
Semantics-Based Analysis of Content Security Policy
Deployment

STEFANO CALZAVARA, Università Ca’ Foscari Venezia
ALVISE RABITTI, Università Ca’ Foscari Venezia
MICHELE BUGLIESI, Università Ca’ Foscari Venezia

Content Security Policy (CSP) is a recent W3C standard introduced to prevent and mitigate the impact of

content injection vulnerabilities on websites. In this paper we introduce a formal semantics for the latest stable

version of the standard, CSP Level 2. We then perform a systematic, large-scale analysis of the effectiveness

of the current CSP deployment, using the formal semantics to substantiate our methodology and to assess

the impact of the detected issues. We focus on four key aspects that affect the effectiveness of CSP: browser

support, website adoption, correct configuration and constant maintenance. Our analysis shows that browser

support for CSP is largely satisfactory, with the exception of few notable issues, but unfortunately there are

several shortcomings relative to the other three aspects. CSP appears to have a rather limited deployment

as yet and, more crucially, existing policies exhibit a number of weaknesses and misconfiguration errors.

Moreover, content security policies are not regularly updated to ban insecure practices and remove unintended

security violations. We argue that many of these problems can be fixed by better exploiting the monitoring

facilities of CSP, while other issues deserve additional research, being more rooted into the CSP design.

CCS Concepts: • Security and privacy→ Browser security; Formal security models;

Additional Key Words and Phrases: Content Security Policy, Formal methods, Web security

ACM Reference Format:
Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2017. Semantics-Based Analysis of Content Security

Policy Deployment. ACM Trans. Web 1, 1 (October 2017), 36 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The same-origin policy (SOP) is the baseline defense mechanism implemented in web browsers to

provide confidentiality and integrity guarantees for contents provided by unrelated websites. Under

SOP, data from https://www.mybank.com is shielded from read or write attempts by scripts from

other web origins, like https://www.evil.com and http://www.mybank.com. Though apparently

secure, it is well-known that SOP can be bypassed by content injection attacks. In these attacks,

attacker-controlled contents are injected in benign web pages and become indistinguishable from

legitimate contents, thus inheriting their privileges.

The most effective techniques to defend against content injection are input sanitization and output
encoding, which prevent dangerous contents like malicious script tags from entering benign web

pages [21]. Unfortunately, input sanitization is typically difficult to get right and output encoding

can be accidentally overlooked, so content injections are still pervasive on the Web [20]. This

motivated the development of complementary in-depth defense mechanisms aimed at mitigating

the effects of a successful content injection [8, 12, 17, 18, 25]. Among these, Content Security Policy

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

1559-1131/2017/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

(CSP) is by far the most popular and well-established solution, being standardized by the W3C and

supported by all major web browsers [25, 29].

CSP is a language for defining restrictions on the functionality of web pages, ideally to limit their

capabilities to the least set of privileges they need to work correctly. Most notably, CSP significantly

mitigates the dangers of a successful content injection by disallowing the execution of inline scripts

and by banning a few dangerous functions used for turning strings into code, like the infamous

eval. These default restrictions can be explicitly relaxed to simplify deployment, though this is

strongly discouraged by the standard. Moreover, CSP allows the specification of constraints on

content inclusion based on a white-listing mechanism, whereby different content types, like images

or scripts, are bound to the sole set of origins allowed to supply those contents. This way, injected

markup elements can only be abused to load contents from white-listed web origins, thus further

reducing the room for attacks.

1.1 Research Goals and Contributions
Our main goal is to assess the state of the art in the use and effectiveness of CSP as a security

mechanism for websites against content injection attacks. To better understand the standard, we

first define a formal semantics for its latest stable version, CSP Level 2 (Section 3). The semantics

provides a rigorous and concise representation of the most important elements of CSP, which

allows us to substantiate our analysis methodology and to formally assess the impact of the detected

practical issues.

We focus on four key aspects affecting the effectiveness of CSP:

(1) browser support: we design a set of experiments to test the browser implementations of the

CSP specification. We run the experiments in all major web browsers, including their mobile

variants. We report on the outcome of the experiments, highlighting the cases where at

least one browser does not behave as expected and discussing their security import. Our

investigation reveals a dangerous behaviour of Microsoft Edge and a subtle quirk in all

browser implementations, which deserves a careful security analysis (Section 4);

(2) website adoption: we collect the content security policies sent by the Alexa Top 1Mwebsites [2]

and we analyze them to shed light on the current state of the CSP deployment, which turns

out to be quite limited. We also investigate which features and use cases of CSP are popular

among web developers and which ones are largely ignored, identifying a few common bad

practices (Section 5);

(3) correct configuration: we identify five common classes of misconfigurations made by web

developers when writing content security policies and we discuss their security and usability

import. We show that the very large majority of the websites we surveyed deploy content

security policies which do not provide robust defenses against script injection (Section 6);

(4) constant maintenance: we repeat the crawling of the Alexa Top 1M for 22 weeks, automatically

collecting both CSP headers and violations to the policies contained therein. We identify

websites committing to CSP or abdicating from it during this timespan and we analyze how

existing policies changed during the 22 weeks, discussing good and bad practices in the

wild. Finally, we investigate correlations between changes to policies and policy violations,

concluding that content security policies change less frequently than needed (Section 7).

We present our perspective on the main findings of the paper in Section 8. Our take is that many of

the problems we found can be fixed by better exploiting the monitoring facilities of CSP, while

other issues deserve more research by the community and the industry, being more rooted into the

CSP design. Finally, we refer to Section 9 for a discussion on related work.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :3

1.2 Novel Contents for Journal Publication
The present work extends and improves a published conference paper [4]. On the theoretical side,

the main addition is the definition of a formal semantics for CSP Level 2, presented in Section 3.

This is useful to pursue several practical goals: assessing the security import of inaccurate browser

implementations of the CSP specification, checking policies for vulnerability to script injection

and comparing policy permissiveness. Specifically, the following changes and additions make our

investigation more rigorous and comprehensive:

(1) the security considerations about inaccurate browser implementations of CSP presented

in [4] are now backed up by theorems and formal proofs;

(2) the syntactic conditions defined in [4] to detect policies vulnerable to script injection are

proved correct with respect to the formal model. Moreover, we identify new syntactic con-

ditions on policies which prove the absence of these vulnerabilities under a few additional

assumptions;

(3) the study of the evolution of the CSP deployment presented in [4] has been significantly

expanded and automated by developing a policy comparison tool, which implements the

permissiveness analysis defined in the formal model and allows us to check how policies

evolve over time.

We also performed a number of useful revisions, additions and updates to the original study, most

notably by significantly enlarging its scope (to more than 16,000 websites) and by performing a

more systematic deduplication of the collected data.

2 BACKGROUND: CONTENT SECURITY POLICY
We provide a brief introduction to Content Security Policy (CSP). This section contains just enough

information to understand the essence of the CSP specification and our main technical contributions.

We refer to the official documentation for full details about the standard [29].

2.1 Overview
A content security policy is a list of directives, restricting content inclusion for web pages by

means of a white-listing mechanism. Directives bind content types to lists of sources from which

a CSP-protected web page is allowed to include resources of that specific type. For instance, the

directive img-src https://a.com specifies that a web page can only load images from the host

a.com via the HTTPS protocol. CSP is a client-server defense mechanism: content security policies

are specified by web developers using HTTP(S) headers or meta elements in HTML pages, while

their enforcement is performed at the browser side on a per-page basis. Content security policies

can be run in two modes: the enforcement mode applies all the content restrictions specified by

the policy, while the report-only mode does not restrict the website functionality, but it just tells

browsers to log policy violations in the JavaScript console. In both modes, the report-uri directive
can be used to specify a URI where browsers should send JSON-based security reports when a policy

violation occurs. Policies in enforcement mode are sent in the Content-Security-Policy header,

while report-only policies are sent in the Content-Security-Policy-Report-Only header.

Table 1 reports selected directive types available in CSP: if a content security policy does not

include an explicit directive for a given content type, the default-src directive is applied to it as

a fallback. Allowed sources for content inclusion are specified using source expressions, a sort of
regular expressions used to express sets of web origins in a compact way. Content inclusion from a

URL is only allowed if the URL matches any of the source expressions specified for the appropriate

content type. The relevant details of the matching algorithm will be formalized in Section 3, for

now we just assume the existence of such algorithm.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:4 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

Table 1. Selected CSP Directives

Directive Restricted Contents
img-src Images

script-src JavaScript, XSLT

style-src Stylesheets (CSS)

connect-src Targets of XMLHttpRequest

default-src Contents without explicit directives

The informal semantics of a content security policy can be summarized as follows:

(1) inline scripts are blocked, unless the source expression ’unsafe-inline’ is included in the

script-src directive (or in the default-src directive in absence of script-src);
(2) inline styles are blocked, unless the source expression ’unsafe-inline’ is included in the

style-src directive (or in the default-src directive in absence of style-src);
(3) the conversion of strings into code via eval and similar functions is blocked, unless the

source expression ’unsafe-eval’ is in the script-src directive (or in the default-src
directive in absence of script-src);

(4) some dangerous methods of the CSS Object Model like insertRule are blocked, unless the
source expression ’unsafe-eval’ is in the style-src directive (or in the default-src
directive in absence of style-src);

(5) the inclusion of a content of type t from a URL u is allowed if and only if one of these

conditions holds:

(a) u matches a source expression in t-src;
(b) there is no t-src directive and u matches a source expression in default-src;
(c) there is neither t-src nor default-src.

If more than one content security policy is deployed on the same web page, each policy must be

individually enforced following the rules above.

2.2 CSP Versions
The core of CSP is a fine-grained mechanism for white-listing content inclusions, defined in the

CSP 1.0 specification [28] and summarized in the previous section. The latest stable version of

the standard, called CSP Level 2 [29], includes a number of new features on top of the original

CSP core. One of the major changes with respect to CSP 1.0 is the introduction of mechanisms to

relax the above restrictions on inline scripts and stylesheets, without falling back to the dramatic

absence of security guarantees provided by ’unsafe-inline’. Specifically, CSP Level 2 allows one

to white-list individual inline scripts and styles by using nonces or hashes.
The ’nonce-$value’ source expression white-lists inline scripts or styles with a nonce attribute

equal to $value, while the ’shaXXX-$value’ source expression white-lists inline scripts or styles

whose hash (computed using the shaXXX algorithm) is $value. Nonces should be random values

which are freshly generated upon each page request. The same nonce attribute can be assigned to

multiple scripts or styles, so that multiple inline elements can be white-listed using just a single

nonce, which simplifies policy specification. Hashes, however, provide better security guarantees

than nonces, because they additionally provide an integrity guarantee for the white-listed scripts

or styles, while nonces can be reused to white-list arbitrary inline elements when they fall under

the control of an attacker, for instance because they are easily predictable or not freshly generated

upon each page request.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :5

Example 2.1. To exemplify the most important concepts of CSP, consider the following content

security policy:

script-src https://a.com 'nonce-a33f5b005d';
img-src https://b.com;
default-src https://*

This policy allows the inclusion of scripts from https://a.com and the inclusion of images from

https://b.com. Inline scripts are blocked, unless their script tag is marked with a nonce attribute

set to a33f5b005d. Contents which are not scripts or images, e.g., stylesheets, can be included from

every host, provided that they are delivered using the HTTPS protocol.

We conclude this section by mentioning the current working draft of the CSP specification,

called CSP Level 3 [32]. The main extension with respect to CSP Level 2 is the introduction of

the ’strict-dynamic’ source expression, designed to simplify the process of recursive script

inclusion without triggering security violations. Our study focuses on CSP Level 2, because it is

the latest stable version of the standard and a candidate recommendation of the W3C, but the

formal semantics presented in the next section can be straightforwardly adapted to the current

draft specification of CSP Level 3.

3 FORMAL ANALYSIS OF CSP LEVEL 2
We introduce here a denotational semantics for a significant fragment of CSP Level 2, which we call

CoreCSP. We then discuss some security applications of the semantics: reasoning on the import

of inaccurate browser implementations, checking vulnerability to script injection and comparing

policy permissiveness.

3.1 Syntax and Semantics of CoreCSP
3.1.1 Syntax. We let str range over the denumerable set of strings. The syntax of policies is

shown in Table 2, where we use dots (. . .) to denote additional omitted elements of a syntactic

category. We assume a finite number of content types and an arbitrary number of schemes.

Table 2. Syntax of CoreCSP

Content types t ::= script | style | . . . (t , default)
Schemes sc ::= http | https | data | blob | fsys | inl | . . .

Policies p ::= d⃗ | p + p
Directives d ::= t-src v | default-src v
Directive values v ::= {se1, . . . , sen } (n ∈ N)
Source expressions se ::= h | unsafe-inline | hash(str)
Hosts h ::= self | sc | he | (sc, he) (sc , inl)
Host expressions he ::= ∗ | ∗ .str | str

The syntax of CoreCSP is a rather direct counterpart of the syntax of CSP Level 2. A policy p

is either a list of directives d⃗ or the conjunction of two policies p1 + p2. Directives, in turn, bind

content types t to directive values v; their syntax also includes a default directive, applied to all

the contents not restricted by other directives. Directive values are sets of source expressions se,
whose semantics will be explained in the following.

A few points of the syntax are worth discussing:

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:6 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

(1) we assume the existence of a distinguished scheme inl, used to identify inline scripts and

styles. This scheme cannot syntactically occur inside policies, but it is convenient to define

their formal semantics;

(2) we only model hashes rather than nonces as a mechanism to white-list individual inline

scripts and styles. The reason is that it is not possible to define the semantics of a policy using

nonces just based on the syntax of the policy itself, but one would need to model also the

contents of the HTML page where the policy is enforced to identify the white-listed elements,

based on the value of their nonce attribute;
(3) we define directive values as sets of source expressions, rather than lists of source expressions.

This difference is uninteresting in practice, since lists of source expressions are always parsed

as sets;

(4) for simplicity, we do not model ports and paths in the syntax of source expressions. They

can be easily added to the formalism, at the cost of making the technical details more tedious

without adding much to the formalization insights.

To simplify the formalization, we only consider well-formed policies, according to the following

definition.

Assumption 1 (Well-formed Policies). We assume that CSP policies are well-formed, i.e., for
each directive value v occurring therein, we have that unsafe-inline ∈ v implies hash(str) < v .

The syntax of CSP Level 2 is more liberal than this and it allows the specification of policies

violating the constraint above. However, in practice there is no loss of generality in focusing only

on well-formed policies, since if both unsafe-inline and hash(str) occur in the same directive,

only one of them is enforced by web browsers. Specifically, browsers compliant with CSP 1.0 would

ignore hash(str), while browsers supporting CSP Level 2 would ignore unsafe-inline. We assume

CSP policies are simplified like this before being represented in CoreCSP.

The definition of the formal semantics is based on three main entities: locations are uniquely
identifiable sources of contents; subjects are HTTP(S) web pages enforcing a content security policy;

and objects are contents available to subjects for inclusion.

Definition 3.1 (Location). A location is a pair l = (sc, str), where str is a string representing a

hostname. We let L stand for the denumerable set of all locations and we let L range over subsets

of L.

Definition 3.2 (Subject). A subject is a pair s = (l , str), where l = (sc, str′) with sc ∈ {http, https}
and str is a string representing a path.

Definition 3.3 (Object). An object is a pair o = (l , str). We let O stand for the denumerable set of

all objects and we let O range over subsets of O.

We use the projection functions π1 (·) and π2 (·) to extract the components of a pair, be it a

location, a subject or an object. We also make the following typing assumption, which ensures

that objects can only be white-listed for inclusion by using directives of the expected type. This is

useful to develop a faithful model of CSP.

Assumption 2 (Typing of Objects). We assume that objects are typed. Formally, this means that
O is partitioned into the subsets Ot1 , . . . ,Otn , where t1, . . . , tn are the available content types. We also
assume that, for all objects o = ((inl, str′), str), we have o ∈ Oscript ∪ Ostyle, i.e., the only inline
objects are scripts and stylesheets.

3.1.2 Semantics of Source Expressions. The judgement se⇝s L defines the semantics of source

expressions. It reads as: the source expression se allows the subject s to include contents from the

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :7

Table 3. Denotational Semantics of Source Expressions (se⇝s L)

self⇝s {π1 (s)} sc⇝s {l | π1 (l) = sc} ∗⇝s {l | π1 (l) < {data, blob, fsys, inl}}

str⇝s {l | π1 (π1 (s)) ▷ π1 (l) ∧ π2 (l) = str}

∗.str⇝s {l | π1 (π1 (s)) ▷ π1 (l) ∧ ∃str′ : π2 (l) = str′.str} (sc, str) ⇝s {(sc, str)}

(sc, ∗.str) ⇝s {l | π1 (l) = sc ∧ ∃str′ : π2 (l) = str′.str} (sc, ∗) ⇝s {l | π1 (l) = sc}

unsafe-inline⇝s {l | π1 (l) = inl} hash(str) ⇝s {(inl, str)}

locations L. The formal definition is given in Table 3, where we let ▷ denote the smallest reflexive

relation on schemes such that http ▷ https.
A brief explanation follows. The self source expression only denotes the location of the subject.

A scheme source expression sc denotes all the locations with that scheme. The ∗ source expression

white-lists all the locations, with the exception of those with scheme data, blob, fsys or inl. A
string source expression str denotes the locations (http, str) and (https, str) for HTTP subjects,

but only the location (https, str) for HTTPS subjects. The semantics of ∗.str follows the same logic

on the scheme, but any location whose second component has .str as suffix is white-listed. The

semantics of (sc, str), (sc, ∗.str) and (sc, ∗) is straightforward. The unsafe-inline source expression
denotes all the locations with scheme inl, while the hash(str) source expression only white-lists

the location (inl, str). Having defined the semantics of source expression, the semantics of directive

values v is defined as expected:

v ⇝s {l | ∃se ∈ v,∃L ⊆ L : se⇝s L ∧ l ∈ L}.

3.1.3 Semantics of Policies. The semantics of policies readily follows from the semantics of

directive values. It is based on a lookup operator which, given a list of directives d⃗ and a content

type t , returns the directive valuev which determines the restrictions enforced by d⃗ when including

contents of type t . Intuitively,v is the value bound to the first t-src directive in d⃗ , if any, otherwise

it is the value bound to the first default-src directive; if there is not even a default directive in d⃗ ,
the wildcard {∗} is returned. The formal definition of the lookup operator is given next.

Definition 3.4 (Lookup). Given a list of directives d⃗ and a content type t , we define the syntactic
lookup operator d⃗ .t as follows:

d⃗ .t =



v if d⃗ = d⃗1, t-src v, d⃗2 ∧ ∀d ∈ {d⃗1},∀v
′
: d , t-src v ′

⊥ otherwise

We then define the lookup operator d⃗ ↓ t as follows:

d⃗ ↓ t =




d⃗ .t if d⃗ .t , ⊥

v if d⃗ .t = ⊥ ∧ d⃗ = d⃗1, default-src v, d⃗2 ∧

∀d ∈ {d⃗1},∀v
′
: d , default-src v ′

{∗} otherwise

The judgement p ⊢ s ↢t O defines the semantics of policies. It reads as: the policy p allows the

subject s to include as contents of type t the objectsO . The formal definition is given in Table 4. Rule

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:8 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

Table 4. Denotational Semantics of Policies (p ⊢ s ↢t O)

(D-Val)

d⃗ ↓ t = v v ⇝s L

d⃗ ⊢ s ↢t {o ∈ Ot | π1 (o) ∈ L}

(D-Conj)

p1 ⊢ s ↢t O1 p2 ⊢ s ↢t O2

p1 + p2 ⊢ s ↢t O1 ∩O2

(D-Val) allows the inclusion of the objects of the appropriate type whose locations are white-listed

by the directive value v returned by the lookup operator. Rule (D-Conj) defines the semantics of

policies built using the conjunction operator + by intersecting the sets of objects white-listed by

the individual policies. In other words, a content inclusion is allowed if and only if it is allowed by

all the individual policies.

Example 3.5. Consider the subject s = ((https, example.com), /home) and the following policy:

p = style-src {nice-css.com, hash(xyz)}, default-src {∗}.

Let p ⊢ s ↢style Ostyle and p ⊢ s ↢script Oscript, we have:

(1) o1 = ((inl, xyz), body {color: purple}) ∈ Ostyle, since hash(xyz) ∈ p ↓ style and

hash(xyz) ⇝s {(inl, xyz)};
(2) o2 = ((https, nice-css.com), /cool-style.css) ∈ Ostyle, since nice-css.com ∈ p ↓

style and nice-css.com⇝s {(https, nice-css.com)};
(3) o3 = ((http, nice-css.com), /cool-style.css) < Ostyle, though nice-css.com is an al-

lowed source for stylesheet inclusion. The reason is that s runs on HTTPS and p does not

provide a scheme for nice-css.com, hence only HTTPS contents from nice-css.com are
white-listed;

(4) o4 = ((inl, xyz), alert(1)) < Oscript, since p ↓ script = {∗} and ∗ does not white-list
inline elements.

3.2 Formal Reasoning on CSP Policies
We now set the ground for the security applications of the semantics we anticipated. We do this by

defining a few technical ingredients which are useful to support formal reasoning on CSP policies:

a pre-order on source expressions characterizing their permissiveness and a smart lookup operator

on policies defining the restrictions enforced by multiple conjuncted policies in terms of a single

directive value.

3.2.1 Policy Normalization. The semantics of policies depends on the subject enforcing them,

which complicates formal reasoning. We thus introduce a class of policies, called normal policies,
whose semantics does not depend on the enforcing subject. We then show that any policy can be

translated into an equivalent normal policy by using a subject-directed compilation. The syntax of

normal policies is obtained by replacing h in Table 2 with h, where:

h ::= sc | ∗ | (sc, he).

Normal source expressions and normal directive values are defined accordingly.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :9

Definition 3.6 (Normalization). Given a source expression se and a subject s , we define the

normalization of se under s , written ⟨se⟩s , as follows:

⟨se⟩s =




{π1 (s)} if se = self

{(sc, str) | π1 (π1 (s)) ▷ sc} if se = str
{(sc, ∗.str) | π1 (π1 (s)) ▷ sc} if se = ∗.str
{se} otherwise

The normalization of a directive valuev under s is defined as ⟨v⟩s =
⋃

se∈v ⟨se⟩s . The normalization of

a policy p under s , written ⟨p⟩s , is obtained by normalizing under s each directive value syntactically
occurring in p.

For example, building on Example 3.5, the normalization of the policy p under the subject s is
the following policy:

⟨p⟩s = style-src {(https, nice-css.com), hash(xyz)}, default-src {∗}.

It is easy to note that the sets of objects white-listed by p and ⟨p⟩s coincide. This is in fact a general

result.

Lemma 3.7 (Properties of Normalization). The following properties hold:
(1) for all policies p and subjects s , ⟨p⟩s is a normal policy;
(2) for all policies p, subjects s and content types t , we have p ⊢ s ↢t O iff ⟨p⟩s ⊢ s ↢t O ;
(3) for all normal policies p, subjects s1, s2 and content types t , if we have p ⊢ s1 ↢t O1 and

p ⊢ s2↢t O2, then O1 = O2.

Proof. See Appendix A.1. □

3.2.2 Ordering Source Expressions. We introduce a binary relation ⊑src on normal source ex-

pressions such that se1 ⊑src se2 if and only if se1 denotes no more locations than se2 for all subjects.
Formally, ⊑src is defined as the least reflexive relation on normal source expressions satisfying the

rules in Table 5. It is easy to prove that ⊑src is also transitive, hence it defines a pre-order on normal

source expressions.

Table 5. Ordering Normal Source Expressions (se1 ⊑src se2)

sc < {data, blob, fsys, inl}

sc ⊑src ∗

sc < {data, blob, fsys, inl}

(sc, he) ⊑src ∗
sc ⊑src (sc, ∗)

(sc, he) ⊑src sc (sc, str) ⊑src (sc, ∗) (sc, ∗.str) ⊑src (sc, ∗) (sc, str′.str) ⊑src (sc, ∗.str)

hash(str) ⊑src unsafe-inline

We use the ⊑src relation to define a binary relation ⊑ on normal directive values, which generalizes

to them the previous intuition. For all normal directive values v1,v2, let v1 ⊑ v2 if and only if

∀se1 ∈ v1 : ∃se2 ∈ v2 : se1 ⊑src se2. The desired properties of ⊑ can be formalized as follows.

Lemma 3.8 (Correctness of ⊑). For all normal directive values v1,v2, the following properties
hold true:
(1) If v1 ⊑ v2, then for all subjects s we have v1 ⇝s L1 and v2 ⇝s L2 with L1 ⊆ L2;
(2) If there exists a subject s such that v1 ⇝s L1 and v2 ⇝s L2 with L1 ⊆ L2, then v1 ⊑ v2.

Proof. See Appendix A.2. □

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:10 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

3.2.3 Smart Lookup. The ⊑ relation is a powerful tool to reason about the security of policies,

since the set of objects which can be included according to a policy ultimately depends on the

locations white-listed via its directive values. To effectively use ⊑ on arbitrary policies, however,

there are a couple of issues left to be addressed:

(1) a policy p may enforce multiple restrictions on the same content type t , specifically when

p = p1 + p2 for some p1,p2. In this case, multiple directive values must be taken into account

when reasoning about the inclusion of contents of type t ;
(2) a policy p may enforce restrictions on the inclusion of contents of type t by using directives

of two different formats, namely t-src or default-src. One has then to ensure that the

appropriate directive value is taken into account.

We address these issues by defining a smart lookup operator p ⇓ t which, given a policy p and a

content type t , returns a directive value which captures all the restrictions put in place by p on t .
This operator is based on the following definition of meet of two normal directive values.

Definition 3.9 (Meet). Given two normal directive values v1,v2, we define their meet as:

v1 ⊓v2 = {se ∈ v1 | ∃se′ ∈ v2 : se ⊑src se′} ∪ {se ∈ v2 | ∃se′ ∈ v1 : se ⊑src se′}.

The definition of the smart lookup operator is now simple. If a policy is defined as the conjunction

of multiple policies, the smart lookup operator computes the meet of the directive values returned

by the standard lookup operator on the individual conjuncted policies. Otherwise, it just behaves

like the standard lookup operator.

Definition 3.10 (Smart Lookup). Given a normal policy p and a content type t , we define p ⇓ t as
follows:

p ⇓ t =



d⃗ ↓ t if p = d⃗

(p1 ⇓ t) ⊓ (p2 ⇓ t) if p = p1 + p2

The desired property of the smart lookup operator can be formalized as follows.

Lemma 3.11 (Correctness of Smart Lookup). For all normal policies p, subjects s and content
types t , we have p ⊢ s ↢t {o ∈ Ot | ∃L ⊆ L : p ⇓ t ⇝s L ∧ π1 (o) ∈ L}.

Proof. See Appendix A.3. □

We conclude this section with a mild technical assumption, which ensures that all the white-listed

locations host at least one object of the expected type. In other words, we assume that policies

do not contain any useless information: if a location is white-listed, something is available for

inclusion therein.

Assumption 3 (Proper White-Listing). For all normal policies p, subjects s and content types t ,
we have that p ⇓ t ⇝s L implies that for all l ∈ L there exists o ∈ Ot such that π1 (o) = l .

3.3 Application 1: Reasoning on Browser Implementations
CoreCSP is a faithful model of the official CSP Level 2 specification [29]. Unfortunately, it is well-

known that browsers do not always implement meticulously existing specifications and the security

import of these inaccuracies may not be obvious. In our investigation, we observed that CSP is no

exception, because Microsoft Edge does not follow the CSP specification when enforcing multiple

policies on the same page (see Section 4.3) and all the major browsers implement an unexpected

behaviour when dealing with inline scripts and styles (see Section 4.4).

When these inaccurate browser implementations are identified, e.g., by code review or testing,

one can use CoreCSP to get a formal understanding of their security import: we refer to the

aforementioned sections for such an analysis.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :11

3.4 Application 2: Vulnerability to Script Injection
Content injection may take different forms and be exploited to mount a number of attacks, like

UI redressing. In our view, however, the most dangerous form of client-side content injection on

the Web is XSS, where arbitrary attacker-controlled scripts are injected in benign web pages. Our

goal here is defining syntactic checks on content security policies under which a content injection

can lead to arbitrary script injection, despite a correct policy enforcement. We use these checks

to automate the security analysis of existing content security policies deployed in the wild (see

Section 6.6).

3.4.1 Formal Definition. We start by defining the threat model. We represent an attacker A ⊆ L
just as a set of locations identifying attacker-controlled contents, which we call tainted objects. This
general model is useful to reason about white-list safety: indeed, the policy semantics is agnostic to

the trust of web hosts, but our threat model allows one to discriminate between a policy which

white-lists good.com and a policy which white-lists evil.com as legitimate sources for script

inclusion.

Definition 3.12 (Tainted Objects). Given an attacker A, the set of its tainted objects of type t is
defined as At = {o ∈ Ot | π1 (o) ∈ A}.

If a policy allows the inclusion of tainted objects, then there is a potential security issue which

deserves scrutiny. This is formalized as follows.

Definition 3.13 (Vulnerability to Injection). A policy p leaves the subject s vulnerable to injection
of contents of type t by the attackerA, written p ⊢ s ↶t A, if and only if there exists a set of objects
O such that p ⊢ s ↢t O andO ∩At , ∅. Vulnerability to script injection is defined by instantiating

t to script.

This threat model is very general, but in this work we find particularly useful to focus on a

particular class of attackers modelling the standard web attacker from the literature, which is

normally used when reasoning about content injection [1]. The web attacker operates a set of

malicious websites and can respond to HTTP(S) requests sent to them with arbitrary content. We

assume the attacker set up HTTPS on his web servers. Also, the attacker can attempt to exploit

code injection vulnerabilities by means of inline scripts and data URIs, which provide a means to

include inline elements as if they were external resources. Notice that the attacker’s ability to inject

inline scripts is limited by the use of hashes in content security policies.

Definition 3.14 (Web Attacker). Let H , I , ∅ be sets of strings representing hosts and identifiers

of inline scripts respectively. We define the web attackerW [H , I] as:

W [H , I] = {(http, str), (https, str) | str ∈ H } ∪ {(inl, str) | str ∈ I }
∪ {l ∈ L | π1 (l) = data}.

We letW stand for the canonic web attackerW [{attacker.com}, {att}], where att represents

the identifier of a malicious inline script.

3.4.2 Syntactic Checks. Having defined the threat model, we can introduce the following notion

of liberal source expression. Liberal source expressions constitute a poor mechanism to restrict

script inclusion, since some of the locations they white-list are controlled by the canonic web

attacker.

Definition 3.15 (Liberality). A source expression is liberal if and only if it is the wildcard ∗, the

unsafe-inline source expression, or any of the schemes http, https or data. A directive value v
is liberal iff it contains at least one liberal source expression.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:12 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

The explanation of the definition is quite intuitive: the wildcard ∗ and the HTTP(S) scheme

include attacker.com as a valid source for content inclusion, while unsafe-inline and data
enable the injection of inline scripts.

The first result of this section provides a syntactic criterion to check whether a policy leaves a

website vulnerable to script injection attacks (XSS).

Theorem 3.16 (Vulnerability to XSS). For all policies p and subjects s , if ⟨p⟩s ⇓ script = v for
some liberal directive value v , then p ⊢ s ↶script W .

Proof. Assume ⟨p⟩s ⇓ script = v for some liberal v and let L be the set of locations such

that v ⇝s L. Since v is liberal, there must exist a liberal source expression se ∈ v . Since ⟨p⟩s is a
normal policy, ⟨p⟩s ⊢ s ↢script O with O = {o ∈ Oscript | π1 (o) ∈ L} by Lemma 3.11. We show

thatO ∩Wscript , ∅, which proves p ⊢ s ↶script W , since we have p ⊢ s ↢script O by Lemma 3.7.

To show O ∩Wscript , ∅, it is enough to prove that L ∩W , ∅ by Assumption 3. Let L′ be the set
of locations such that se⇝s L

′
. Since L′ ⊆ L by definition of v ⇝s L, we can prove L ∩W , ∅ by

showing L′ ∩W , ∅. This can be shown by a case analysis on se:

• se = http: we have L′ = {l | π1 (l) = http}, hence L′ ∩W = {(http, attacker.com)};
• se = https: analogous to the previous case;

• se = ∗: we have {l | π1 (l) = http} ⊆ L′, hence (http, attacker.com) ∈ L′ ∩W ;

• se = data: we have L′ = {l | π1 (l) = data}, hence L′ ∩W = L′;
• se = unsafe-inline: we have L′ = {l | π1 (l) = inl}, hence L′ ∩W = {(inl, att)}.

□

Given a web attacker, it is also possible to check whether a policy provides protection against

script injection attempts by that attacker. We do this by identifying the set of the sole source

expressions which may open a breach for script injection.

Definition 3.17 (Weakness). Given a web attackerW [H , I], a source expression se is weak against

W [H , I] iff any of the following conditions holds true:

(1) there exists str ∈ H such that (http, str) ⊑src se or (https, str) ⊑src se;
(2) there exists str ∈ I such that hash(str) ⊑src se;
(3) we have se ⊑src data.

A directive value v is weak againstW [H , I] iff it contains at least one source expression which is

weak againstW [H , I].

We can prove that the presence of weak source expressions is a necessary condition for a

successful script injection by the considered web attacker.

Theorem 3.18 (Protection against XSS). For all policies p and subjects s , if p ⊢ s ↶script

W [H , I] for the web attackerW [H , I], then ⟨p⟩s ⇓ script = v for some directive value v which is
weak againstW [H , I].

Proof. Assume p ⊢ s ↶script W [H , I] for the web attackerW [H , I], then there exists O such

that p ⊢ s ↢script O and O ∩W [H , I]script , ∅, i.e., there exists o ∈ O ∩W [H , I]script. We then

observe that p ⊢ s ↢script O implies ⟨p⟩s ⊢ s ↢script O by Lemma 3.7. Let ⟨p⟩s ⇓ script = v and

let L be the set of locations such that v ⇝s L. Since ⟨p⟩s is a normal policy, we have O = {o′ ∈
Oscript | π1 (o

′) ∈ L} by Lemma 3.11, hence π1 (o) ∈ L. Since we also know that o ∈W [H , I]script,
we must have π1 (o) ∈W [H , I]. We then perform a case distinction on the structure of π1 (o) and
we show for each case that v must include a weak source expression:

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :13

• π1 (o) = (http, str) with str ∈ H : since (http, str) ∈ L, we have {(http, str)} ⊑ v by Lemma 3.8.

This means that there exists se ∈ v such that (http, str) ⊑src se, hence v is weak against

W [H , I];
• π1 (o) = (https, str) with str ∈ H : analogous to the previous case;

• π1 (o) = (inl, str) with str ∈ I : since (inl, str) ∈ L, we have {(inl, str)} ⊑ v by Lemma 3.8.

This means that there exists se ∈ v such that (inl, str) ⊑src se, hence v is weak against

W [H , I];
• π1 (o) = (data, str): since (data, str) ∈ L, we must have {(data, str)} ⊑ v by Lemma 3.8. This

means that there exists se ∈ v such that (data, str) ⊑src se. An inspection of the rules defining

the ⊑src relation (in Table 5) shows that se = (data, he) for some he or se = data, hence
se ⊑src data and v is weak againstW [H , I].

□

3.5 Application 3: Policy Permissiveness Analysis
We now formalize a notion of policy permissiveness and identify syntactic checks to prove or

disprove that one policy is no more permissive than another one. We implemented these checks in

a policy comparison tool developed in PHP, which we make publicly available online
1
. This tool

allows one to analyze the evolution over time of existing content security policies deployed in the

wild and to understand the import of the observed policy changes (see Section 7.3).

3.5.1 Formal Definition. Given the denotational style of the formal semantics, it is very natural

and intuitive to compare the permissiveness of two policies by comparing the sets of their white-

listed objects.

Definition 3.19 (Permissiveness). Given two policies p1,p2, we say that p1 is no more permissive
than p2 for the subject s and the content type t (written p1 ≤s,t p2) if and only if p1 ⊢ s ↢t O1 and

p2 ⊢ s ↢t O2 imply O1 ⊆ O2. When universally quantifying over all subjects and/or content types,

we omit s and/or t from the notation.

Observe that the definition is consistent with the threat model, since p1 ⊢ s ↶t A and p1 ≤s,t p2
imply p2 ⊢ s ↶t A for all the attackers A. Despite its simplicity, however, policy permissiveness is

non-trivial to check syntactically.

Example 3.20. Consider the following two policies:

p1 = script-src {a.com}, style-src {b.com}, default-src {https}
p2 = script-src {a.com, c.com}, default-src {∗}

We have p1 ≤ p2. However, the syntactic structure of the two policies is different, since p2 has
less directives than p1. Also, the directive values occurring in p2 are more permissive than those in

p1. This may be due to the addition of new source expressions ({a.com} vs. {a.com, c.com}) or the
relaxation of existing ones ({https} vs. {∗}).

3.5.2 Syntactic Checks. We propose syntactic checks to prove or disprove p1 ≤s,t p2, based on

the ⊑ relation and the smart lookup operator.

Theorem 3.21 (Checking Permissiveness). For all policies p1,p2, we have p1 ≤s,t p2 if and only
if ⟨p1⟩s ⇓ t ⊑ ⟨p2⟩s ⇓ t .

Proof. We show the two directions separately:

1
http://www.dais.unive.it/~csp/csp-comparison-tool/

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

http://www.dais.unive.it/~csp/csp-comparison-tool/

:14 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

(⇒) Let p1 ≤s,t p2, we show ⟨p1⟩s ⇓ t ⊑ ⟨p2⟩s ⇓ t . By definition of p1 ≤s p2, we have p1 ⊢ s ↢t O1

and p2 ⊢ s ↢t O2 with O1 ⊆ O2. By Lemma 3.7, p1 ⊢ s ↢t O1 and p2 ⊢ s ↢t O2 imply

⟨p1⟩s ⊢ s ↢t O1 and ⟨p2⟩s ⊢ s ↢t O2. By Lemma 3.11 we have O1 = {o ∈ Ot | ∃L1 ⊆ L :

⟨p1⟩s ⇓ t ⇝s L1 ∧ π1 (o) ∈ L1} and O2 = {o ∈ Ot | ∃L2 ⊆ L : ⟨p2⟩s ⇓ t ⇝s L2 ∧ π1 (o) ∈ L2}.
Since O1 ⊆ O2, we must have L1 ⊆ L2 by Assumption 3. By Lemma 3.8, we get ⟨p1⟩s ⇓ t ⊑
⟨p2⟩s ⇓ t .

(⇐) Let ⟨p1⟩s ⇓ t ⊑ ⟨p2⟩s ⇓ t , we show p1 ⊢ s ↢t O ′
1
and p2 ⊢ s ↢t O ′

2
for some O ′

1
,O ′

2

such that O ′
1
⊆ O ′

2
. By Lemma 3.8, ⟨p1⟩s ⇓ t ⊑ ⟨p2⟩s ⇓ t implies ⟨p1⟩s ⇓ t ⇝s L1 and

⟨p2⟩s ⇓ t ⇝s L2 with L1 ⊆ L2. By Lemma 3.11 we have ⟨p1⟩s ⊢ s ↢t O1 and ⟨p2⟩s ⊢ s ↢t O2

with O1 = {o ∈ Ot | ∃L1 ⊆ L : ⟨p1⟩s ⇓ t ⇝s L1 ∧ π1 (o) ∈ L1} and O2 = {o ∈ Ot | ∃L2 ⊆ L :

⟨p2⟩s ⇓ t ⇝s L2 ∧ π1 (o) ∈ L2}. By Lemma 3.7, ⟨p1⟩s ⊢ s ↢t O1 and ⟨p2⟩s ⊢ s ↢t O2 imply

p1 ⊢ s ↢t O1 and p2 ⊢ s ↢t O2. Since L1 ⊆ L2, we must have O1 ⊆ O2.

□

Example 3.22. Pick again the policies p1 and p2 from Example 3.20 and consider the subject

s = ((https, example.com), /home). We have:

⟨p1⟩s = script-src {(https, a.com)}, style-src {(https, b.com)}, default-src {https}
⟨p2⟩s = script-src {(https, a.com), (https, c.com)}, default-src {∗}

Thus, for the different content types script and style, we get:

⟨p1⟩s ⇓ script ⊑ ⟨p2⟩s ⇓ script
⟨p1⟩s ⇓ style ⊑ ⟨p2⟩s ⇓ style

We then conclude p1 ≤s p2.

4 TESTING BROWSER SUPPORT FOR CSP
We devised a number of experiments to test to which extent the implementation of CSP in major web

browsers is compliant with the CSP Level 2 specification [29], at least as it comes to the fragment

formalized in CoreCSP. Our goal was finding both subtle corner cases of the CSP specification

which deserve clarification and plain deviations with respect to expected browser behaviours.

When an unexpected behaviour emerged from our experiments, we used CoreCSP to assess its

security import.

4.1 Methodology
We manually created a small set of HTML pages sending content security policies in enforcement

mode, designing them so that the browser behaviour upon policy enforcement is made explicit

by visual clues. We make these pages available online, along with a brief explanation of each of

them
2
. We do not claim that our investigation tested all the corner cases of the specification, but

we are confident about the effectiveness of our test suite in providing a good coverage of the most

relevant aspects of CSP which are commonly used, as formalized by the CoreCSP semantics. We

leave as future work the automated generation of more comprehensive test cases using the formal

semantics.

We visited the web pages with different browsers: Mozilla Firefox 46, Chromium 50, Opera 36,

Safari 9.1 and Microsoft Edge 25.10586.0.0, as well as their mobile variants. Notice that Safari and

Microsoft Edge do not support CSP Level 2, but only CSP 1.0. Features specific to CSP Level 2 have

not been tested on those browsers.

2
http://www.dais.unive.it/~csp/investigating-browser-support-for-csp/

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

http://www.dais.unive.it/~csp/investigating-browser-support-for-csp/

Semantics-Based Analysis of Content Security Policy Deployment :15

4.2 Passed Tests
All the browsers successfully passed the following tests:

(1) Enforcing multiple directives: The syntax of CSP allows the inclusion of multiple directives

for the same content type (e.g., script-src) in the same header. The expected behaviour in

this case is that only the first directive is enforced, while the other ones are ignored;

(2) Default scheme assignment: The syntax of source expressions includes host source expressions
of the form a.com. In these cases lacking an explicit scheme, the CSP specification mandates

a default scheme assignment based on the scheme of the page deploying the policy: a.com
must be interpreted as https://a.com in HTTPS pages, and as both http://a.com and

https://a.com in HTTP pages;

(3) Wildcard: In CSP Level 2, the * source expression is a wildcard matching any URL whose

scheme is not blob, data or filesystem. These schemes are considered dangerous, since the

content of URLs with these schemes is often derived from a response body and may be under

the control of an attacker. Notice that in CSP 1.0 the wildcard simply matches any URL;

(4) Ambiguities on inline scripts: The script-src directive may include both ’unsafe-inline’
and nonces or hashes white-listing individual inline scripts. In this case, the CSP specification

mandates that only inline scripts white-listed using nonces or hashes are allowed to run.

Recall that nonces and hashes are not available in CSP 1.0.

4.3 Enforcing Multiple Policies
Multiple content security policies can be specified for the same web page in different headers. The

CSP specification recommends that, if multiple policies are present on the same page, all of them

must be individually enforced. Our experiments assessed that all browsers behave according to the

specification, but for Microsoft Edge, which concatenates policies included in different headers and

only enforces the first encountered directive for each content type. For instance, if the first header

includes the directive script-src a.com b.com and the second header includes the directive

script-src a.com c.com, the protected page can load scripts from both a.com and b.com in

Microsoft Edge, though only a.com should be a valid source for script inclusion based on the

CSP specification. Though the presence of multiple headers with different directives for the same

content type may sound strange at first, this situation may happen in presence of security gateways

and web application firewalls run by large organizations [29]. In these cases, the behaviour of

Microsoft Edge is more permissive than the CSP specification and may leave room for attacks.

We can formally prove that the implementation of CSP provided by Microsoft Edge is potentially

dangerous, i.e., it can only make policies more permissive than intended. To encode the behaviour

of Microsoft Edge in our semantics, we define a linearisation operator (denoted by | · |). This operator
removes the pluses from the syntax of policies, thus squeezing multiple conjuncted policies into

a single list of directives. The operational behaviour of Microsoft Edge can be encoded in our

formalism by assuming that all policies are linearised by the browser before being enforced.

Definition 4.1 (Linearisation). Given a policy p, we define its linearisation |p | as:

|p | =



d⃗ if p = d⃗

|p1 |, |p2 | if p = p1 + p2

Theorem 4.2 (Dangerous Implementation of Microsoft Edge). For all policies p and subjects
s , we have p ≤s |p |.

Proof. The proof uses the following observations:

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:16 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

(a) for all normal directive values v1, . . . ,vn , we have v1 ⊓ . . . ⊓vn ⊑ vi for all vi . The proof is
by induction on n, using the reflexivity of ⊑ for the base case and appealing to Lemma A.4

for the inductive case;

(b) for all policies p and subjects s , we have ⟨|p |⟩s = |⟨p⟩s |. The proof is by induction on the

structure of p, using the definitions of the two operators;

(c) for all lists of directives d⃗1, . . . , d⃗n and content types t , we have (d⃗1, . . . , d⃗n) ↓ t = d⃗i ↓ t for

some d⃗i . The proof is by case analysis, using the definition of (d⃗1, . . . , d⃗n) ↓ t .

We show that, for all policies p, subjects s and content types t , we have ⟨p⟩s ⇓ t ⊑ ⟨|p |⟩s ⇓ t , which

proves the statement by Theorem 3.21. If p = d⃗ for some d⃗ , we have p = |p | and the result is trivial.

Otherwise, let p = d⃗1 + . . . + d⃗n for some d⃗1, . . . , d⃗n with n > 1. We then have ⟨p⟩s = d⃗
′
1
+ . . . + d⃗ ′n

for some d⃗ ′
1
, . . . , d⃗ ′n ; notice that n does not change, since the normalization step does not affect the

number of directives. By definition of smart lookup and observation (a), we have:

∀i ∈ {1, . . . ,n} : ⟨p⟩s ⇓ t ⊑ d⃗ ′i ⇓ t . (1)

We then use observation (b) to show ⟨|p |⟩s = |⟨p⟩s | = |d⃗
′
1
+ . . . + d⃗ ′n | = d⃗

′
1
, . . . , d⃗ ′n by definition of

linearisation. By definition of smart lookup and observation (c), we have:

∃j ∈ {1, . . . ,n} : ⟨|p |⟩s ⇓ t = d⃗
′
j ⇓ t . (2)

By combining equations (1) and (2), we establish ⟨p⟩s ⇓ t ⊑ ⟨|p |⟩s ⇓ t as desired. □

4.4 Blocking Inline Elements
A central design choice of CSP is that inline scripts are disabled unless otherwise specified, for

instance by using ’unsafe-inline’ [25]. However, we observed in all the tested browsers a weird,

unexpected difference in the treatment of inline scripts between the following two policies:

(1) img-src www.example.com;
(2) img-src www.example.com; default-src *.

Our experiments revealed that the first policy allows the execution of inline scripts, while the

second one does not, despite the fact that the default sources for script inclusion must be set to

the wildcard * in both cases and * does not white-list inline scripts. This mismatch is potentially

confusing for web developers and not compliant with the CSP specification. More generally, we

observed that any policy which lacks both a script-src directive and a default-src directive

unexpectedly allows the execution of inline scripts.

Fortunately, despite our initial concerns, the security import of this unexpected behaviour is

minor, since neither of the two policies puts any restriction on the set of URLs white-listed for

script inclusion. This means that an attacker does not really need to inject an inline script to attack

a website deploying any of the two policies above, which are equally vulnerable: indeed, under

both policies, arbitrary script injection could be performed by first hosting a malicious script on an

attacker-controlled website and then injecting a script tag loading the script in the target web page.

We can formally prove this claim. The idea is again to define an operator which transforms

policies so that the incorrect behaviour implemented by web browsers is hard-coded in the syntax

of the policy as follows.

Definition 4.3 (Default Extension). Given a policy p, we define its default extension p♯ as:

p♯ =



d⃗, default-src {∗, unsafe-inline} if p = d⃗

p♯
1
+ p♯

2
if p = p1 + p2

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :17

The following theorem formalizes that the adoption of the default extension does not make more

policies vulnerable to script injection, since it only forces the attacker to choose a different attack

vector to circumvent already vulnerable policies.

Theorem 4.4 (Assessing Default Extension). For all policies p, subjects s and web attackers
W [H , I], we have p ⊢ s ↶script W [H , I] iff p♯ ⊢ s ↶script W [H , I].

Proof. Let p ⊢ s ↢script O and p♯ ⊢ s ↢script O
′
, we show that O ∩W [H , I]script , ∅ if and

only if O ′ ∩W [H , I]script , ∅. The proof is by induction on the structure of p:

(1) If p = d⃗ for some d⃗ , we distinguish two cases. If p already contains a script-src directive

or a default-src directive, we have O = O ′ and the conclusion is immediate. Otherwise,

we have p ↓ script = {∗} and p♯ ↓ script = {∗, unsafe-inline}. We then observe

that p ↓ script = p ⇓ script = ⟨p⟩s ⇓ script and p♯ ↓ script = p♯ ⇓ script =
⟨p♯⟩s ⇓ script, since the normalization step does not introduce new directives. Let {∗} ⇝s L
and {∗, unsafe-inline} ⇝s L′, we have O = {o ∈ Oscript | π1 (o) ∈ L} and O ′ = {o ∈
Oscript | π1 (o) ∈ L

′} by Lemma 3.7. Pick any str ∈ H , we have (http, str) ∈ L, hence theremust

exist an object o = ((http, str), attack) ∈ Oscript by Assumption 3. Similarly, pick any str′ ∈
N , we have (inl, str′) ∈ L′, hence there must exist an object o′ = ((inl, str′), attack’) ∈
Oscript by Assumption 3. Since o ∈ O ∩W [H , I]script and o

′ ∈ O ′ ∩W [H , I]script, we get
O ∩W [H , I]script , ∅ and O

′ ∩W [H , I]script , ∅;

(2) If p = p1 + p2 for some p1,p2, we have p♯ = p♯
1
+ p♯

2
. Let p1 ⊢ s ↢script O1 and p2 ⊢

s ↢script O2. Also, let p
♯
1
⊢ s ↢script O

′
1
and p♯

2
⊢ s ↢script O

′
2
. By induction hypothesis,

we have O1 ∩W [H , I]script , ∅ iff O ′
1
∩W [H , I]script , ∅ and O2 ∩W [H , I]script , ∅ iff

O ′
2
∩W [H , I]script , ∅. We now observe that O = O1 ∩O2 and O

′ = O ′
1
∩O ′

2
by definition,

hence O ∩W [H , I]script , ∅ iff O ′ ∩W [H , I]script , ∅ by the induction hypothesis.

□

4.5 Scheme Relaxation
The ’self’ source expression identifies the origin of the web page deploying a content security

policy. Since web origins are defined as triples including a scheme, a hostname and a port number [3],

a directive like img-src ’self’ enforced at http://a.com should only allow the inclusion of

images from a.com over HTTP. We noticed that only Microsoft Edge and Safari strictly follow the

CSP specification when interpreting ’self’. Mozilla Firefox and Chromium are instead more liberal,

since the previous directive actually allows the inclusion of images from a.com over both HTTP

and HTTPS. We observed that Mozilla Firefox and Chromium implement this scheme relaxation

also in other cases, i.e., any origin with an HTTP scheme in a directive also allows the inclusion of

contents served over HTTPS from the same domain.

Though it is not mentioned in the CSP specification, the scheme relaxation mechanism im-

plemented in Mozilla Firefox and Chromium looks perfectly sensible, since it is secure and more

convenient for writing policies. Indeed, we noticed that this more liberal behaviour is recommended

in the current draft of CSP Level 3 [32].

5 ANALYSIS OF CSP DEPLOYMENT
To evaluate the deployment of CSP and investigate the trends in its adoption, we performed weekly

crawls of the homepages of the Alexa Top 1M [2] websites from March 2016 to August 2016,

collecting their content security policies.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:18 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

5.1 Methodology
We accessed the homepage of each website using both HTTP and HTTPS, and we collected the

content security policies received in the corresponding HTTP(S) responses. We then implemented

a policy transformation procedure, which replaces variable policy elements like nonces and report

URIs with fixed placeholders and sorts directive names in alphabetical order, and we ran a dedupli-

cation procedure on the transformed data. We finally built a dataset containing the first policy in

enforcement mode and the first policy in report-only mode sent by each website, if any. (The other

collected policies are used in Section 7.)

An important caveat applies to our dataset: since content security policies are deployed per-page

and we only crawled the homepages of the websites, it is possible that we missed policies deployed

on internal pages, e.g., used to protect private areas, or located at sub-domains. However, being

more comprehensive would require a significant engineering effort and the creation of personal

accounts at the crawled websites, a process which is notoriously hard to automate [6].

5.2 Current Adoption of CSP
Overall, we found 10,684 distinct content security policies in 16,353 websites. We only found a dozen

websites defining their policies via meta elements, while all the other websites used CSP headers.

The policies are divided as follows: 2,505 policies in enforcement mode and 8,179 policies in report-

only mode. Out of the 16,353 websites, we found 10,310 websites running CSP in enforcement mode

and 10,729 websites using the report-only mode of CSP; we thus have 4,686 websites implementing

both modes, most of which are affiliated to the popular blogging service Blogger. Though the

existence of such websites may be unexpected, combining enforcement and report-only mode is

actually encouraged by the CSP specification as a good way to enforce a relatively weak policy,

while monitoring the possibility of enforcing a stricter one.

It is interesting to observe that an earlier study [35] conducted in March 2014 identified only 850

websites using CSP in the Alexa Top 1M, hence the CSP adoption has significantly expanded in the

last two years, approximately of a ten factor. An inspection of our dataset shows that a number of

popular hosting services have deployed CSP nowadays, including Blogger, Tumblr and Shopify

among others. This justifies such a significant increase of the CSP popularity.

5.3 Common Practices in CSP Adoption
5.3.1 Unsafe Inline and Unsafe Eval. Web developers are strongly encouraged to remove all

the inline scripts from their websites to reap the biggest benefits out of CSP and limit the risks of

XSS [36]. However, previous studies assessed that moving inline scripts to external resources is not

a trivial task [34] and showed that the large majority of the websites deploying CSP just resorts

to activating ’unsafe-inline’ [35]. Nonces and hashes have been introduced in CSP Level 2 to

give web developers the possibility of white-listing individual inline scripts and stylesheets. These

mechanisms were designed to simplify a large-scale adoption of CSP and it is important to under-

stand whether or not they have been successful so far in replacing the insecure ’unsafe-inline’.
We only focus on the 2,505 policies in enforcement mode, since for them we can safely assume a

deliberate and fully-aware adoption of CSP, which is not obvious for report-only policies.

Out of 2,505 policies, 1,664 include ’unsafe-inline’ in a script-src directive (66.4%) without
making use of nonces or hashes. Only 4 policies employ hashes to white-list their inline scripts

(0.2%), while 38 policies rely on nonces (1.5%). This shows that the majority of the web developers

still enables arbitrary inline scripts in their policies and does not use the new tools available in

CSP Level 2 to white-list individual inline scripts, although they were designed to minimise code

changes to existing websites and simplify the CSP adoption. Nonces appear to be more popular

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :19

than hashes in the wild, most likely because they are easier to deploy: a single nonce can be used

to white-list all the inline elements of a web page and nonces do not need to be changed when the

code of a white-listed inline script is updated. Somewhat similar findings apply to stylesheets: 1,578

policies include ’unsafe-inline’ in a style-src directive (63.0%) without including nonces or
hashes, while only 2 policies (0.1%) use hashes to white-list stylesheets and none relies on nonces.

Notice the drop in popularity of nonces with respect to scripts, probably because the threats posed

by inline styles are typically less serious than those posed by inline scripts, though practical attacks

based on stylesheet injection have been reported in the past [10].

Finally, we found 1,621 policies (64.7%) including ’unsafe-eval’ in a script-src directive

and 136 policies (5.4%) including ’unsafe-eval’ in a style-src directive. This suggests that the

majority of the websites using CSP still resorts to dynamically transforming strings into code for

generic reasons, despite the well-recognized dangers of this programming practice.

5.3.2 Use Cases of CSP. The original goal of CSP is defining “restrictions that give web applica-

tion authors control over the content embedded on their site” [25]. However, the CSP specification

has recently evolved to include features which are orthogonal to content restriction and it seems

that these recent additions to CSP are extremely popular among web developers. In particular,

we observed that only 3,832 out of 10,310 websites running CSP in enforcement mode (37.2%) are

actually using CSP to implement some form of content restriction, i.e., their policies contain at least

one directive of the form t-src . The remaining 6,478 websites essentially use just the following

features of CSP:

• upgrade-insecure-requests: this newly proposed directive is not present in the CSP spe-

cification, but it is an official addition to the standard [31]. The directive asks web browsers

to upgrade to HTTPS a number of HTTP requests sent by CSP-protected web pages, so as

to simplify their full transition to HTTPS while avoiding mixed content error. Out of 6,478

websites which do not use CSP for implementing content restrictions, we found 4,985 web-

sites (77.0%) whose content security policy only includes the upgrade-insecure-requests
directive. The majority of these websites is hosted by Blogger;

• frame-ancestors: this directive is used to implement frame busting by giving control on

whether browsers should be allowed to embed a CSP-protected web page inside other docu-

ments by means of iframes. Out of 6,478 websites which do not use CSP for implementing

content restrictions, we found 915 websites (14.1%) using CSP just to implement frame busting.

These websites deploy very simple content security policies like frame-ancestors ’self’,
which restricts framing to same-origin pages.

6 MISCONFIGURATION OF CSP POLICIES
To evaluate whether web developers can correctly write useful content security policies, we

performed an in-depth analysis of the policies collected from the Alexa Top 1M [2], looking for

different types of misconfigurations.

6.1 Methodology
Systematically detecting misconfigurations in content security policies is challenging, as one needs

to define a meaningful notion of misconfiguration, independent of the specific use case and which

does not require to speculate on whether web developers actually enforced what they wanted to

enforce. We focus on five classes of inadequate configurations:

(1) typos and negligence: these policies include trivial syntactic errors in their specification. In

these cases it is completely clear what web developers wanted to enforce, but they specified

it incorrectly, e.g., the name of a directive was misspelled;

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:20 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

(2) ill-formed policies: these policies have an unclear intended meaning, e.g., they contain contra-

dictory or unexpected information;

(3) lack of reporting: these policies do not leverage the monitoring facilities of CSP and do not

report the presence of CSP violations to web developers. This may lead to policy problems

being undetected for a long time;

(4) harsh policies: these policies are too strict and trigger CSP violations upon normal navigation

of the website;

(5) vulnerable policies: these policies are too liberal and void the benefits of CSP, since they are

vulnerable to arbitrary script injection by web attackers.

We defined these classes of problems after a preliminary manual investigation of our dataset and

we devised appropriate queries to automatically catch them in all the websites we visited. For the

first three classes of misconfigurations, we focused on the dataset including only the first policies

delivered by each website during our weekly crawls (10,684 policies). For the last two classes of

problems, which are specific to content restriction, we only focused on the subset of the policies in

enforcement mode which actually restrict content inclusion in some way, i.e., they contain at least

one directive of the form t-src (2,130 policies).

6.2 Typos and Negligence
Syntactic errors in content security policies are very easy to catch and fix, but their import on

security is significant, because all major web browsers ignore unknown directives and just output

a warning in the JavaScript console, which may go unnoticed. If web developers are not careful

enough, they may deploy unexpectedly weak content security policies on their websites.

In our analysis, we found 14 content security policies containing unknown directives, due to

obvious typos like:

defalt-src 'self'
nfont-src www.myfonts.com
report-uri/csp-report

We clarify the security import of these kinds of trivial mistakes: the typo in the first directive leads

to the default-src directive being missing from the policy, actually white-listing every website as

a valid provider of contents without an explicit directive in the policy. Similar considerations apply

to errors like the second one, which allows browsers to load fonts from any website (assuming

the absence of a stricter default directive). Errors like the third one prevent the generation of CSP

violation reports, which may lead to attacks and policy issues going undetected for a long time.

We also noticed 20 content security policies including formatting errors, e.g., misusing punctua-

tion symbols next to directives or erroneously including CSP header information. A few represen-

tative examples are:

"default-src 'self'; ..."
default-src: 'self'
default-src='self'
Content-Security-Policy default-src 'self';

All these cases lead to (a portion of) the content security policy being skipped by the browser and

not correctly enforced, with the risks described above.

Misquoting special source expressions like ’self’ or missing the terminating colon whenwriting

a scheme like http: is another kind of error, resulting in the white-listing of a non-existing host.

This may lead to the deployment of content security policies which are more restrictive than

intended. The impact of these errors on security is thus limited, though they may lead to severe

usability issues for website users: for instance, white-listing self rather than ’self’ prevents the

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :21

browser from loading same origin contents on a CSP-protected web page. Notice that this may

even convince uncaring web developers to abandon CSP to prevent further usability issues. We

found 40 policies with such errors in source expressions.

6.3 Ill-Formed Policies
We noticed a number of content security policies with an unclear meaning or using the CSP

directives in an unexpected way. These cases are typically hard or even impossible to fix without

contacting the original authors of the policies, since it is unclear what they wanted to enforce. For

instance, we identified 8 content security policies with the following format:

script-src a.com b.com; c.com

There are at least two legitimate interpretations for incorrect policies like this one. The first

possibility is that c.com should be actually part of the script-src directive: it is plausible that

the web developer included this source expression after the semicolon by accident. The second

possibility, instead, is that the developer forgot to insert, or accidentally erased, the name of the

directive preceding c.com. Interestingly, the first error would make the policy more restrictive

than intended, while the second error could also make it more liberal, e.g., in the absence of a

default-src directive.

We also found 50 websites whose content security policy just contains the character *. This was
surprising, since such a policy does not contain any directive and it is ignored by web browsers.

The quirk was readily explained when we realised that all the 50 websites were developed using

ASP.NET, so this is likely a default behaviour implemented by the web framework when CSP

support is not properly configured. Moreover, we identified 62 websites sending an empty content

security policy. We believe this may also be connected to the use of a web development framework,

but it is also possible that the policy writers believed to get a few basic security benefits just by

activating CSP, for instance assuming that an empty policy prevents the execution of inline scripts

as it would be mandated by the CSP specification. Unfortunately, recall that this is not the case in

the browsers we tested and inline scripts are not blocked under an empty policy.

Finally, we found 22 content security policies repeating the same directive (e.g., script-src)
multiple times. In these cases, all the browsers we tested enforce the first occurrence of the directive

and ignore the other ones, as dictated by the CSP specification. It is unclear whether web developers

are really aware of how web browsers enforce such policies and why repeated directives are not

just removed, so it is legitimate to deem these cases at least as bad practices.

6.4 Lack of Reporting
We assessed the adoption of the report-uri directive to collect CSP violation reports. This is

important, since violations to content security policies without this directive are only logged in

the JavaScript console and are much more difficult to systematically detect for web developers,

because all the violations triggered by website users are lost
3
. We observed that only 706 out of

2,505 policies in enforcement mode (28.2%) specify a report-uri directive, hence most websites

do not implement a robust monitoring of their content security policies. This is surprising, since it

is very easy to activate the reporting facilities of CSP and to parse the violation reports.

We also found 51 policies in report-only mode which do not include the report-uri directive.
This is a very small fraction (0.6%) of the report-only policies we collected, but these cases are

3
In principle, it would be possible to catch these violations by registering JavaScript listeners for the SecurityPolicyViolation

event [29]. A manual investigation of a subset of the crawled websites, however, suggests that this is far from a common

practice: we were not able to find listeners for these events in any of the websites we inspected.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:22 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

particularly strange to us, since the lack of report-uri significantly reduces the benefits of

reporting and questions the purpose of these policies.

6.5 Harsh Policies
We developed a Chromium extension which intercepts the CSP headers of incoming HTTP(S)

responses and sets the report-uri directive so that any CSP violation report is redirected to a web

server under our control. We then used Selenium to drive Chromium into navigating all the websites

deploying CSP to implement content restrictions, using the extension to automatically detect CSP

violations triggered when accessing the homepage of these websites. Surprisingly, we observed

that 554 out of 3,832 websites (14.5%) trigger at least one CSP violation when their homepage is

accessed by our crawler. Notice that this is a subset of the real violations which may be triggered

upon navigation, since the crawler does not exercise any website functionality besides page loading.

It is interesting to note that 415 of these websites (74.9%) do not use the report-uri directive to
collect CSP violation reports, so it is perfectly plausible that these violations went unnoticed by

web developers. Overall, we collected 960 violation reports: we summarize the reasons for the

violations in Table 6.

Table 6. Summary of CSP Violations

Type of Violation #Violations #Websites
Presence of inline scripts 12 9

Presence of inline styles 88 80

Invocation to eval 6 6

Presence of data: or blob: URIs 43 32

Unexpected HTTP(S) inclusion 811 442

We observed 12 inline scripts blocked by CSP in 9 websites. Most of these scripts are related

to advertisement or other third-party functionalities injected in the web pages, like site metrics.

Interestingly, we also found 88 inline styles blocked by CSP in 80 websites. After a manual inves-

tigation of these cases, we noticed they are due to a high number of tiny styles applied to single

page elements, e.g., to draw borders around text boxes, which probably went unnoticed.

We then found 6 websites where a call to eval was stopped by CSP. One site used eval to invoke
decodeURIComponent on the base64 encoding of an email address, which is thus not rendered

correctly; one site invoked eval to populate some global variables needed to apply style elements to

the homepage; one other site made use of eval to check whether the web browser accessing the site
was implementing CSP correctly. The last 3 cases were more involved and harder to understand by

code inspection, though we noticed that 2 of them seem to be related to the presence of AngularJS
4
.

We also detected 43 violations in 32 websites due to the data: or blob: source expressions

being missing in a directive. Most of these cases are related to images (16 violations) and fonts (23

violations), with probably just minor visual consequences.

We finally performed a more systematic evaluation of the 811 violations fired upon requests for

HTTP(S) resources which had not been white-listed in the content security policy. We observed

in particular two recurrent patterns, which cover almost half of the violations we encountered.

First, we noticed 245 violations (30.2%) in 198 websites which are due to advertisement or tools

loaded from websites owned by Google, i.e., whose hostname contains the strings google, gstatic
or doubleclick. Part of these violations are due to the fact that google.com, often correctly

4
http://docs.angularjs.org/api/ng/directive/ngCsp

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

http://docs.angularjs.org/api/ng/directive/ngCsp

Semantics-Based Analysis of Content Security Policy Deployment :23

white-listed in the content security policy, actually enforces a redirection to google.tld, where
tld is a national top-level domain. There is no easy way to accommodate this use case in the

current CSP specification, since the syntax of policies does not allow source expressions of the

form google.* [29]. Second, we observed 114 violations (14.1%) in 57 websites due to requests

targeted at the same domain of the site or some sub-domain of it. Besides the obvious cases where

web developers forgot to include the site domain (or some sub-domain of it) in the content security

policy, we noticed two other main reasons for this kind of violations:

(1) HTTPS websites requesting contents over HTTP, despite a strong content security policy

which prevents this behaviour. These cases often occur when source expressions like ’self’
or a.com are included in the policy, since they only white-list HTTPS contents when deployed

on HTTPS pages. Some of these violations have no visible import, since modern browsers

already block requests for active contents sent over HTTP from HTTPS pages in accordance

with the mixed content policy [30];

(2) websites like http://www.a.com which load contents from http://a.com, though only

http://www.a.com is declared as a valid source for content inclusion (or vice-versa). These

cases often occur when the policy uses the ’self’ source expression, since ’self’ only

white-lists same origin contents, but http://www.a.com and http://a.com are different

origins. The occurrence of these violations thus depends on the user typing the www prefix or

not in the address bar when accessing the website, which is undesirable.

6.6 Vulnerable Policies
The last analysis we performed is about the vulnerability of existing content security policies

to script injection, based on the theory developed in Section 3.4. Using the syntactic checks in

Theorem 3.16, we observed that 1,952 out of 2,130 policies implementing some form of content

restriction are vulnerable to script injection (91.6%). We report in Table 7 the main reasons for the

vulnerability, based on the syntactic conditions defined in the theorem. The sum is higher than

2,130, since the same policy may satisfy more than one condition.

Table 7. Reasons for Vulnerability to Script Injection

Reason for Vulnerability #Policies #Websites
’unsafe-inline’ in script-src 1,654 2,367

other liberal src. exp. in script-src 229 441

no script-src + ’unsafe-inline’ in default-src 221 497

no script-src + other liberal src. exp. in default-src 129 356

no script-src + no default-src 62 96

The majority of the vulnerable policies explicitly disables protection against inline script injection

by including ’unsafe-inline’ in script-src or default-src, without making use of hashes or

nonces: this is the case for 1,875 policies, amounting to the 96.1% of the vulnerable policies. This

confirms that inline scripts are still pervasive nowadays, despite the fact that their dangers are

well-known by web developers.

7 EVOLUTION OF CSP DEPLOYMENT
We conducted a series of experiments to estimate how the adoption of CSP and existing content

security policies are evolving over time. Our goals were detecting relevant trends and assessing

whether web developers keep their content security policies constantly updated.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:24 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

7.1 Methodology
In Section 5 we performed weekly crawls of the homepages of the Alexa Top 1M [2] websites

from March 2016 to August 2016, collecting their content security policies. In all the experiments

performed so far, however, we only considered the first policy in enforcement mode and the first

policy in report-only mode sent by each website, if any. To understand the evolution of the CSP

deployment, instead, we performed a set of experiments on the full (deduplicated) dataset of policies

to track interesting patterns and trends in policy changes.

To carry out our experiments, we relied on two additional artifacts:

(1) a policy comparison tool based on the theory developed in Section 3.5. We used this tool to

systematically analyze the effects on permissiveness of the observed policy changes and we

make it available online
5
;

(2) a dataset of CSP violations collected during our weekly crawls. This was built using the

Chromium extension presented in Section 6.5 and iterating the same procedure we applied

there over the different weeks. We used this dataset to assess whether the observed policy

changes were effective at fixing existing CSP violations.

7.2 Changes in CSP Adoption
Let t1, . . . , tn be the snapshots of the content security policies collected in our weekly crawls. We

say that a website w commits to CSP if there exists a crawl ti such that w does not enforce any

policy in t1, . . . , ti−1, butw enforces a policy in ti , . . . , tn . Conversely, a websitew abdicates from
CSP if there exists a crawl ti such thatw enforces a policy in t1, . . . , ti−1, butw does not enforce any

policy in ti , . . . , tn . We plot the number of committing and abdicating websites over the different

weeks in Figure 1.

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8 9 1011121314151617181920

W
e

b
s
it
e

s

Crawl

Committing

Abdicating

Fig. 1. Committing and Abdicating Websites in 22 Weeks

We observed many more websites committing to CSP rather than abdicating from it during our

weekly crawls, which testifies a constant growth in the CSP deployment, especially in the last

weeks. Overall, we found 898 committing websites and 213 abdicating websites in the considered

timespan, leading to a net result of 685 new websites adopting CSP over 22 weeks. We observed a

relevant peak of 348 committing websites in a single week, most of which were related to Tumblr,

a well-known micro-blogging platform. Interestingly, we also noticed that 68 abdicating websites

5
http://www.dais.unive.it/~csp/csp-comparison-tool/

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

http://www.dais.unive.it/~csp/csp-comparison-tool/

Semantics-Based Analysis of Content Security Policy Deployment :25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 >5

P
e

rc
e

n
ta

g
e

Changes

Enforcement

Report-only

Fig. 2. Changes to Content Security Policies over 22 Weeks

(31.9%) triggered at least one CSP violation during our crawls. We believe that this non-negligible

amount of policy violations may quite possibly have influenced the choice of abdicating from CSP,

likely due to the challenges of configuring CSP correctly.

Another relevant trend we analyzed in the CSP adoption is the transition from report-only

to enforcement mode, which should be the most desirable outcome of a preliminary reporting

phase. Overall, we found 52 websites changing their policies from report-only to enforcement

mode during our crawls, thus fully embracing CSP, while only 14 websites switched their policies

from enforcement mode to report-only. We also found 13 websites moving to report-only just

temporarily, most likely to fix issues with their enforced policy. Only 6 websites attempted to enforce

a report-only policy at some point, but eventually resorted to switching it back to report-only mode.

All these numbers are quite small compared to the size of our study.

7.3 Changes in Content Security Policies
7.3.1 Frequency of Changes. We evaluated how frequently existingwebsites change their content

security policies. To get uniform and unbiased results, we only focused on the 7,884 websites

deploying CSP in all our weekly crawls. Figure 2 reports the distribution (in percentage) of the

considered websites with respect to the number of observed policy changes. Though the majority

of the websites we analyzed never changed their content security policies in 22 weeks, there is also

a significant number of websites which updated their policies at least once. This is the case for 1,032

websites running CSP in enforcement mode (39.9%) and for 1,078 websites running CSP in report-

only mode (20.3%). In general, policies deployed in enforcement mode undergo a major number

of changes than policies deployed in report-only mode: we believe this is reasonable, because

policies in enforcement mode may break website functionality, hence they require a more urgent

and frequent maintenance. Moreover, policies in report-only mode may have been deployed just

for a preliminary testing or as part of the default configuration of a web development framework,

with no further update or maintenance by part of the web developers.

The most surprising cases we observed in our crawls are websites which changed policy basically

every week and contribute to populating the tail of the plot: a manual investigation revealed

several pornographic websites including apparently random strings as valid hostnames for content

inclusion. In these websites, it seems that the same contents are regularly relocated on different

domains, possibly due to legal reasons or to the implementation of load balancing techniques.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:26 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P
e

rc
e

n
ta

g
e

Crawl

Fig. 3. Policies Vulnerable to Script Injection over 22 Weeks

7.3.2 Security Improvements. Another point wewanted to understand is whether web developers
are trying to improve their policies by making them robust against script injection attacks. We

did not observe significant changes in this respect on the 2,584 websites which enforced CSP

during all the weekly crawls: enforced policies which are vulnerable against script injection are

not commonly patched to improve their security, for instance by removing ’unsafe-inline’.
However, we observed that the overall percentage of websites whose content security policies are

vulnerable to script injection has decreased over time: we show the trend of this percentage in

Figure 3.

At the beginning of our weekly crawls, we noticed that the 89.0% of the websites enforcing some

kind of content restriction were vulnerable to script injection, while only the 76.2% of such websites

turned out to be vulnerable at the end of our crawls. This decrease is mostly due to a major player,

Tumblr, which deployed CSP in July. Remarkably, the policies written by Tumblr use nonces to

restrict the execution of inline scripts. We believe the introduction of nonces in CSP Level 2 may

have encouraged the adoption of the standard by a big company like Tumblr.

7.3.3 Policy Permissiveness. We analyzed the general trend of the maintenance operations per-

formed by web developers. Our goal was understanding whether changes to existing content

security policies typically make these policies more restrictive, more permissive, equivalent (refac-

toring) or incomparable (some content inclusions are enabled, other ones are disabled). Overall, we

found 6,237 policy changes in our dataset: 4,472 performed on policies in enforcement mode (71.7%)

and 1,765 performed on policies in report-only mode (28.3%). The distribution of the effect of the

policy changes is shown in Table 8. In the case of policies in enforcement mode, most changes were

intended to make policies more permissive (42.4%). This suggests that web developers perform

policy maintenance operations mostly to enable blocked functionalities, rather than to improve

security. In the case of policies in report-only mode, instead, there is an abundance of interventions

which make policies incomparable (60.4%). This is likely due to the fact that these policies are

under active development and monitoring, and less refined than policies which are enforced on

production websites. Interventions which make policies more restrictive are generally uncommon

for both kind of policies.

We also looked for websites with a monotonic behaviour, i.e., whose policy changes were always

aimed at making policies more permissive or more restrictive. Among 2,584 websites running

CSP in enforcement mode in all the weekly crawls, we found 520 websites whose policies became

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :27

Table 8. Effect of Policy Changes

Effect of Intervention Enforcement Report-only
More restrictive 125 2.8% 68 3.9%

More permissive 1,896 42.4% 144 8.1%

Equivalent 733 16.4% 487 27.6%

Incomparable 1,718 38.4% 1,066 60.4%

Total 4,472 100.0% 1,765 100.0%

consistently more permissive during our weekly crawls (20.1%), while only only 10 websites always

made their policies stricter over time (0.4%). As to the 5,300 websites running CSP in report-only

mode in all the weekly crawls, we found less widespread monotonic behaviours: 21 websites always

made their policies more permissive, while only 1 website made its policy more restrictive over

time. This is due to the fact that changes making policies incomparable are much more common in

website running CSP in report-only mode.

7.3.4 Fixing CSP Violations. Finally, we looked for correlations between changes to existing

content security policies and website functionality being reduced by policy enforcement. We

detected 5,072 violations during our crawls which disappeared at some point in time. For these

cases, we compared the content security policy p deployed after the disappearance of the violation

and a synthetic policy pv which only white-lists the originally blocked contents: if pv ≤ p, the
changes performed by the web developers were relevant to fix the violation. We identified only

645 interventions (12.7%) making policies more liberal to enable a blocked functionality, while in

4,427 cases (87.3%) the changes were not related to the violations we collected. It is interesting

to note that the very large majority of the violations disappeared though the underlying content

security policy was not actually changed to prevent them: this is likely due to the dynamic nature

of modern websites and to the widespread practice of including advertisement. The volume of these

transient violations is worrisome, since it means that it is difficult to keep content security policies

constantly updated.

Our last experimental finding is about the existence of persistent violations on website running

CSP in enforcement mode. We found 1,294 violations in 506 websites being triggered at every visit

of our crawler since they were first encountered (and for at least one month). These cases call

for policy changes, but apparently web developers are not aware of them or have been unable to

fix them correctly. We think that the first possibility is the most likely, since 365 out of the 506

websites (72.1%) do not make use of the report-uri directive.

8 PERSPECTIVE
As a result of our investigation, we observed a few important classes of problems for CSP in its

current form. We discuss them in the following, highlighting recent trends and research proposals

which go in the right direction to address them.We believe that solving these problems is paramount

to a larger and more effective CSP deployment.

8.1 CSP Monitoring
The first class of problemswe found comes from a lack (or loss) of useful feedback for web developers

when writing content security policies. Though the reporting facilities of CSP are excellent, the

large majority of the web developers do not benefit of them, since the 71.8% of the policies in

enforcement mode we collected lack a report-uri directive. A simple change we propose is making

browsers output a warning in the JavaScript console when parsing a policy lacking the report-uri

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:28 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

directive: none of the browsers we tested provides this warning. We think that recommending

the usage of report-uri would be very helpful to make web developers aware of the importance

of reporting and to prevent the deployment of policies which are too strict to work correctly

(Section 6.5). Moreover, we propose that the report-uri directive should also be leveraged to

collect CSP violation reports whenever unknown directives or ill-formed policies are parsed by

the browser. This would be useful to prevent the errors discussed in Sections 6.2 and 6.3. These

errors are not widespread, but they are a serious problem in practice, because the syntax of CSP is

very liberal and browsers are tolerant when parsing policies for the sake of backward compatibility.

Reporting these issues while enforcing the well-formed portion of the policy could be a solution

which combines backward compatibility with a better assistance for web developers.

8.2 Inline Elements
Unfortunately, the second class of problems affecting CSP is more rooted into its design. Banning

inline scripts is certainly important to mitigate code injection, but too many web developers

still activate ’unsafe-inline’ on their web pages: this is the case for the 88.0% of the policies

implementing some form of content restriction. Nonces and hashes are a step in the right direction,

but their adoption is minuscule: roughly, only the 1.5% of the websites running CSP in enforcement

mode use nonces or hashes. Moreover, inline scripts are not the only attack vector for code

injection: the 16.8% of the policies enforcing some content restriction directly includes a liberal

source expression different from ’unsafe-inline’ in its white-list for script inclusion.

8.3 White-Lists
This leads us to the more general observation that white-lists require web developers to strike a

very delicate balance between security and usability. Carefully designed white-lists are difficult to

write and to maintain, as testified by the large number of CSP violations we encountered on existing

websites: as a result, web developers resort to white-listing liberal source expressions to prevent

functionality issues. It seems that security researchers have different feelings on this important

problem: a recent study by [33] questioned the security of white-lists and proposed a full transition

to nonce-based policies, while other efforts like CSPAutoGen [22] and the Mozilla Laboratory
6

aim at developing tools for synthesizing automatically accurate content security policies based on

observable browser behaviours.

8.4 Dynamic Nature of the Web
A very delicate issue we observed is that CSP violations are often due to elements which are not

totally under the control of the author of the content security policy. In our analysis, we noticed that

redirects and advertisement systems are particularly troublesome in this respect. Redirects trigger

security violations when a white-listed origin forces a redirection to an origin which is not white-

listed. Advertisement systems, instead, have a very dynamic and unpredictable behaviour which

hardly fits the nature of a white-list, hence they end up triggering transient security violations.

In very recent work, we proposed Compositional CSP, an extension of CSP designed to tackle

these issues by assembling content security policies at runtime in the browser [5]. The core idea

of Compositional CSP is to start from a simple content security policy which only includes static

dependencies which are easy to identify for page developers, while giving to the providers of the

imported contents the ability to relax the initial policy to support their dynamic behaviour.

6
https://addons.mozilla.org/en-US/firefox/addon/laboratory-by-mozilla/

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

https://addons.mozilla.org/en-US/firefox/addon/laboratory-by-mozilla/

Semantics-Based Analysis of Content Security Policy Deployment :29

9 RELATEDWORK
9.1 CSP Semantics
In concurrent independent work, Liu et al. [16] formalized a core of the CSP 1.0 semantics. The

authors used the semantics to reason on policy permissiveness and to design algorithms for

removing redundant information from content security policies. However, they did not use the

semantics to draw conclusions on the current state of the CSP deployment and to reason on the

security of existing practices and implementations, which is the distinguishing feature of the present

paper. It is also worth mentioning that their semantics is not as comprehensive and accurate as

ours. Specifically, it does not represent inline elements and the corresponding source expressions

available in CSP, like ’unsafe-inline’ and hashes. Also, it does not support the conjunction of

policies, source expressions without an explicit scheme and the ’self’ source expression: these
features are commonly used by existing websites and make the permissiveness analysis more

complicated to formalize.

9.2 CSP Deployment
Patil and Braun [23] presented an analysis of the CSP adoption on the Alexa Top 100k in October

2013. After assessing a limited adoption of the standard, the authors proposed a tool, UserCSP,

to automatically synthesise content security policies for existing websites. This is not the only

available study, because Weissbacher, Lauinger and Robertson [35] proposed a more recent and

in-depth analysis of the CSP deployment on the Alexa Top 1M in March 2014. The authors then

discussed challenges in the CSP adoption and techniques for semi-automated policy generation.

There are many important differences between the present paper and this previous work [23, 35].

First, the focus of the works is quite different, since we are only interested in assessing the trends and

the effectiveness of the current CSP adoption, while [23, 35] put great emphasis on semi-automated

policy generation. Finding effective ways to generate content security policies is definitely an

important and intriguing research challenge, which we plan to pursue in future work. On the

other hand, the evaluation of the CSP effectiveness in [23, 35] is not nearly as comprehensive and

systematic as ours: [23, 35] do not include any evaluation of the CSP support in existing browsers,

nor any analysis of common errors in policy specification. Also the security analysis in [23, 35] is

much more limited than ours, less rigorous and not as exhaustive in covering the possible attack

vectors for XSS. Only [35] briefly touches on the point of the evolution of CSP, but it is limited to

three websites (BBC, CNN, Twitter).

Besides these methodological aspects, there are also good technological reasons motivating

further, up-to-date research on CSP. When the studies in [23, 35] were performed, CSP Level 2

did not yet exist, so there is no published research on the latest additions to the CSP standard,

e.g., hashes and nonces. Moreover, the adoption of CSP has significantly increased in the last two

years: [23] identified only 27 websites running CSP in enforcement mode, [35] found 815 websites,

while the present work identified 10,310 websites. Such a larger scale calls for a more systematic

evaluation, like the one pursued in the present paper.

Concurrently to the publication of the original version of our study [4], Weichselbaum et al. [33]

presented a large-scale analysis of the CSP deployment based on a search engine corpus of around

100 billion pages. The focus of their research is much more specific than ours, namely providing a

perspective on the insecurity of white-lists in content security policies. The authors analyzed in

particular the presence of JSONP endpoints and libraries for symbolic execution on white-listed

hosts, which allow script injection attacks, although the underlying content security policy does not

relax the default restrictions of CSP on inline scripts. These attacks are not covered by our research,

which only focuses on simpler bypasses directly enabled by the CSP semantics, rather than by the

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:30 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

insecurity of white-listed hosts. Their study also analyzed how nonces and the ’strict-dynamic’
source expression can be used to write content security policies which are more robust against

the aforementioned attacks. However, the analysis in [33] is more vertical than ours and does not

discuss a number of points which are covered by our research, like the browser implementations of

CSP, other possible misconfigurations of content security policies and the analysis of the evolution

of the CSP deployment in the wild. Moreover, their work does not include any formal analysis.

9.3 Other Works on CSP
Van Acker, Hausknecht and Sabelfeld [26] studied the current inability of CSP at preventing data

exfiltration attacks. The paper provides empirical evidence that no major web browser implements

defenses against data exfiltration in presence of DNS and resource prefetching, even when the

strongest content security policy is put in place, and proposes mitigation techniques.

Hausknecht, Magazinius and Sabelfeld [9] focused on the tension between content security

policies and browser extensions. Since browser extensions can modify the DOM, they may end

up making web pages request external resources which are not white-listed by the underlying

content security policy. The paper proposes a mechanism to endorse CSP modifications performed

by browser extensions, so as to strike a good balance between security and extensions functionality.

Hothersall-Thomas, Maffeis and Novakovic [11] presented BrowserAudit, a web application

implementing a series of more than 400 automated security tests for web browsers. Notably,

BrowserAudit also includes a set of 226 tests for CSP 1.0 divided in 10 main families. The compliance

tests for CSP implemented in BrowserAudit are simple and quite low-level, likely because the scope

of BrowserAudit is not limited to CSP, but rather embraces browser security as a whole.

Johns [13] identified three limitations of CSP leaving room for dangerous code injections: no

prevention of insecure server-side assembly of JavaScript code, lack of control over the content of

white-listed external scripts, and lack of control over the number and the appearance order of script

tags. His paper proposes a framework, called PreparedJS, which complements CSP with solutions

(or mitigations) against these attack vectors.

Some, Bielova and Rezk [24] investigated the security import of the delicate interactions between

CSP and the Same Origin Policy. If a web page embeds an iframe from its same origin, the SOP

does not isolate the iframe and the distinction between the two entities is immaterial. Since iframes

can enforce content security policies independently from their embedders, the security of a page

embedding a same-origin iframe is downgraded to the security of the most permissive content

security policy between those of the embedder and the iframe.

9.4 Large-Scale Analysis of the Web
The present paper positions itself in the popular research line of large-scale security evaluations

of the Web [27]. Just to mention a few relevant works, previous evaluations focused on other

aspects of web security, like remote JavaScript inclusion [19], DOM-based XSS [15], mixed content

websites [7], authentication cookies [6] and HSTS [14].

10 CONCLUSION
We performed a large-scale, systematic analysis of four key factors to the effectiveness of CSP:

browser support, website adoption, correct configuration and constant maintenance. Though

browser support is largely satisfactory, with the exception of few notable issues, the other three

points present significant shortcomings. The deployment of CSP is still quite limited in practice and,

more importantly, there are many errors and weaknesses in existing content security policies, which

leave room for security or usability issues. Moreover, content security policies are not regularly

updated to ban insecure practices and remove unintended security violations. We argue that many

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :31

of the problems we found can be fixed by better exploiting the reporting facilities of CSP, but other

issues deserve additional research, being more rooted into the CSP design.

Overall, CSP is growing, but not nearly as fast and effectively as desirable. Given the still relatively

limited adoption of the standard, this could be an excellent moment for a retrospective look at its

design and motivations based on the main observations we collected.

ACKNOWLEDGMENTS
This research was supported by the MIUR project ADAPT. We thank Daniel Hausknecht, Artur

Janc, Sebastian Lekies, Andrei Sabelfeld, Michele Spagnuolo and Lukas Weichselbaum for the many

lively discussions about the current state of CSP.

REFERENCES
[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn Song. 2010. Towards a formal foundation

of web security. In CSF. 290–304.
[2] Alexa. 2016. Alexa top sites. (2016). http://www.alexa.com/topsites.

[3] Adam Barth. 2011. The web origin concept. (2011). https://tools.ietf.org/html/rfc6454.

[4] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content Security Problems? Evaluating the effectiveness

of Content Security Policy in the wild. In CCS. 1365–1375.
[5] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2017. CCSP: Controlled relaxation of content security policies

by runtime policy composition. In USENIX Security Symposium.

[6] Stefano Calzavara, Gabriele Tolomei, Andrea Casini, Michele Bugliesi, and Salvatore Orlando. 2015. A supervised

learning approach to protect client authentication on the web. TWEB 9, 3 (2015), 15.

[7] Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet. 2013. A dangerous mix: large-scale analysis of

mixed-content websites. In ISC. 354–363.
[8] Matthew Van Gundy and Hao Chen. 2012. Noncespaces: using randomization to defeat cross-site scripting attacks.

Computers & Security 31, 4 (2012), 612–628.

[9] Daniel Hausknecht, Jonas Magazinius, and Andrei Sabelfeld. 2015. May I? - Content Security Policy endorsement for

browser extensions. In DIMVA. 261–281.
[10] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk. 2014. Scriptless attacks: Stealing

more pie without touching the sill. Journal of Computer Security 22, 4 (2014), 567–599.

[11] Charlie Hothersall-Thomas, Sergio Maffeis, and Chris Novakovic. 2015. BrowserAudit: automated testing of browser

security features. In ISSTA. 37–47.
[12] Trevor Jim, Nikhil Swamy, andMichael Hicks. 2007. Defeating script injection attacks with browser-enforced embedded

policies. In WWW. 601–610.

[13] Martin Johns. 2014. Script-templates for the Content Security Policy. J. Inf. Sec. Appl. 19, 3 (2014), 209–223.
[14] Michael Kranch and Joseph Bonneau. 2015. Upgrading HTTPS in mid-air: an empirical study of strict transport security

and key pinning. In NDSS.
[15] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later: large-scale detection of DOM-based XSS.

In CCS. 1193–1204.
[16] Shukai Liu, Xuexiong Yan, Qingxian Wang, and Qi Xi. 2016. A systematic analysis of Content Security Policy in web

applications. Security and Communication Networks (2016). In press.

[17] Mike Ter Louw and V. N. Venkatakrishnan. 2009. Blueprint: robust prevention of cross-site scripting attacks for

existing browsers. In S&P. 331–346.
[18] Yacin Nadji, Prateek Saxena, and Dawn Song. 2009. Document Structure Integrity: a robust basis for cross-site scripting

defense. In NDSS.
[19] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter Joosen, Christopher Kruegel,

Frank Piessens, and Giovanni Vigna. 2012. You are what you include: large-scale evaluation of remote javascript

inclusions. In CCS. 736–747.
[20] OWASP. 2013. OWASP Top 10 Threats. (2013). https://www.owasp.org/index.php/Top_10_2013-Top_10.

[21] OWASP. 2017. XSS Prevention Cheat Sheet. (2017). https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)

_Prevention_Cheat_Sheet.

[22] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou. 2016. CSPAutoGen: Black-box

Enforcement of Content Security Policy upon Real-world Websites. In CCS. 653–665.
[23] Kailas Patil and Frederik Braun. 2016. A measurement study of the Content Security Policy on real-world applications.

I. J. Network Security 18, 2 (2016), 383–392.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

http://www.alexa.com/topsites
https://tools.ietf.org/html/rfc6454
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

:32 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

[24] Dolière Francis Some, Nataliia Bielova, and Tamara Rezk. 2017. On the Content Security Policy Violations due to the

Same-Origin Policy. (2017). To appear.

[25] Sid Stamm, Brandon Sterne, and Gervase Markham. 2010. Reining in the web with Content Security Policy. In WWW.

921–930.

[26] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. 2016. Data exfiltration in the face of CSP. In ASIA CCS.
[27] Tom Van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, and Wouter Joosen. 2014. Large-scale security

analysis of the web: challenges and findings. In TRUST. 110–126.
[28] W3C. 2012. Content Security Policy 1.0. (2012). https://www.w3.org/TR/2012/CR-CSP-20121115/.

[29] W3C. 2015. Content Security Policy Level 2. (2015). https://www.w3.org/TR/CSP2/.

[30] W3C. 2015. Mixed content. (2015). https://www.w3.org/TR/mixed-content/.

[31] W3C. 2015. Upgrade Insecure Requests. (2015). https://www.w3.org/TR/upgrade-insecure-requests/.

[32] W3C. 2016. Content Security Policy Level 3. (2016). https://w3c.github.io/webappsec-csp/.

[33] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016. CSP is dead, long live CSP! On the

insecurity of whitelists and the future of Content Security Policy. In CCS. 1376–1387.
[34] Joel Weinberger, Adam Barth, and Dawn Song. 2011. Towards client-side HTML security policies. In HotSec.
[35] Michael Weissbacher, Tobias Lauinger, and William K. Robertson. 2014. Why is CSP failing? Trends and challenges in

CSP adoption. In RAID. 212–233.
[36] Mike West. 2015. An introduction to Content Security Policy. (2015). http://www.html5rocks.com/en/tutorials/

security/content-security-policy/.

A PROOFS
A.1 Proof of Lemma 3.7
We show the three points of the lemma separately. All of them are proved by induction on the

structure of the policy p:

(1) we first prove that, for all source expressions se and subjects s , ⟨se⟩s is a normal directive

value. This is done by observing that all the non-normal source expressions self, str and
∗.str are transformed into a set of normal source expressions by the normalization operator

in Definition 3.6, while all the normal source expressions are transformed into the singleton

including them.

An immediate corollary of this result is that, for all directive values v and subjects s , ⟨v⟩s is
a normal directive value, because ⟨v⟩s is defined by applying ⟨se⟩s to any se ∈ v . Now, let
p = d⃗ for some list of directives d⃗ : since ⟨p⟩s is obtained by applying ⟨v⟩s to any directive

value v occurring in d⃗ , we have that ⟨p⟩s is normal. If instead p = p1 + p2 for some p1,p2,
then ⟨p1⟩s and ⟨p2⟩s are normal by induction hypothesis, hence ⟨p⟩s = ⟨p1⟩s + ⟨p2⟩s is normal,

because the conjunction of two normal policies is normal (only directive values are relevant

for normality);

(2) the key lemma is that, for all source expressions se and subjects s , we have se⇝s L if and

only if ⟨se⟩s ⇝s L. This is proved by a case analysis on the structure of se:
• if se = self, then se⇝s {π1 (s)}, ⟨se⟩s = {π1 (s)} and ⟨se⟩s ⇝s {π1 (s)};
• if se = str, then se ⇝s {(sc, str) | π1 (π1 (s)) ▷ sc}, ⟨se⟩s = {(sc, str) | π1 (π1 (s)) ▷ sc} and
⟨se⟩s ⇝s {(sc, str) | π1 (π1 (s)) ▷ sc};
• if se = ∗.str, then se ⇝s {(sc, str′) | π1 (π1 (s)) ▷ sc ∧ ∃str′′ : str′ = str′′.str}, ⟨se⟩s =
{(sc, ∗.str) | π1 (π1 (s)) ▷ sc} and ⟨se⟩s ⇝s {(sc, str′) | π1 (π1 (s)) ▷ sc ∧ ∃str′′ : str′ = str′′.str};
• in all the other cases, we have ⟨se⟩s = {se} and the result is immediate.

An immediate corollary of this result is that, for all directive values v and subjects s , we have
v ⇝s L if and only if ⟨v⟩s ⇝s L, because ⟨v⟩s is defined by applying ⟨se⟩s to any se ∈ v .
Now, let p = d⃗ for some list of directives d⃗ and let p ⊢ s ↢t O for some set of objects O .
The judgement can only be proved by rule (D-Val), so there exists a directive value v such

that d⃗ ↓ t = v and v ⇝s L for some L such that O = {o ∈ Ot | π1 (o) ∈ L}. We then observe

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

https://www.w3.org/TR/2012/CR-CSP-20121115/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/mixed-content/
https://www.w3.org/TR/upgrade-insecure-requests/
https://w3c.github.io/webappsec-csp/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Semantics-Based Analysis of Content Security Policy Deployment :33

that the same rule must also be used to build the judgement ⟨p⟩s ⊢ s ↢t O
′
for some set

of objects O ′. However, ⟨d⃗⟩s ↓ t = ⟨v⟩s by definition and we proved that ⟨v⟩s ⇝s L, hence
we conclude that O = O ′. If instead p = p1 + p2 for some p1,p2, let p ⊢ s ↢t O for some

set of objects O . The judgement can only be proved by rule (D-Conj), so there exist two

set of objects O1,O2 such that p1 ⊢ s ↢t O1, p2 ⊢ s ↢t O2 and O = O1 ∩O2. By induction

hypothesis, we have ⟨p1⟩s ⊢ s ↢t O1 and ⟨p2⟩s ⊢ s ↢t O2, so we conclude ⟨p⟩s ⊢ s ↢t O by

rule (D-Conj), because ⟨p⟩s = ⟨p1⟩s + ⟨p2⟩s ;
(3) the key lemma is that, for all normal source expressions se and subjects s1, s2, we have that

se⇝s1 L1 and se⇝s2 L2 implies L1 = L2. This is proved by a case analysis on the structure

of se and an inspection of the rules in Table 3, observing that the subjects s1, s2 are only used

in the rules for the non-normal source expressions self, str and ∗.str.
An immediate corollary of this result is that, for all normal directive values v and subjects

s1, s2, we have v ⇝s1 L if and only if v ⇝s2 L. Now, let p = d⃗ for some list of directives d⃗ and

let p ⊢ s1↢t O for some set of objectsO . The judgement can only be proved by rule (D-Val),

so there exists a normal directive value v such that d⃗ ↓ t = v and v ⇝s1 L for some L such

that O = {o ∈ Ot | π1 (o) ∈ L}. However, we proved that also v ⇝s2 L, hence p ⊢ s2↢t O by

rule (D-Val). If instead p = p1 + p2 for some p1,p2, let p ⊢ s1↢t O for some set of objects O .

The judgement can only be proved by rule (D-Conj), so there exist two sets of objects O1,O2

such that p1 ⊢ s1↢t O1, p2 ⊢ s1↢t O2 and O = O1 ∩O2. By induction hypothesis, we have

p1 ⊢ s2↢t O1 and p2 ⊢ s2↢t O2, so we conclude p ⊢ s2↢t O by rule (D-Conj).

A.2 Proof of Lemma 3.8
Lemma A.1. Let se1, se2 be two normal source expressions. If se1 ⊑src se2, then for all subjects s we

have se1 ⇝s L1 and se2 ⇝s L2 with L1 ⊆ L2.

Proof. By a case analysis on the derivation of se1 ⊑src se2, observing that the subject used to

build the sets of locations is immaterial for normal source expressions:

• sc ⊑src ∗ with sc < {data, blob, fsys, inl}: we have L1 = {l | π1 (l) = sc} and L2 = {l | π1 (l) <
{data, blob, fsys, inl}}, hence L1 ⊆ L2;
• (sc, he) ⊑src ∗with sc < {data, blob, fsys, inl}: for all the locations l ∈ L1 we have π1 (l) = sc
and L2 = {l | π1 (l) < {data, blob, fsys, inl}}, hence L1 ⊆ L2;
• sc ⊑src (sc, ∗): we have L1 = L2 = {l | π1 (l) = sc}, hence L1 ⊆ L2;
• (sc, he) ⊑src sc: for all the locations l ∈ L1 we have π1 (l) = sc and L2 = {l | π1 (l) = sc}, hence
L1 ⊆ L2;
• (sc, str) ⊑src (sc, ∗): we have L1 = {(sc, str)} and L2 = {l | π1 (l) = sc}, hence L1 ⊆ L2;
• (sc, ∗.str) ⊑src (sc, ∗): we have L1 = {l | π1 (l) = sc∧∃str′ : π2 (l) = str′.str} and L2 = {l | π1 (l) =
sc}, hence L1 ⊆ L2;
• (sc, str′.str) ⊑src (sc, ∗.str): we have L1 = {(sc, str′.str)} and L2 = {l | π1 (l) = sc ∧ ∃str′ :
π2 (l) = str′.str}, hence L1 ⊆ L2;
• hash(str) ⊑src unsafe-inline: we have L1 = {(inl, str)} and L2 = {l | π1 (l) = inl}, hence
L1 ⊆ L2.

□

Lemma A.2. Let se be a normal source expression and v be a normal directive value. If there exists a
subject s such that se⇝s L and v ⇝s L

′ with L ⊆ L′, then there exists se′ ∈ v such that se ⊑src se′.

Proof. By a case analysis on the structure of se, using the observation that the number of source

expressions occurring in a directive value is finite:

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:34 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

• se = sc: we have L = {l | π1 (l) = sc}. Since L ⊆ L′, we must have one of the following

sub-cases:

– sc ∈ v : we have sc ⊑src sc by reflexivity;

– (sc, ∗) ∈ v : we have sc ⊑ (sc, ∗) by Table 5;

– ∗ ∈ v with sc < {data, blob, fsys, inl}: we have sc ⊑ ∗ by Table 5;

• se = ∗: we have L = {l | π1 (l) < {data, blob, fsys, inl}}. Since L ⊆ L′, we must have ∗ ∈ v ,
but ∗ ⊑src ∗ by reflexivity;

• se = (sc, str): we have L = {(sc, str)}. Since L ⊆ L′, we must have one of the following

sub-cases:

– (sc, str) ∈ v : we have (sc, str) ⊑src (sc, str) by reflexivity;

– (sc, ∗.str′) ∈ v with str = str′′.str′: we have (sc, str) ⊑ (sc, ∗.str′) by Table 5;

– (sc, ∗) ∈ v : we have (sc, str) ⊑src (sc, ∗) by Table 5;

– sc ∈ v : we have (sc, str) ⊑src sc by Table 5;

– ∗ ∈ v with sc < {data, blob, fsys, inl}: we have (sc, str) ⊑src ∗ by Table 5;

• se = (sc, ∗.str): we have L = {l | π1 (l) = sc ∧ ∃str′ : π2 (l) = str′.str}. Since L ⊆ L′, we must

have one of the following sub-cases:

– (sc, ∗.str) ∈ v : we have (sc, ∗.str) ⊑src (sc, ∗.str) by reflexivity;

– (sc, ∗) ∈ v : we have (sc, ∗.str) ⊑src (sc, ∗) by Table 5;

– sc ∈ v : we have (sc, ∗.str) ⊑src sc by Table 5;

– ∗ ∈ v with sc < {data, blob, fsys, inl}: we have (sc, ∗.str) ⊑src ∗ by Table 5;

• se = (sc, ∗): we have L = {l | π1 (l) = sc}. Since L ⊆ L′, we must have one of the following

sub-cases:

– (sc, ∗) ∈ v : we have (sc, ∗) ⊑src (sc, ∗) by reflexivity;

– sc ∈ v : we have (sc, ∗) ⊑src sc by Table 5;

– ∗ ∈ v with sc < {data, blob, fsys, inl}: we have (sc, ∗) ⊑src ∗ by Table 5;

• se = hash(str): we have L = {(inl, str)}. Since L ⊆ L′, we must have one of the following

sub-cases:

– hash(str) ∈ v : we have hash(str) ⊑src hash(str) by reflexivity;

– unsafe-inline ∈ v : we have hash(str) ⊑src unsafe-inline by Table 5;

• se = unsafe-inline: we have L = {l | π1 (l) = inl}. Since L ⊆ L′, we have unsafe-inline ∈
v , but unsafe-inline ⊑src unsafe-inline by reflexivity.

□

We can then prove Lemma 3.8 as follows. Letv1 = {se1, . . . , sem }with sei ⇝s Li for i ∈ {1, . . . ,m}
and v2 = {se′1, . . . , se

′
n } with se′j ⇝s L

′
j for j ∈ {1, . . . ,n}. We show the two points separately:

(1) assume v1 ⊑ v2 and let v1 ⇝s L1 and v2 ⇝s L2 for some s,L1,L2. By definition, we have

L1 =
⋃

i ∈{1, ...,m } Li and L2 =
⋃

j ∈{1, ...,n } L
′
j . Since v1 ⊑ v2, we know that for all sei ∈ v1

there exists se′j ∈ v2 such that sei ⊑src se′j . Hence, for all Li with i ∈ {1, . . . ,m} there exists

L′j with j ∈ {1, . . . ,n} such that Li ⊆ L′j by Lemma A.1. This implies L1 =
⋃

i ∈{1, ...,m } Li ⊆⋃
j ∈{1, ...,n } L

′
j = L2;

(2) assume v1 ⇝s L1 and v2 ⇝s L2 with L1 ⊆ L2 for some s,L1,L2. By definition, we have

L1 =
⋃

i ∈{1, ...,m } Li and L2 =
⋃

j ∈{1, ...,n } L
′
j . Assume by contradiction thatv1 @ v2, then there

exists sek with k ∈ {1, . . . ,m} such that sek ̸⊑src se′j for all j ∈ {1, . . . ,n}. By Lemma A.2 this

implies that Lk ⊈ L2, but this is contradictory since Lk ⊆ L1 ⊆ L2.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

Semantics-Based Analysis of Content Security Policy Deployment :35

A.3 Proof of Lemma 3.11
Lemma A.3. Let se1, se2 be two normal source expressions. If there exists a subject s such that

se1 ⇝s L1 and se2 ⇝s L2 with L1 ∩ L2 , ∅, then either se1 ⊑src se2 or se2 ⊑src se1.

Proof. By a case analysis on the structure of se1, observing that the subject used to build the

sets of locations is immaterial for normal source expressions:

• se1 = sc: we have L1 = {l | π1 (l) = sc}. Since L1 ∩ L2 , ∅, we must have one of the following

sub-cases:

– se2 = sc: we have sc ⊑src sc by reflexivity;

– se2 = (sc, he): we have (sc, he) ⊑src sc by Table 5;

– se2 = ∗ with sc < {data, blob, fsys, inl}: we have sc ⊑src ∗ by Table 5;

• se1 = ∗: we have L1 = {l | π1 (l) < {data, blob, fsys, inl}}. Since L1 ∩ L2 , ∅, we must have

one of the following sub-cases:

– se2 = sc with sc < {data, blob, fsys, inl}: we have sc ⊑src ∗ by Table 5;

– se2 = (sc, he) with sc < {data, blob, fsys, inl}: we have (sc, he) ⊑src ∗ by Table 5;

– se2 = ∗: we have ∗ ⊑src ∗ by reflexivity;

• se1 = (sc, str): we have L1 = {(sc, str)}. Since L1 ∩ L2 , ∅, we must have one of the following

sub-cases:

– se2 = sc: we have (sc, str) ⊑src sc by Table 5;

– se2 = (sc, str): we have (sc, str) ⊑src (sc, str) by reflexivity;

– se2 = (sc, ∗.str′) with str = str′′.str′: we have (sc, str) ⊑src (sc, ∗.str′) by Table 5;

– se2 = (sc, ∗): we have (sc, str) ⊑src (sc, ∗) by Table 5;

– se2 = ∗ with sc < {data, blob, fsys, inl}: we have (sc, str) ⊑src ∗ by Table 5;

• se1 = (sc, ∗.str): we have L1 = {l | π1 (l) = sc ∧ ∃str′ : π2 (l) = str′.str}. Since L1 ∩ L2 , ∅, we
must have one of the following sub-cases:

– se2 = sc: we have (sc, ∗.str) ⊑src sc by Table 5;

– se2 = (sc, str′) with str′ = str′′.str: we have (sc, str′) ⊑src (sc, ∗.str) by Table 5;

– se2 = (sc, ∗.str): we have (sc, ∗.str) ⊑src (sc, ∗.str) by reflexivity;

– se2 = (sc, ∗): we have (sc, ∗.str) ⊑src (sc, ∗) by Table 5;

– se2 = ∗ with sc < {data, blob, fsys, inl}: we have (sc, ∗.str) ⊑src ∗ by Table 5;

• se1 = (sc, ∗): we have L1 = {l | π1 (l) = sc}. Since L1 ∩ L2 , ∅, we must have one of the

following sub-cases:

– se2 = sc: we have (sc, ∗) ⊑src sc by Table 5;

– se2 = (sc, str): we have (sc, str) ⊑src (sc, ∗) by Table 5;

– se2 = (sc, ∗.str): we have (sc, ∗.str) ⊑src (sc, ∗) by Table 5;

– se2 = (sc, ∗): we have (sc, ∗) ⊑src (sc, ∗) by reflexivity;

– se2 = ∗ with sc < {data, blob, fsys, inl}: we have (sc, ∗) ⊑src ∗ by Table 5;

• se1 = hash(str): we have L1 = {(inl, str)}. Since L1 ∩ L2 , ∅, we must have one of the

following sub-cases:

– se2 = hash(str): we have hash(str) ⊑src hash(str) by reflexivity;

– se2 = unsafe-inline: we have hash(str) ⊑src unsafe-inline by Table 5;

• se1 = unsafe-inline: we have L1 = {l | π1 (l) = inl}. Since L1 ∩ L2 , ∅, we must have one

of the following sub-cases:

– se2 = hash(str): we have hash(str) ⊑src unsafe-inline by Table 5;

– se2 = unsafe-inline: we have unsafe-inline ⊑src unsafe-inline by reflexivity.

□

Lemma A.4 (Properties of Meet). The following properties hold true:

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

:36 Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

(1) For all normal directive values v1,v2, we have v1 ⊓v2 ⊑ v1 and v1 ⊓v2 ⊑ v2;
(2) For all normal directive values v,v1,v2, if v ⊑ v1 and v ⊑ v2, then v ⊑ v1 ⊓v2.

Proof. We show the two points separately:

(1) Let se ∈ v1 ⊓ v2, we show that there exists se′ ∈ v1 such that se ⊑src se′, which proves

v1 ⊓v2 ⊑ v1. By definition of ⊓, there are two possibilities:

• let se ∈ {se ∈ v1 | ∃se′ ∈ v2 : se ⊑src se′}. Since se ∈ v1, the conclusion follows by the

reflexivity of ⊑src;

• let se ∈ {se ∈ v2 | ∃se′ ∈ v1 : se ⊑src se′}. Then, there exists se′ ∈ v1 such that se ⊑src se′ by
definition of this set.

The proof of v1 ⊓v2 ⊑ v2 is analogous.
(2) Let v ⊑ v1 and v ⊑ v2. Assume v ⇝s L, v1 ⊓ v2 ⇝s L′, v1 ⇝s L1 and v2 ⇝s L2 for some

s,L,L′,L1,L2. We show that L ⊆ L′, which proves v ⊑ v1 ⊓v2 by Lemma 3.8. Let l ∈ L. Since
v ⊑ v1 and v ⊑ v2, we have L ⊆ L1 and L ⊆ L2 by Lemma 3.8, hence l ∈ L1 and l ∈ L2.
However, this is only possible if there exist se1 ∈ v1 and se2 ∈ v2 such that se1 ⇝s L

′
1
and

se2 ⇝s L
′
2
for some L′

1
,L′

2
such that l ∈ L′

1
and l ∈ L′

2
. By Lemma A.3, this implies that either

se1 ⊑src se2 or se2 ⊑src se1. We thus perform a case distinction:

• if se1 ⊑src se2, then se1 ∈ {se ∈ v1 | ∃se′ ∈ v2 : se ⊑src se′} ⊆ v1 ⊓ v2. This implies L′
1
⊆ L′.

Since l ∈ L′
1
, we conclude l ∈ L′;

• if se2 ⊑src se1, then se2 ∈ {se ∈ v2 | ∃se′ ∈ v1 : se ⊑src se′} ⊆ v1 ⊓ v2. This implies L′
2
⊆ L′.

Since l ∈ L′
2
, we conclude l ∈ L′.

□

Lemma A.5 (Correctness of Meet). For all normal directive values v1,v2 and subjects s , we have
v1 ⇝s L1 and v2 ⇝s L2 if and only if v1 ⊓v2 ⇝s L1 ∩ L2.

Proof. Let v1 ⇝s L1, v2 ⇝s L2 and v1 ⊓v2 ⇝s L for some subject s , we prove L ⊆ L1 ∩ L2 and
L ⊇ L1 ∩ L2:

(⊆) let l ∈ L. Since v1 ⊓ v2 ⊑ v1 and v1 ⊓ v2 ⊑ v2 by Lemma A.4, we have l ∈ L1 and l ∈ L2 by
Lemma 3.8. This implies that l ∈ L1 ∩ L2;

(⊇) let l ∈ L1 ∩ L2, then l ∈ L1 and l ∈ L2. Hence, by observing that {l } ⇝s {l }, we get {l } ⊑ v1
and {l } ⊑ v2 by Lemma 3.8. This implies {l } ⊑ v1 ⊓v2 by Lemma A.4. Hence, we get l ∈ L by

Lemma 3.8.

□

We are finally ready to prove Lemma 3.11 by induction on the structure of p. If p = d⃗ , then

p ⇓ t = d⃗ ↓ t and the conclusion is immediate by rule (D-Val). Otherwise, let p = p1 + p2. By
induction hypothesis we have:

p1 ⊢ s ↢t {o ∈ Ot | ∃L1 ⊆ L : p1 ⇓ t ⇝s L1 ∧ π1 (o) ∈ L1}
p2 ⊢ s ↢t {o ∈ Ot | ∃L2 ⊆ L : p2 ⇓ t ⇝s L2 ∧ π1 (o) ∈ L2}

By rule (D-Conj), we then have:

p1 + p2 ⊢ s ↢t {o ∈ Ot | ∃L1,L2 ⊆ L : p1 ⇓ t ⇝s L1 ∧ p2 ⇓ t ⇝s L2 ∧ π1 (o) ∈ L1 ∩ L2}.

By Lemma A.5, this leads to:

p1 + p2 ⊢ s ↢t {o ∈ Ot | ∃L ⊆ L : (p1 ⇓ t) ⊓ (p2 ⇓ t) ⇝s L ∧ π1 (o) ∈ L}.

The conclusion follows by observing that (p1 ⇓ t) ⊓ (p2 ⇓ t) = (p1 + p2) ⇓ t by definition.

ACM Transactions on the Web, Vol. 1, No. 1, Article . Publication date: October 2017.

	Abstract
	1 Introduction
	1.1 Research Goals and Contributions
	1.2 Novel Contents for Journal Publication

	2 Background: Content Security Policy
	2.1 Overview
	2.2 CSP Versions

	3 Formal Analysis of CSP Level 2
	3.1 Syntax and Semantics of CoreCSP
	3.2 Formal Reasoning on CSP Policies
	3.3 Application 1: Reasoning on Browser Implementations
	3.4 Application 2: Vulnerability to Script Injection
	3.5 Application 3: Policy Permissiveness Analysis

	4 Testing Browser Support for CSP
	4.1 Methodology
	4.2 Passed Tests
	4.3 Enforcing Multiple Policies
	4.4 Blocking Inline Elements
	4.5 Scheme Relaxation

	5 Analysis of CSP Deployment
	5.1 Methodology
	5.2 Current Adoption of CSP
	5.3 Common Practices in CSP Adoption

	6 Misconfiguration of CSP Policies
	6.1 Methodology
	6.2 Typos and Negligence
	6.3 Ill-Formed Policies
	6.4 Lack of Reporting
	6.5 Harsh Policies
	6.6 Vulnerable Policies

	7 Evolution of CSP Deployment
	7.1 Methodology
	7.2 Changes in CSP Adoption
	7.3 Changes in Content Security Policies

	8 Perspective
	8.1 CSP Monitoring
	8.2 Inline Elements
	8.3 White-Lists
	8.4 Dynamic Nature of the Web

	9 Related Work
	9.1 CSP Semantics
	9.2 CSP Deployment
	9.3 Other Works on CSP
	9.4 Large-Scale Analysis of the Web

	10 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Lemma 3.7
	A.2 Proof of Lemma 3.8
	A.3 Proof of Lemma 3.11

