving the problem for different values of this
expected return we obtain the Pareto efficient frontier, which is composed of non-
dominated portfolios. The final user has to discriminate amongst these points by
resorting to an external criterion in order to decide which portfolio to invest in. We
propose to define an external portfolio that corresponds to a desired criterion, and to
assess its distance from the Markowitz frontier in market allowing for short-sellings
or not. We show that this distance is able to give us useful information about out-of-
sample performances. The pursued objective is to provide an operational method
for discriminating amongst non-dominated portfolios considering the investors’
preferences.
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1 Introduction

A common assumption in financial theory is that the information contained in
historical prices can be used to assess the riskiness and expected return of assets:
for a given asset i, its expected return is noted by ri and is given by the expected
mean return E.Ri/; its risk is given by its return variance �2i . Given an universe
set U, a portfolio is described by a vector X, in which the ith element represents
the proportion of the total wealth invested in asset i (i D 1; : : : ; n). The covariance
between assets i and j is denoted as �ij D �i�j�ij where �ij is the Pearson correlation
coefficient; variance of portfolio p is expressed as �2p D Pn

iD1
Pn

jD1 �ijxixj. The
expected return is given by the weighted sum of asset returns rp D Pn

iD1 rixi.
The basic formulation by Markowitz consists of minimising return variance by

requesting that all capital has to be spent (
P

x1 D 1) and by imposing a lower bound
on the required level of return re (rp � re) (Markowitz 1952). This formulation is
solvable by standard Quadratic Programming solvers, and it is still referred to as the
most used active approach to Portfolio Selection (Mansini et al. 2001). Operational
constraints and preferences make this formulation more complex, resulting in a NP-
hard problem (Masini and Speranza 1999) for which standard exact approaches
cannot be used to find the optimal solution. Several approaches can be used to find
a satisfactory sub-optimal solution, and there exists a wide literature about solving
the problem via approximated methods. Anyhow, the Markowitz approach provides
us with a set of points, and decision makers have to choose amongst them by using
an external criteria (di Tollo and Roli 2008).

Several approaches have been proposed to choose amongst the Pareto set: for
example, a risk-free asset can be introduced, leading to an optimisation process
that provides us the tangency portfolio (Black 1972). In another approach, it is
possible to choose, out of the Efficient Frontier, the portfolio which maximise the
reward-to-volatility ratio, also referred to as Sharpe Ratio (Sharpe 1970). In our
work we want to discriminate amongst points over the Markowitz efficient frontier
by using the distance between the Pareto front and a portfolio that represents the
user’s preferences. Several criteria could be used to define this portfolio, and in
our work we are resorting to the Index Tracking portfolio: in this way we combine
the two paradigms of active and passive portfolio management to define an ordinal
multi-criteria preference system similar to the one proposed by Subbu et al. (2006),
and we define a quantitative framework to understand which portfolios belonging
to the Markowitz efficient frontier offer good performances out-of-sample. Our
experimental analysis is carried as follows:

1. We define distance measures in order to compute the distance of an arbitrary
portfolio from the Pareto frontier;

2. We determine a portfolio that meets the user preferences;
3. We find the Pareto portfolios belonging to the mean-variance frontier;
4. We compute distance of portfolio found at point (2) w.r.t. the frontier computed

at point (3);
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5. We perform a correlation analysis between these measures and the portfolio’s
performance measures in order to decide which metric would be helpful to select
a portfolio showing significant out-of-sample performances.

To this purpose we apply three distance measures (Lokketangen and Woodruff
2005):

– Manhattan Distance, given by the sum of asset weights differences between the
two portfolios;

– Euclidean Distance, given by the squared sum of asset weights squared differ-
ences between the two portfolios;

– Hamming Distance, defined by introducing a binary variable to state if an asset
is in the portfolio or not, and summing the absolute difference of these variables
between the two portfolios;

As for the criterion used at point (2), in this work we assume that the user want to
replicate the market behavior, hence minimising an error measure w.r.t. a financial
index. The resulting portfolio is referred to as Index Tracking Portfolio and is widely
used in the related literature (di Tollo and Maringer 2009). Please notice that our
approach is robust and that other preferences and objective functions can be used
and will be investigated in further works. Furthermore, please notice that we are
not tackling a multi-objective Portfolio Selection that combines measures defined
at points (2) and (3) as made by di Tollo et al. (2014), nor we want to provide an
extensive comparison amongst solving algorithms.

In order to find portfolios at points (2) and (3), we use metaheuristics, which are
general optimisation methods that can be used with arbitrary objective functions,
that are easy to implement and that are able to find good sub-optimal solutions in
reasonable amount of time. Furthermore,we are considering two different scenarios:
the first is a market in which short-selling are allowed, and the latter in which there is
a short-selling prohibition. Comparing the two cases is of practical relevance since
short-sellings are not allowed in some countries and for some assets.

This chapter is organised as follows: the main approaches for portfolio selection
will be outlined in Sect. 2, and the distance measures used in our approach will be
outlined in Sect. 3. Metaheuristics will be introduced in Sect. 4 while Sect. 5 will
detail the experimental phase. Section 6 concludes the chapter.

2 Portfolio Strategies

A common classification made by financial literature distinguish portfolio man-
agement strategies in active and passive strategies: an investor following an active
strategy defines his/her own market expectations for the future; on the contrary, a
passive management strategy aims to mimic the behavior of a given market index
(or benchmark). The Markowitz model is the main specimen of active strategies;
Index Tracking is an example of passive strategies. In this work we are combining
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those two approaches, and in what follows we are outlining the main features of
both.

2.1 The Markowitz Model and Its Extensions

Let assume normal return distribution, infinitely divisible assets, no taxes, no
transaction costs and short-selling prohibition: the Markowitz model can formulated
as:

min
nX

iD1

nX

jD1
�ijxixj; (1)

subject to

nX

iD1
D rixi � re (2)

nX

iD1
xi D 1 (3)

xi � 0 i D 1; : : : ; n: (4)

By solving the problem for a set of values of re it is possible to identify the
non-dominated portfolios belonging to the efficient frontier, i.e., the Pareto-optimal
portfolios that minimise risk for given levels of expected returns. Please notice that
in this formulation an investor may only operate with long position, hence a basic
extension of this model is possible by allowing negative xi values, i.e., by allowing
short selling transactions. In this case the constraint (4) is replaced by the following:

xi 2 R (5)

and the resulting model is referred to as the Black model (Black 1972).
A further extension, proposed by Black himself, involves the introduction of an

nC1 risk-free asset for which short selling operations are not allowed. Furthermore,
in some countries additional constraints are imposed on short-selling: for instance
in the U.S. the Regulation T imposes margin requirements (collateral) to cover
potential losses resulting from price movements (Jacobs et al. 2005). More in detail,
assuming the collateral is a risk-free asset n C 1, the proportion of money invested
in it must be no less than a proportion � of the overall sum of the short positions,
i.e.:

xnC1 D �� �
nX

iD1
minf0; xig: (6)



Distance Measures for Portfolio Selection 117

Regulation T also imposes a limit in the total (short and long) exposure:

nX

iD1
jxij � 2: (7)

Moreover, the borrower may require a rebate of the interest earned on the
proceeds gained from borrowing and selling stocks over the market (short-rebate
h) (Jacobs et al. 2006). Taking into account the above mentioned aspects, the return
of a long-short portfolio might be defined as

rp D
nX

iD1
.ri � hi � rc/xi (8)

with,

hi D 0 if x > 0; 0 � hi � 1 otherwise (9)

where c is the amount of money invested in cash-equivalent instruments. The
resulting PSP can be expressed as follows:

min
nX

iD1

nX

jD1
�ijxixj; (10)

nX

iD1
.ri � hi � rc/xi � re (11)

nX

iD1
jxij D 1 (12)

� 1 � xi � 1 i D 1; : : : ; n (13)

nX

iD1
jxij � 2 (14)

xnC1 D �� �
nX

iD1
minf0; xig (15)

hi D 0 if x > 0; 0 � hi � 1 otherwise (16)

Please notice that although several models have been proposed for dealing with short
selling issues, the different regulatory practices hinder them to provide a unique
modelling framework, hence imposing the need of general strategies that are robust
to different objective functions and constraints.
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2.2 The Index Tracking Model

Differently fromMarkowitz, index tracking strategies aim to replicate the returns of
a given market index over time without requiring a perfect match to the index (full
replication): hence, they are a specimen of passive portfolio strategies. Index Track-
ing does not require any assumption about future asset returns, therefore it requires
less implementation effort than an active portfolio strategy such as Markowitz. In its
basic formulation, the index tracking problem consists in minimising over time the
tracking error, defined as the return difference between the managed portfolio and
the market index. As for the constraints, the same used in the Markowitz may still be
used. Avoiding full replication makes the index less closely tracked, but resulting in
a more efficient portfolio w.r.t. costs of construction, maintenance and management
of the portfolio.

Let ri;t be the return of asset i at time t, rI;t the return of index I at time t and
xi;t the quantity of asset i held at time t. As already stated, in the Index Tracking
problem the objective is to find a portfolio that reproduces a pre-specified index I
over a given time horizon. Thus, given the return of portfolio P, rP;t D Pn

iD1 ri;txi;t,
this means that rP;t should be as close as possible to rI;t over a pre-specified period
of time. This can be expressed by several objective functions. In the most common
Tracking Error (TE) formulation the variance (VAR) of the difference between the
tracking portfolio and the index return is used as a measure of deviation (Lobo et al.
2000; Roll 1992; Toy and Zurack 1989; Dahl et al. 1993; Franks 1992):

TE D VAR.rp;t � rI;t/ (17)

Other measures take into consideration the magnitude deviations from the index
over a period of length T, such as:

TE D .
PT

tD1 jrp;t � rI;tj˛/1=˛
T

(18)

or, as in Maringer and Oyewumi (2007)

TE D
 PT

tD1 jrp;t � rI;tj˛
T

!1=˛
(19)

Clearly, varying the value assigned to the parameter ˛ can lead to different optimal
results since tracking portfolios for a given ˛ value could not be optimal also for
another.

Nevertheless, in the TE problem one might want to penalize only negative
deviations (downside) from the index while considering desirable the positive ones
(upside). This point can be easily formalized if one seeks to maximize the portfolio
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return above the index return (excess return), i.e.:

rexcess D
TX

tD1

rp;t � rI;t
T

(20)

Actually, this measure has been mentioned, but not applied, by Beasley et al. (2003)
and Gilli and Këllezi (2002).

There are basically two different approaches to overcome the issue of sym-
metrically penalize downside and upside deviations: one is to consider only those
times t over which the portfolio underperform the index, while the other consists in
penalizing negative deviations in the objective function. The first approach has been
proposed by Rudolf et al. (1999) where two risk measures are introduced, i.e., the
Mean Absolute Deviation (which corresponds to Eq. (19) for ˛=1) and a Min-Max
criterion for which the maximum deviation between portfolio and index over the
observation period is minimized.

In the second approach (Maringer 2008), a risk aversion coefficient is introduced
following the more conventional purpose of maximizing the investor’s utility
objective function. If � represents the loss aversion parameter, the IT problem is
formulated as follows:

TE D
�P

t.�rt/2

T

�1=2
(21)

�rt D
�
rp � rI if rp � rI
.rp � rI/ � � if rp < rI

(22)

If both downside risk and upside excess return are merged into a single objective
function, the optimization problem turns out to be:

min	TE � .1 � 	/rexcess 0 � 	 � 1 (23)

For a more detailed review of the topic we refer the reader to di Tollo and Maringer
(2009).

3 Distance Measures: Markowitz and Index Tracking

The main idea behind this work is to study the distance between Mean Variance
portfolios and Index Tracking ones, leading to a multi-criteria formulation that
combines active and passive strategies. Some attempts to combine these two
paradigms have been proposed in portfolio literature: for example multi-objective
optimization problems with and index tracking approach has been introduced by
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Steuer et al. (2005) and solved along with Sharpe Ratio maximisation (Roll 1992)
as well as with downside risk (Yu et al. 2006).

Other multi-objective approaches have been suggested by Jorion (2003), and di
Tollo et al. (2014) define a multi-objective framework in which the three measures
to be optimised are risk, variance and tracking error. All these approaches employ
a multi-objective formulation of the problem. Our idea instead is first to solve
separately the different optimisation problems coming from the two approaches,
and then combining them in a multi-criteria approach able to express the user’s
preferences: first we determine the index tracking portfolio; then, we compute
the efficient mean-variance frontier. Afterwards, for each point belonging to the
mean-variance frontier we compute three distance measures w.r.t. the index tracking
portfolio, and eventually we study the correlation between those measures and the
out-of-sample performances (i.e., we are not using the aforementioned distance
measures as objectives).

Let the Mean Variance Portfolio be a vector MV D .mv1 : : :mvn/, where mvi is
the fraction invested in the ith asset. Let the Index Tracking Portfolio be the vector
IT D .it1 : : : itn/. We define the following distance measures:

– Manhattan Distance MD D Pn
i jMVi � ITij;

– Euclidean Distance ED D p
.
Pn

i .MVi � ITi/2/;
– Hamming Distance HD D jPn

i .ziti � zmvi/j, where ziti D ceil.iti/ and zmvi D
ceil.mvi/;

defined in order to determine if a solution belongs or not to an admissible set of
an investors’ portfolio preferences (Lokketangen and Woodruff 2005). We remark
that, in terms of Mean Variance analysis, the Index Tracking portfolio is always
inefficient, since it has highest variance than the point on theMean Variance with the
same return. Nevertheless, it has good formal properties, and there is evidence that
it performs well in terms of out-of-sample analysis. Also Mean Variance portfolios
perform well out-of-sample, hence an approach that combines both approaches is
desirable.

4 Metaheuristics

When solving an optimisation problem we may either use an exact or an approxi-
mated approach, the choice depending on the complexity and on the dimension of
the problem, and on the desired target that one wants to achieve. Exact methods
generally adopt a deterministic approach which guarantee the user to find the
optimum of a problem, with proof of optimality. Examples of these approaches are:
linear programming (Milano and Trick 2004), mixed integer-linear programming
(Benati and Rizzi 2007), dynamic programming (Li and Ng 2000) and others.

Unfortunately, conventional optimization algorithms are not efficient when we
attempt to cope with complex real world problems, which are generally NP-Hard
and whose exact solution would require an unbearable computational time. In these



Distance Measures for Portfolio Selection 121

cases, one has to resort to heuristic procedures which produce a good solutions in
reasonable amount of computational time, but without proofing the optimal quality
of their solution.

A generalisation of heuristics is the concept of metaheuristics (Blum and Roli
2003), that embed basic heuristic methods in a higher level framework in order to
efficiently and effectively exploring a search space. They can be defined as high-
level strategies that coordinate the action of subordinated heuristics in order to find
solution(s) for the problem. They are not problem-specific, hence they can be used in
a variety of problems and formulations, such as, e.g., the problem at hand, in which
we have used a metaheuristic approach, namely Threshold Acceptance (Gilli and
Këllezi 2002) to find the Mean Variance efficient frontier and the Index Tracking
Portfolio.

Threshold accepting is a metaheuristic in which degrading moves can be
accepted if the cost difference between current and new solution is within a given
threshold, whose value is decreased to zero over the different epochs. In order to
apply this metaheuristic to the problem at hand, we have defined its local-search
components as follows:

– Search Space The search space is composed by all portfolios whose asset values
belong to the closed interval Œ0; 1
 and sum to one. We do not consider other
constraints since our objective is to study the interaction of the diverse objective
functions rather than to test how different constraints can have an impact on the
optimization process. Anyhow, our approach is robust to take into account further
constraints.

– Neighborhood relationsA fraction (step) of the asset is transferred from asset a
to asset b. If asset b is not hold, then it is included in the portfolio. When an asset
exhibits negative sign, then a zero value is given and other values are normalised
accordingly. If there is an attempt to decrease the share of an asset being set to
zero, the asset is deleted and other assets are normalised accordingly. The asset
whose share is to be increased must be chosen so that xiC step � 1; if there is no
asset that satisfy this constraint, step value is modified accordingly.

– Initial solution The starting solution is created randomly in order to satisfy all
constraints in the formulation;

– Cost Function For Markowitz portfolios we use a penalty approach (Corazza
et al. 2012) in which the cost function is given by the sum of the portfolio
variance (risk) and the degree of violation of the return constraint; for Index
Tracking portfolios we do not add any penalty to the objective function, which is
the tracking error defined as (19);

– Local Search Strategies Threshold Accepting algorithm was implemented with
the following settings: Iterations D 10,000, Restart D 20, Epochs D 5. These
parameters have been estimated by F-Race (Birattari et al. 2010).
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5 Experimental Analysis

In this section, we introduce a methodology for finding (or testing) mean-variance
efficient points that are close enough to other pre-specified investment criteria
and constraints. In particular, after having determined Markowitz mean-variance
portfolios, we determine the portfolio that meets the investor requirement best, we
compute the distance of this portfolio from mean-variance ones, and we use this
information to select the portfolio to invest in. This approach leads to a multi-criteria
decision-making problem.

As for the portfolio that meets the investor requirements, we assume that
the investor wants to follow as close as possible the market, hence we use the
Index Tracking Portfolio. We have used metaheuristics to find both mean-variance
portfolios and index tracking portfolio. Please notice that metaheuristics may be
used in order to find portfolio which are optimal w.r.t. any other user’s requirements.
Further works will be devoted to use other objective functions and preferences.

After having determined the points, we compute distances between each
Markowitz portfolio and the Index Tracking portfolios. To this aim we have used
the three distance measures defined in Sect. 3. Eventually we investigate the out-of-
sample correlation between the computed distance measures and the mean-variance
portfolio performances.

Threshold accepting has been implemented inMatlab. As for the Mean-Variance
Portfolios, TA has been able to find portfolios that are comparable to the global
optimum found by MOSEK (http://docs.mosek.com/7.0/toolbox/) for all instances
taken into account, but with lower computational time.

We have performed our experiments on three benchmarks from the repository
ORlib,1 that includes 290 weekly quotations of the following market indexes:
Hang Seng (containing 31 assets), Dax100 (containing 85 assets), and FTSE100
(containing 89 assets). For each instance the Unconstrained Efficient Frontier (UEF)
has been derived using 50 equally distanced values for the expected return re. Prices
contained in the four benchmarks have been converted into return by using the
logarithmic formula: ri;t D ln Si;tC1

Si;t
, where ri;t is the return of asset i at time t and

Si;t is the price of asset i at time t. Furthermore, as in Gilli et al. (2011), we have
performed comparisons between in-sample and out-of-sample analysis over subsets
(time windows) of the weekly observations: we have defined seven starting points
ti, corresponding to the .1 C 20 � i/th weekly observation, .i D 0 : : : 6/. For each
starting point we have used observations ti through ti C 149 as in-sample data, and
ti C 150 through ti C 170 as out-of-sample data.

Our first investigation involves a correlation analysis between portfolio return
and tracking error. In detail, a correlation study has been performed on the following
variables:

(a) in sample Tracking Error;
(b) out of sample Tracking Error;

1http://mscmga.ms.ai.ac.uk/orlib/Jeb/portfolio.html.

http://docs.mosek.com/7.0/toolbox/
http://mscmga.ms.ai.ac.uk/orlib/Jeb/portfolio.html
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(c) in sample Return;
(d) out of sample Return.

By analysing results on all instances and on all temporal windows, we have
remarked that Tracking Error (both in sample and out of sample) and in sample
Return are positively correlated and in the Long-Short case the correlation is higher
than the Long-Only case (see Table 1). This clearly indicates a case in which the two
criteria are clearly conflicting to each other. But, more interestingly, we have also
found small correlations between out of sampleReturn and the three other measures,
especially on the Long Only case, indicating that none of the three measure may
be considered as a valid proxy to forecast future returns. Hence, an analysis of
the distance measures may be helpful to understand whether we could use them
as proxy.

In what follows � represents the Pearson correlation between the two metrics
between parenthesis; HD represents the Hamming distance; MD represents the
Manhattan distance; ED represents the Euclidean Distance. � represents the portfo-
lio return variance; TE represents the Tracking Error and rP the return of portfolio.
The three performancemeasures are reported w.r.t. in sample (IS) and out of sample
(OS) data.

Then we have carried out a correlation analysis between each of the computed
distance measures and the out-of-sample performance of mean-variance portfolios:
out-of-sample return, out-of-sample variance and out-of-sample tracking error.
Correlation amongst these measures are reported in Table 2, in which we report the
mean and standard deviation of Pearson correlation values over all time windows
taken into account (i.e., we computed a correlation coefficient for each time
window).

A first quick conclusion of the above results is that the Hamming distance is
often negatively correlated with all the other metrics in two instances out of three in
the Long-Short case. When considering the Long-Only case the correlation is better
positively defined, although frequently close to zero thus too instable to be used as
a predictor of futrure returns.

More in detail, the metric which appear to be more correlated to return and
variance is the Manhattan distance (in the Long-Short case this correlation is higher
than the Long Only case). Then this would imply that the bigger this distance, the
more the performance of the index-tracked portfolio is likely to be good in terms
of mean-variance. Furthermore, it is worth noting that the majority of the distance
metrics are strongly correlated to each other with the only exception being, as said
above, the Hamming distance. This means that introducing all the other measures
as complementary criteria into the portfolio selection problem does not provide any
additional insight.

The aim of analysing the correlation amongst distancemeasures and performance
measures is twofold. At first we want to understand whether the diverse measures
lead to the same information (or not): highly correlated distance measures would
imply that the information contained in the diverse definitions is similar (or
different). Then, we want to use the information contained in the diverse distance
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measures as operational suggestion about the investment to be performed, w.r.t. the
criteria chosen by the investor. In a nutshell, if we state that a distance measure is
highly correlated with out-of-sample return, and the investor is willing to maximise
the return of its portfolio, he has to choose a portfolio with big distance measure.
The same happen with other performance measures. The key point is to understand
which distance measure to use.

At first, we remark that the three distance measures are highly correlated when
considering the smallest instance; less when considering the bigger ones. The
magnitude of this correlation is higher on the Long Short case. Hence, we cannot
state a-priori that considering every distance measure lead to the same operational
strategy. We should consider the correlation of every distance measure introduced
with our performance measures: portfolio return, return variance and tracking error.
We consider both in-sample and out-of-sample correlations, but in order to avoid
overfitting we are more interested in out-of-sample performances, with a focus on
future return.

If we consider returns, in the Long-Short case the Euclidean distance is highly
correlated with both in-sample and out-of-sample returns on the smallest instance;
this does not happen with respect to the other two instances, where the correlation is
unstable, and the standard variation anyhow too big. In the Long-Only case instead
the correlation is always positive, even though the magnitude is not high. In this
case the Manhattan distance is the best metric, and when using Hamming distance
we cannot even determine a unique sign.

As for variance, Manhattan distance is the best correlated over the three instances
in-sample. This also held for out-of-sample analysis, in which, in two Long-Short
cases out of three, the standard deviation is even smaller than the in-sample case.
We remark that, the correlation between all distance measures taken into account
and the portfolio return variance is high, with low standard variation for the smallest
instance. The same does not happen when considering bigger-sized instances, where
nothing can be said about the sign of the correlation, and whose standard deviations
are higher over the considered time-windows. Also in this case, the Manhattan
distance lead us to the highest and most stable correlation, and for the Long Only
case we remark also that the Manhattan distance is the most stable, though with a
smaller magnitude than the Long Short case.

We may conclude that the Manhattan distance between the Mean-Variance
portfolios and the Index tracking one is the most capable to give the user insights
about operational strategies: there exist a good correlation between Manhattan
Distance and out-of-sample return, and this phenomenon is more significant when
considering Short-Selling. Hence, we can state that this analysis leads us to choose,
out of the Markowitz frontier of a market allowing short selling, the portfolio with
a high Manhattan distance to the Index Tracking portfolio.
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6 Conclusion

In this work we have examined the out-of sample performances of mean-variance
portfolios by analysing their distance to a non-dominated point that may represent
the preference of an investor. To this aim, we have chosen as non-dominated point
the Index-Tracking portfolio, which attempts to replicate an index’ behavior: in this
way we have combined active and passive portfolio management strategies.

We have remarked that the analysis of distance measures may lead to good
operational advices when considering a market that allows short selling, and that
different distance measures may lead to different analysis. Hence, we have assessed
that the Manhattan strategy is the one that leads to more significant operational
advices.

As further research we want to select other portfolios to express an investor’s
preference. Our analysis will be devoted to VaR and equally weighted portfolios,
which are important for regulatory and operational issues. Furthermore, we will
apply non additive measures, such as the Choquet integral, to investigate how the
different criteria interact to each other.

Furthermore, we will extend our analysis to different instances and formulations.
This will trigger the need of devising diverse solving approaches, thus giving rise to
the necessity of performing an experimental comparison amongst different methods
and algorithms.
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