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Abstract

We propose a Markov Switching Graphical Seemingly Unrelated Regression (MS-GSUR)

model to investigate time-varying systemic risk based on a range of multi-factor asset pric-

ing models. Methodologically, we develop a Markov Chain Monte Carlo (MCMC) scheme

in which latent states are identified on the basis of a novel weighted eigenvector central-

ity measure. An empirical application to the S&P100 constituents shows that cross-firm

connectivity significantly increased over the period 1999-2003 and the financial crisis of

2008-2009. Finally, we provide evidence that firm-level centrality does not correlate with

market values and is instead positively linked to realized financial losses.
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1 Introduction

The 2008-2009 financial crisis has shown that liquidity and valuation shocks may

quickly propagate across the economic system and affect financial institutions oper-

ating in different markets, with different size and business structure, thus causing

widespread losses and domino effects. Therefore, understanding the dynamics of

cross-asset and cross-equity linkages is of key importance to both systemic risk man-

agement purposes and to forecast and deal with contagion waves in times of crisis.

Systemic risk shocks are conventionally referred in the empirical network literature

as abrupt increases in the density of cross-firm connectivity (see, e.g. Billio, Getman-

sky, Lo, and Pelizzon 2012, and references therein). Modeling firms connectedness

has a long history in the empirical finance literature, starting from the seminal con-

tributions by Cont and Bouchaud (2000) and Markose (2005). Recently, network

analysis has been further supported by a series of papers that have shown its in- and

out-of-sample superior performance over traditional, correlation-based approaches.1

We extend the existing literature in a number of ways. First, we propose a system-

wide inferential scheme based on a Markov-switching graphical model, that allows to

simultaneously consider all of the possible linkages among firms through constraints

on the regime-specific conditional dependence structure. Second, we propose an iden-

tification scheme for different regimes of cross-firm connectivity based on a novel

weighted eigenvector centrality measure, which is related to both the number and

the weight of connections between graph vertices. Third, we provide an asset pric-

ing application based on otherwise standard multi-factor pricing models in which the

exposures of the assets to risk factors (betas) are allowed to change according to

the regimes in cross-firm connectivity. This allows us to develop a unified framework

where systematic and systemic risks are not mutually exclusive, in the sense that firm-

specific exposures to sources of systematic risk may directly depend on the level of

1See, e.g. Forbes and Rigobon (2000), Forbes and Rigobon (2002), Corsetti, Pericoli, and Sbracia
(2005), Corsetti, Pericoli, and Sbracia (2011), Billio et al. (2012), Hautsch, Schaumburg, and Schienle
(2015), Barigozzi and Brownlees (2014), Diebold and Yilmaz (2014),Timmermann, Blake, Tonks,
and Rossi (2014), Brownlees, Nualart, and Sun (2014), and Diebold and Yilmaz (2015), among
others.
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aggregate network connectivity.2 Finally, we provide a Metropolis-within-Gibbs sam-

pling scheme which allows to jointly draw both the parameters of the factor pricing

model, the latent states and the underlying regime-specific graphs.

Methodologically, we build upon the Gaussian Graphical model for multi-variate

systems proposed byWhittaker (1990), Dawid and Lauritzen (1993), Lauritzen (1996),

Carvalho andWest (2007), Wang andWest (2009), Wang (2010), Rodriguez, Lenkoski,

and Dobra (2011), Wang, Reeson, and Carvalho (2011) and Ahelegbey, Billio, and

Casarin (2016). In particular Wang et al. (2011) developed a dynamic matrix-

variate graphical model which allows to capture conditional dependencies under a

time-invariant graphs. We generalize and extend their framework by introducing

Markov-switching dynamics in the graph structure within a Seemingly Unrelated Re-

gression (SUR) model. In particular, we propose a new Markov Switching Graphical

SUR (MS-GSUR) which allows to identify different regimes of network connectivity

(systemic risk). The regime-switching identification problem is solved based on the

graph-theoretic properties of the state-specific conditional dependence structures of

the model error terms. More specifically, we propose a new weighted eigenvector cen-

trality measure, which accounts not only for the number of adjacent nodes, but also

for the weights of the edges and for the number of indirect connections between nodes,

i.e. walks between nodes. We show formally that our measure can be interpreted as a

weighted sum over the walks and can be related to other measures, such as Bonacich

(1972)’s and communicability (see e.g., Estrada and Hatano 2008 and Estrada and

Hatano 2009), used in the analysis of the topological features of complex networks.

The empirical application of our MS-GSUR model focuses on the cross-section of

daily excess returns of the S&P100 Index constituents over the period 1996-2014. The

emphasis on stock returns is motivated by a widespread desire of policy makers and

regulators to incorporate the most current information for the purpose of systemic risk

measurement: stock prices of largely traded stocks reflect information more rapidly

2In this paper, we define systemic risk as the risk caused by the possibility that a firm-specific
event may be severe enough to cause pervasive instability in the whole economic system; we define
instead systematic risk as the risk inherent in aggregate market and macroeconomic conditions
that cannot be simply diversified away. Moreover, we use the notions of network connectivity,
connectedness, and of systemic risk interchangeably.
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than other non-traded measures such as accounting variables, the volumes of deposits,

or loans, even though the mechanisms involving the latter variables have been at the

epicenter of a number of financial crises. The cross-firm connectivity is estimated

on the basis of the residual covariance structure of stock returns, conditioning on a

set tradable risk factors used in some of the most popular factor models, namely the

CAPM, the three-factor model of Fama and French (1993), and the Merton (1973)

intertemporal CAPM (I-CAPM). Interestingly, our results are robust across model

specifications.

The main empirical findings show that the dynamics of systemic risk can be cap-

tured by two regimes, in which a state of high connectedness characterizes the period

1999-2003 (marked by the passing of the Gramm-Leach-Bliley act, the inflating and

burst of the dot.com bubble, and the ensuing financial scandals) and subsequently, the

great financial crisis of 2008-2009. We show that a few financial institutions turned

out to heavily outweigh other firms in the network during such time intervals and

that shocks to the financial sector turned out to be the most systemically important.

Finally, both a simple cross-sectional regression and rank-correlation analysis show

that market capitalization does not sensibly drive the relevance of a given firm within

the network. However, firms which are more relevant within the network are more

likely to suffer significant losses during periods of high systemic risk.

The remainder of the paper is organized as follows. Section 2 and 3 describe the

modeling framework and the estimation strategy. Section 4 presents the empirical

results from our application. Section 5 concludes.

2 A Markov Switching Graphical SUR Model

Let yit be the stock returns of the ith firm in excess of the risk-free rate at time t,

and xit the mi-dimensional vector of systematic risk factors. In its basic formulation,

each stock return time series is modeled as a dynamic multi-factor linear model

yit = z′itβi(st) + εit, t = 1, . . . , T, i = 1, . . . , n (1)
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where the matrix zit = (1,x′
it)

′ includes an intercept plus the mi covariates, βi(st) =

(βi0(st), βi1(st), . . . , βimi
(st))

′ is a (mi + 1)-vector of time-varying regression coeffi-

cients, and εit is an error term that can be identified with a firm-specific idiosyncratic

risk factor when Cov(zit, εit) = 0. The multi-factor pricing model in (1) is fairly

general because it represents a reduced-form approximation of a linear pricing kernel

(see, e.g. Liew and Vassalou 2000, Cochrane 2001, and Vassalou 2003). The model

can be re-written in a more compact form as a SUR, i.e.

yt = Z ′
tβ(st) + εt, t = 1, . . . , T (2)

with yt = (y1t, . . . , ynt)
′ the dependent variable vector, Zt = diag {z1t, . . . , znt} the

block-diagonal matrix of covariates, β(st)
′ = (β′

1(st), . . . ,β
′
n(st)) the time-varying

coefficient vector of dimensionm = n+
∑n

i=1mi and εt = (ε1t, . . . , εnt)
′ the error terms

vector. We assume that risk factors are common across stocks and the error terms have

a full time-varying variance-covariance matrix, but are independently and normally

distributed conditionally on the latent state st, t = 1, . . . , T , i.e. εt ∼ N (0,Σ(st)).

In our model, the time-varying network is identified by the inverse variance-

covariance matrix Ω(st) = Σ(st)
−1 of the SUR error terms and a set of zero-restrictions

implied by an underlying graph G(st) ∈ G where G is the space of undirected graphs.

More precisely, we introduce a state-dependent graph defined by the ordered pair

of disjoint sets G(st) = (V (st), D(st)) where V (st) is the vertex set of n nodes and

D(st) ⊂ V (st) × V (st) defines the edge set in the state st.
3 The nodes represent

the firms within the economy and the edges define the presence of interconnections

among and across firms. If two nodes i ∈ V (st) and j ∈ V (st) are adjacent in the

graph, i.e. {i, j} ∈ D(st), then there is an interconnection between two firms. If G(st)

is an undirected graph, a Gaussian graphical model for the error terms is defined by

the assumption that εt is normally distributed with independent elements implied by

3See, e.g. Bollobás (1998, 2001) and for an introduction to graph theory.
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G(st), i.e.,
4

εit ⊥ εjt |εV (st)\{i,j} ⇐⇒ ωijt = 0, (3)

with εV (st)\(i,j) = {εlt; l ∈ V (st), l 6= i, j} ωijt (i, j = 1, . . . , n) the (i, j)-th element of

the precision matrix Ω(st). Hence, Ω(st) ∈ M(G(st)) with M(G(st)) the set of all

positive-definite symmetric matrices with elements equal to zero for all {i, j} /∈ D(st).

The Gaussian nature of our modeling framework might present clear limitations

as it does not allow to capture co-dependencies in higher moments. While a distinc-

tive attention to covariances and correlations is typical of a classical finance (i.e., of

mean-variance derivation) approach, clearly this overlooks other important aspects.

However, given our goal to use standard I-CAPM-style models to separate the notion

of systematic risk from systemic risk our choice seems a sensible one as a first step

of analysis. Moreover, given the residual nature of systemic risk, we assume there

is no given direction in the linkages among firms. This is of course a limitation of

our framework and we leave extensions to overcome its undirected nature for future

research.

The time-variation in the parameters of the MS-GSUR model is driven by a latent

first-order Markov chain process st with time-homogeneous transition probabilities

Prob(st = j|st−1 = i) = πij, i, j = 1, . . . , K, for all t = 1, . . . , T . The choice of

a regime-dependent dynamics is motivated by the common definition of contagion

and systemic risk as an abrupt increase in the cross-sectional dependence structure

of firms/sectors/countries, e.g. Forbes and Rigobon (2000), that a framework with

recurrent regimes may easily capture. Also, this class of models is popular in the

finance literature as they allow for an intuitive economic interpretation of different

market phases (see, e.g., Ang and Bekaert 2002, and Guidolin and Timmermann

4See, e.g., Erdös and Rényi (1959), Dempster (1972), Dawid and Lauritzen (1993), Giudici and
Green (1999), and Carvalho and West (2007) for more details on static specifications of graphical
models.
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2008). The Markov-switching dynamics of the SUR coefficients writes as

β(st) =
K
∑

k=1

βkI{k}(st) (4)

with I{k} (st) the indicator function which takes value one when the state st takes

value k at time t, and zero otherwise, and βk the vector of regime-specific betas. We

assume that for each state st = k there is a regime-specific covariance matrix Σ(st)

constrained by the state-specific graph Gk = (Vk, Dk) such that,

Σ(st) =
K
∑

k=1

ΣkI{k}(st) (5)

The regime-dependent feature of the covariance structure allows to address potential

heteroskedasticity biases which are typical of correlation-based measures, as discussed

in Forbes and Rigobon (2002). Also, the topological features of the state-specific

graph Gk play a crucial role in the estimation of the model since they allow us to

identify regimes of low vs. high systemic risk.

The factor model specification in (2)-(5) implies that systematic and systemic risks

are not mutually exclusive. In particular, while the exposures to systematic risks, i.e.,

the betas, depend on the latent state, the latter, as shown below, is directly identi-

fied from the network defined by model residuals, which in their turn depend on the

regression betas. A micro-foundation of such relationship is provided in Acemoglu,

Carvalho, Ozdaglar, and Tahbaz-Salehi (2012). The key insight is that if cross-firm

linkages are sufficiently asymmetric, then firm-specific shocks cannot necessarily be

diversified away, but instead may aggregate into macroeconomic fluctuations. Con-

sider for instance a negative supply shock to the oil market, e.g., OPEC’s decision

to cut production. For a given level of aggregate demand, oil prices will increase,

which will cause a decline in the profitability of transportation and manufacturing

firms, and will subsequently cause negative effects for the fundamentals of the the

consumers’ discretionary sector. Thus, a shock originated at the firm or sector level

spreads throughout the economy to progressively generate a systematic, aggregate
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shock. As a result, firms that are more central in the network will present higher

exposure to systematic risks.5

3 Inference on Parameters and Network Structure

We focus on decomposable graphs Gk, k = 1, . . . , K (see, e.g., Dawid and Lauritzen

1993). If the joint distribution of excess stock returns is Markov with respect to a

decomposable graph Gk, the joint density of yt given st = k factorizes as

p (yt|Zt,βk,Σk, Gk, st) =
∏

p∈Pk

p
(

ypt|Zpt,βpk,Σpk, st
)

/
∏

b∈Bk

p (ybt|Zbt,βbk,Σbk, st) (6)

where Pk is the set of complete prime components and Bk the set of separators. For

each subgraph g ∈ {Pk,Bk}, ygt = (yit : i ∈ g), Zgt is the corresponding matrix of

covariates, βgk = (βik : i ∈ g) the subset of factor loadings, and Σgk the relative block

of the covariance matrix of the residuals from Σk. Each term in (5) has a multivariate

normal distribution, yg ∼ N (Z ′
gβgk,Σgk), where Ωgk = Σ−1

gk is a full positive-definite

symmetric matrix. Given the graphGk, the joint distribution (5) is completely defined

by the component-specific marginal betas, covariates, and covariance matrices (see,

e.g. Giudici and Green 1999 and Carvalho and West 2007).

3.1 Prior Specification

Dawid and Lauritzen (1993) define a class of probability distributions for covariance

matrices on decomposable graphs called Hyper-inverse Wishart. Conditional on the

graph Gk, the prior distribution of the k-th state covariance matrix Σk is the Hyper-

inverse Wishart

Σk ∼ HIWGk
(ak, Ak) (7)

5In this respect, even though the interpretation of the model is non-structural, modelling the
dynamics of propagation of reduced-form shocks may provide a useful tool to understand strength
and patterns of systemic risk.
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with ak and Ak the degrees of freedom and the location parameters, respectively. We

denote this prior distribution with p(Σk|Gk). For each state st = k, the hyper-inverse

Wishart represents the unique conjugate “local prior” for complete prime components

that are inverse Wishart distributed (see Carvalho, West, and Massam 2007 for a

detailed discussion). Let Pk = {P1,k, . . . , PnP ,k} and Bk = {B1,k, . . . , BnB ,k} be the

set of nP , k prime components and nB, k separators, respectively. By generating the

tree representation of the prime components, the density of the hyper-inverse Wishart

for Σk conditional on Gk has expression

p(Σk|Gk) =

nP ,k
∏

j=1

p(ΣPj ,k)

nB ,k
∏

i=1

p(ΣBi,k)
−1 (8)

where for each prime component ΣPj ,k ∼ IW
(

ak, APj ,k

)

the density is given by

p(ΣPj ,k) ∝ |ΣPj ,k|
−(ak+2TPj,k)/2 exp

{

−
1

2
tr(Σ−1

Pj ,k
APj ,k)

}

(9)

with TPj ,k = Card(Pj, k) the cardinality of Pj, k, and APj ,k the jth diagonal block of

Ak corresponding to ΣPj ,k (see Hammersley and Clifford 1971 and Dempster 1972).6

The prior over the graph structure is defined as a Bernoulli distribution with parame-

ter ψ on each edge inclusion probability used as an initial sparse-inducing prior. That

is, a n-node graph Gk = (Vk, Dk) has a prior probability

p(Gk) ∝
∏

i,j

ψdij,k (1− ψ)(1−dij,k) ∝ ψ|Dk| (1− ψ)N−|Dk| (10)

where dij,k = 1 if {i, j} ∈ Dk and 0 otherwise and |Dk| denotes the cardinality of Dk,

which is the number of edges, or size, of the graph Gk (see Bollobás 1998, ch. 1).

Given the graph is undirected, the cardinality of |Dk| is given by
∑

i,j∈Vk
dij/2, which

is equal to N = n(n − 1)/2 if the n-node graph is complete, i.e. there is an edge

6An important question for our framework is whether hyper-inverse Wishart priors on graphical
models make sense at all in other than very low dimensions. Indeed, priors inherit the fundamental
limitation of Inverse-Wishart priors, namely a single dispersion parameter ak for all and every aspect
of uncertainty and dependency among the variance matrix entries. This assumption can be relaxed
at the price of further increasing the computational complexity of the model. However, to investigate
the trade-off between imposing more complex prior structures on the covariance matrix and the gains
in terms of systemic risk modeling is beyond the scope of the paper.
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between all pairs of nodes. The prior (10) has its peak at Nψ providing a flexible

way to directly control for prior model complexity.7 To induce sparsity and hence

obtain a parsimonious representation of the interdependence structure implied by a

graph, we choose ψ = 2/(n− 1) which would provide a prior mode in correspondence

to n edges. In addition to this baseline specification, we try two alternative prior

specifications for p (Gk) which imply either an empty edge set (i.e., an empty graph),

or a complete graph , i.e., dij,k = 1 for i,j = 1, . . . , n, i 6= j. However, in our Gibbs

sampler, the posterior distribution of the set Gk tends to reach a similar posterior

median for different starting priors, confirming the robustness in our findings.8 The

prior for the factor betas is chosen to be independent of the covariance structure,

βk ∼ N (mk,Mk) (11)

We choose for the prior distributions for the regression parameters centered around

zero and rather uninformative and common across states. The prior distribution for

the kth row of the transition matrix Π, i.e., πk = (πk1, . . . , πkK)
′ is a Dirichlet, i.e.

πk ∼ Dir (ck1, . . . , ckK) (12)

with clk the concentration hyper-parameter.

3.2 Posterior Approximation

Let us denote with yτ :t = (yτ , . . . ,yt), τ ≤ t, the data between observations τ and

t., and with G = (G1, . . . , GK) and θ = (θ1, . . . ,θK) the collections of state-specific

graphs and parameters, respectively, where θk = (βk,Σk,πk), k = 1, . . . , K. The

7An alternative uniform prior might have been used instead. However as pointed out in Jones,
Carvalho, Dobra, Hans, Carter, and West (2005), a uniform prior over the space of all graphs is
biased towards a graph with half of the total number of possible edges.

8Further results on the properties of our Gibbs sampler are available upon request.
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complete likelihood of the data is then defined as

p (y1:T , s1:T |θ, G) =
T
∏

t=1

p (yt|st,θ, G) p (st|st−1,θ) p (s0) (13)

With reference to our application, the marginal likelihood of the data accommodates

the existence of fat tails in the distribution of excess asset returns. Indeed, given the

local conjugate priors and the hyper-Markov structure of the graph Gk, one can show

that the marginal distribution conditional on the sequence of states s1:T is an hyper

Student-t (see, e.g. Dawid and Lauritzen 1993 for more details).

Let p(θ, G) ∝
∏K

k=1 p(βk)p(Σk|Gk)p(Gk) be the joint prior distribution, then the

joint posterior is p(θ, G|s1:T ,y1:T ) ∝ p (y1:T , s1:T |θ, G) p(θ, G). Because such distribu-

tion is not tractable, the estimator of the parameters and graphs cannot be obtained

in analytical form. We approximate the posterior distribution by implementing a

multi-move Gibbs sampling algorithm (see, e.g., Roberts and Sahu 1997 and Casella

and Robert 2004), where the graph structure, the hidden states, and the parameter

are all sampled in blocks.9 At each iteration the Gibbs sampler sequentially cycles

through the following steps:

1. sample s1:T given the graphs G, the parameters θ and the observations y1:T ;

2. sample Σk given s1:T , Gk and y1:T , for k = 1, ..., K

3. sample Gk given Σk, s1:T and y1:T , for k = 1, ..., K

4. sample βk given s1:T , Σk, Gk and y1:T , for k = 1, ..., K

5. sample Π given s1:T .

We extract the latent states st, t = 1, . . . , T by using a forward filtering backward

sampling (FFBS) algorithm (see Frühwirth-Schnatter 1994 and Carter and Kohn

1994). Because the latent state is discretely valued, the FFBS is applied in its Hamil-

ton (1994)’s form.

Denote Tk = {t : st = k}, and Tk = Card(Tk). Also, let etk = yt − Z ′
tβk be

the residuals conditional on the state st = k and A∗
k =

∑

t∈Tk
etke

′
tk. Given the local

9Such procedure allows to sample from the joint posterior distribution of the latent states and
parameters without rely on asymptotic distributional assumptions.
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conjugate prior in Eq.(7) the posterior for Σk is:

p (Σk|y1:T ,θ, s1:T ,βk) ∝ HIWGk
(ak + Tk, Ak + A∗

k) , (14)

See Appendix A for a proof. To sample the graphs Gk, k = 1, ..., K we compute the

unnormalized posterior over graphs p(Gk|y1:T , s1:T ) ∝ p(y1:T |s1:T , Gk)p(Gk), for any

specified state k (see, e.g. Giudici and Green 1999 and Jones et al. 2005). As in the

proof of Eq. (14), given the prior independence assumption of the parameters across

regimes,

p (Gk|y1:T , s1:T ) ∝ p (Gk)

∫ ∫

p(yTk |sTk ,βk,Σk)p(βk)p(Σk|Gk)dβkdΣk (15)

where

p(yTk |sTk ,βk,Σk) ∝ |Σk|
−Tk/2 exp

{

−
1

2
tr
(

Σ−1
k A∗

k

)

}

.

To evaluate this integral we follow Chib (1995) and Wang (2010) and approximate

the marginal likelihood via a local-move Metropolis-Hastings step based on the con-

ditional posterior p(Gk|y1:T , s1:T ). A candidate G
′

k is sampled from a proposal distri-

bution q(G
′

k|Gk) and accepted with probability

α = min

{

1,
p(G

′

k|y1:T , s1:T )q(Gk|G
′

k)

p(Gk|y1:T , s1:T )q(G
′

k|Gk)

}

= min

{

1,
p(G

′

k|y1:T , s1:T )p(G
′

k)q(Gk|G
′

k)

p(Gk|y1:T , s1:T )p(Gk)q(G
′

k|Gk)

}

This add/delete edge move proposal is rather accurate, although such accuracy comes

at the price of a substantial computational burden. The full conditional posterior

distribution of the state-specific SUR coefficient βk is conjugate and defined as

p (βk|Σk,y1:T , s1:T ) ∝ N

(

M∗
k

(

∑

t∈Tk

ZtΩkyt +M−1
k mk

)

,M∗
k

)

(16)

with M∗
k =

(
∑

t∈Tk
ZtΩkZ

′

t +M−1
k

)−1
, and Ωk = Σ−1

k is the inverse covariance matrix

given the underlying graph structure, Gk. Finally, the conjugate Dirichlet prior for
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the rows of the transition probability πk = (πk1, . . . , πkK)
′ is updated as follows

p(πk|s1:T ) ∝ Dir (ck1 +Nk1, . . . , ckK +NkK) (17)

with Nlk is the empirical transition between the lth and the kth latent discrete states,

i.e. Nlk =
∑T

t=1 ξlk,t with ξlk,t = I{k} (st) I{l} (st−1).

3.3 States Identification via Eigenvector Centrality

The likelihood function in Eq.(13) remains unchanged with respect to any state per-

mutation. Therefore, under an invariant prior specification, the posterior will also be

invariant to any state permutation (see Frühwirth-Schnatter 2006 for a review of the

label-switching and identification issues). We propose a state-identifying restriction

based on a weighted eigenvector centrality measure. In its general form, the eigen-

vector centrality of the ith firm/stock, is a quantity proportional to the sum of the

centralities of the neighbours of a vertex, so that a vertex may display a high central-

ity either by being connected to a lot of others or by being connected to others that

themselves are highly central.

As in many other fields (e.g., biology, neuroscience, and operations research),

where complex networks have been studied, it is possible to assign to each edge of

the graph a weight proportional to the intensity of the connections among the various

elements of the network. Appropriate metrics combining weighted and topological

observables have been discussed in the literature (see Rubinov and Sporns 2010 for

a review); as argued in Barrat, Barthlemy, Pastor-Satorras, and Vespignani (2004),

network metrics based on weighted edges allow us to provide a better description of

the hierarchies and organizational principles at the basis of the architecture of the

networks. In the Gaussian graphical model literature, covariances, precisions, and the

topological features of the graph, such as the paths between pairs of nodes, e.g., Jones

and West (2005), have been routinely combined together with the goal of assessing

the centrality of each node.

In our financial application, the information about the existence of a financial
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linkage between pairs of stocks is encoded in the presence or absence of an edge

between two nodes, while the strength of the linkage is measured by the covariance

between pairs of stocks. In this respect, we construct a state-specific weighted graph

defined as G̃k = (Vk, Dk, Σ̃k), where Σ̃k is a real-valued symmetric matrix, called

weight matrix, in which each entry is

σ̃ij,k =

{

σij,k if (i, j) ∈ Dk

0 otherwise
(18)

that is the weight σ̃ij,k assigned to each pair of nodes {i, j} ∈ Vk × Vk is equal to the

corresponding covariance if they are connected in state k ∈ K. The relative centrality

score for the ith firm in the weighted graph G̃k, i.e. γi,k, can then be defined as:

λkγi,k =
n
∑

j=1

σ̃ij,kγj,k (19)

where λk is some constant. With a small re-arrangement, this measure can be re-

written in a more compact form as the eigenvector equation Σ̃kγk = λkγk where

γk = (γ1,k, . . . , γn,k)
′. Since Σ̃k is real and symmetric, a unique solution is guaran-

teed to exist by the Perron-Frobenius theorem.10 As a result, our average weighted

eigenvector centrality of the graph G̃k is defined as

q(G̃k) =
1

n

n
∑

i=1

γ∗i,k (20)

where γ∗i,k is the i-th element of the eigenvector γ∗
k corresponding to the largest eigen-

value λ∗k. The advantage of (20) is that it accounts not only for the number of

connections of each node with the adjacent nodes, but also for its weight and for

the weights of the indirect connections with other nodes of the graph. The notion of

indirect connection between nodes can be more precise by means of the definitions of

walks and paths between nodes of G̃k.

10Since Bonacich (1972) proposed to use the eigenvector of the largest eigenvalue (maximal eigen-
value) as centrality measure, the eigenvector centrality is sometimes labelled Bonacich’s centrality.
See, e.g. Bollobás (1998), ch. 8, Th. 5 for a relationship between the maximal eigenvalue and the
minimal and maximal degree of a graph.
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Definition 1. A walk pij = (i0, e1, . . . , el, il) between two vertices i and j of Gk,

called endvertices, is identified by an alternating sequence of (not necessary different)

vertices Vk(pij) = {i0, i1, . . . , il} and edges Dk(pij) = {e1, . . . , el} ⊂ Dk, with e1 =

(i0, i1), el = {il−1, il}, and i0 = i and il = j. The number of edges |Dk(pij)| = l in a

walk is called “walk length”. A walk of length l is called l-walk.

Definition 2. A path pij between vertices i and j of Gk is a walk with distinct elements

in its vertex set. The shortest-path p∗ij between two vertices i and j is min
l
{pij =

(i0, e1, . . . , il, el), l ≥ 1} that is the path with the minimum length.

See Bollobás (1998), ch. 1, for further details. Proposition 1 shows that our mea-

sure can be interpreted as a weighted sum over the walks where weights are inversely

related to the length of each walk.

Proposition 1. Let G̃k = (Vk, Dk, Σ̃k) be a weighted undirected graph with vertex

set Vk = {1, . . . , n}, edge set Dk and real-valued weight matrix Σ̃k. Let us denote

with λ1,k ≤ λ2,k ≤ . . . ≤ λn,k the eigenvalues of Σ̃k, with γj,k, j = 1, . . . , n the

associated eigenvectors and with ι the n-dimensional unit vector. Assume the maximal

eigenvalue λn,k has multiplicity one, then the average eigenvector centrality measure

q(G̃k) satisfies the following

q(G̃k) = lim
β→1/λ−

n,k

1

κ(β, k)

∞
∑

l=1

βl−1σ̃l,k (21)

and

σ̃l,k =
∑

i,j∈Vk

∑

p∈P
(l)
ij,k

l
∏

r=1

σir−1ir,k

is the sum of the walk weights over the set P
(l)
ij,k of all possible l-walks between i and
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j, and,

κ(β, k) =
1

n

n
∑

i=1

βλi,k
1− βλi,k

is a normalizing factor with |βλi,k| < 1.

Proof See Appendix A.

Other centrality measures have been proposed in the literature. These include

average node degree, closeness, and betweenness. However, these measures may fail

in identifying alternative regimes of systemic risk. Degree centrality gives a simple

count of the number of connections any given firm or asset maintains, without effec-

tively discriminating the relative importance of these connections with respect to the

whole network. However, linkages across firms are not all alike: for instance, firms in

large sectors such as “industrials” are likely highly connected to other firms through

obvious supply relationships; this implies that, e.g., a demand shock to Fedex could

be more systemically important than a liquidity shock to JP Morgan, which is not

necessarily the case. Analogously, closeness and betweeness are measures of centrality

based on shortest paths between the node and all other nodes in the graph. These

measures implicitly assume simplistic and pre-determined paths and may be severely

inappropriate when applied to economic shocks. Only shocks with known destination

follow the shortest possible distance (e.g., when a firm purposely alters a relationship

with another firm to affect the stance of the latter). Instead, economic shocks are in

general unlikely to be restricted to follow specific paths but are also likely to have

feedback effects. For instance, a liquidity shock hitting a specific debtor firm could

affect its ability to pay back a loan to a bank, that could prevent the bank to extend

a credit line to another firm, that in turns will no longer afford to pay for its supply

debts; eventually, such a feedback could flow back to hit the original firm if the first

firm originating the shock and the latter were to be in a trading relationship.

Our measure addresses this issue that the existence of an edge or a shortest path

between two nodes do not necessarily measure the level of connectedness between two

nodes. In this respect, our centrality measure shares some features with the communi-
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cability measures for complex networks proposed in Estrada and Hatano (2008, 2009)

and more generally with other global connectivity measures (e.g., Qi, Fuller, Wu, Wu,

and Zhang 2012, Qi, Fuller, Luo, and Zhang 2015 and Han, Escolano, Hancock, and

Wilson 2012) admitting decompositions in walks, spanning trees, and circuits. More

specifically, the following decomposition in shortest paths and walks holds true for

our weighted eigenvector centrality measure.

Corollary 1. Let σ̃(p) =
∏l

r=1 σir−1ir,k be the weight products over the edges of walk

pij = (i0, i2, . . . , il), then the weighted eigenvector centrality measure q(G̃k) can be

written as

q(G̃k) = lim
β→1/λ−

n,k

1

κ(β, k)

∑

i,j∈Vk







∑

p∈P ∗

ij,k

βl∗ij−1σ̃(p) +
∑

l>l∗ij

βl−1
∑

p∈P
(l)
ij,k

σ̃(p)






(22)

where P ∗
ij,k and l∗ij denotes the set of the shortest paths between nodes i and j of the

graph G̃k and their length, respectively, and ∈ P
(l)
ij,k denotes the set of walks from i to

j for a given state k = 1, . . . , K.

Proof See Appendix A.

The first term in Eq.(22) reflects the connectivity due to the shortest paths and

degree distribution, while the second terms reflects the connectivity or influence be-

tween nodes at a global level, reflecting losses spreading into the financial system

forward and backward several times from a source to a destination. Thus, the mea-

sure we propose provides a better representation of more complex structures such as

scale-free or small-world networks. This aspect is also reflected by a different decom-

position of our measure into intra-cluster and inter-cluster communicability terms.

Corollary 2. The weighted eigenvector centrality measure q(G̃k) can be written as

q(G̃k) = lim
β→1/λ−

n,k

1

βκ(β, k)

∑

i∈Vk

βλi,k
1− βλi,k

(

ϕ
(1)
i,k − 2ϕ

(2)
i,k

)

(23)

where ϕ
(1)
i,k = (γ+′

i,kι)
2+(γ−

i,kι)
2 and ϕ

(2)
i,k = γ+′

i,kιγ
−′
i,kι with γ+

i,k and γ−
i,k the element-wise
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positive and negative parts of γi,k, respectively.

Proof See Appendix A.

Intuitively if the i and j entries of a eigenvector have the same sign, then the cor-

responding nodes react in a similar way to a shock propagating through the network

(see, e.g. Estrada and Hatano 2008). Thus, the nodes can be partitioned into groups

following the sign of their overall contribution (ϕ
(1)
i,k −2ϕ

(2)
i,k ) to the centrality measure.

The decomposition shows that our measure also naturally accounts for community

structures (see Fortunato 2010 for a graph-theoretic definition of community).

At this point, we have completely developed the apparatus necessary to our state

identification strategy based on network statistics. Regimes identification is now

based on the restriction

q(G̃1) < . . . < q(G̃K),

This constraint allows us to directly “separate” regimes according to the density of

the network. In this respect, one of the major advantages of this identification scheme

is that we can give a clear economic interpretation to the regimes: the first regime

is associated with the lowest level of systemic risk and hence the lowest average

of centrality scores across firms, the second regime with the next lowest average

incidence of systemic risk, and so on, with the last regime associated with the strongest

incidence of systemic risk. Appendix B shows the efficiency of the MCMC posterior

approximation procedure based on simulated datasets.

4 Empirical Analysis

Our application focusses on all the constituents stocks of the S&P100 index for which

we have at least fifteen years of continuous trading days as of the end of our sample

(this makes our cross-section equal to n = 83). The sample period is May 1996 -

October 2014. The constituents of the S&P 100 represent about 63% of the market

capitalization of the S&P 500 and about a half of the total market capitalization of
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the U.S. equity markets as of January 2017. These stocks tend to be the largest and

most established companies in the U.S., which mitigates liquidity concerns.

We analyze three popular linear asset pricing models starting from the plain vanilla

CAPM, then extended to the three-factor model proposed by Fama and French (1993)

to include both size and value factor-mimicking portfolios, to conclude with a recently

offered implementation of the Merton (1973) intertemporal CAPM in which the ag-

gregate dividend yield and fixed income default and term spread are considered as

state variables in addition to the excess returns on the market portfolio. The default

spread is computed as the difference between the yields of long-term corporate Baa

bonds and long-term government bonds and should reflect a risk premium for the ag-

gregate risk of firm’s default on their debt obligations. The term spread is measured

as the difference between the yields on 10- and 1-year government bonds, and reflects

the slope of the risk-free yield curve, a well-know business cycle leading indicator.11

For ease of exposition, we report the results for the three-factor Fama-French model

and the I-CAPM. In fact, the results for the CAPM are largely overlapping with the

I-CAPM.12

4.1 Estimates of Latent States and Parameters

A priori, we assume that the latent states are persistent. This is based on the conven-

tional wisdom that posits that systemic risk is not a quickly mean-reverting process

(see, e.g., Forbes and Rigobon 2002, Billio et al. 2012 and Diebold and Yilmaz 2014).

In our application, we set the hyper-parameters to be rather uninformative: mk = 0

and Mk = 1000In for each k = 1, . . . , K, i.e., the prior structure is assumed not to

differ across low vs high systemic risk states.

11Data on corporate bonds and Treasuries are from the Fred II database of the Federal Reserve
Bank of St.Louis. Following Campbell (1996) in the I-CAPM implementation, we use as the state
variables (factors) the innovations estimated from a first order Vector Auto-Regressive VAR(1)
process. Thus, for each collection of the CRSP aggregate value-weighted market portfolio and the
candidate set of risk factors ht, we estimate ht = B0 + B1ht−1 + ηt for t = 1, . . . , T . Following
Petkova (2006), the innovations ηt are orthogonalized relative to the excess return on the aggregate
wealth and scaled to have the same variance.

12Simple CAPM results are available from the authors upon request. Note that the reduced-form
nature of our framework necessarily makes all empirical results sample-specific.
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The prior for the Hyper-Inverse Wishart distribution is also set to be fairly vague,

albeit proper, by selecting ak = 3 and Ak = 0.0001In. Finally, the marginal prior for

the graph space is a Bernoulli distribution with ψ = 2/ (n− 1) which would provide a

prior mode at n edges. In order to further reduce the sensitivity of posterior estimates

to the prior specification, we use the initial 20% of the draws as burn-in sample.

In Appendix C we formally test for the number of regimes; evidence from Bayes

factors are clearly in favour of a specification with two-regimes. Figure 1 and 2

show the filtered probability of being in a state of high systemic risk across different

regression specifications as well as the transition probabilities of the latent states,

respectively. The gray area represents the systemic risk probability, while the red

solid line shows the NBER recession indicator for the period following the peak of

the recession to the trough.

[Insert Figure 1 and 2 about here]

Figure 1 shows that high network connectivity has characterized the period 2001-

2002 (i.e., the dot.com bubble, the market fears that followed the September 2001

terror attacks, the Enron and Worldcom financial scandals, and the unfolding of the

events leading to the second Iraqi war), and the great financial crisis of 2008-2009.

Although there is an obvious mis-matching between the ex-post identification of the

high network connectivity regime and the NBER business cycle indicator over the

period 1998-2002, the NBER recession and high systemic risk tend to overlap across

the recent great financial crisis. As a whole, our filtered probabilities line up fairly

well with well-known periods of increasing turmoil in financial markets.

One comment is in order; in this paper we are not focussing on financial crises

per sé. The fact that few events at the beginning of 2000 made the economic system

more fragile and therefore could have been reflected in cross-sectional connectedness

is highly possible even though they have not, or not always, triggered full-blown

financial crisis episodes. Interestingly, we show below that also outside episodes well

known to represent financial crises, it turns out that financial firms (besides a few

specific sectors) always come to occupy a central positioning in the network because
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of their high connectivity. In this respect, the outcome that financial firms are more

relevant when aggregate connectivity is high is endogenously generated and not driven

by the selection of stocks in the financial industry as test assets.

Figure 2 shows standard confidence box plots for the posterior transition probabil-

ities across different regression specifications. The first (last) three columns represent

the probability of staying in a state of low (high) systemic risk. Under all regression

specifications, states of high systemic risk are rather persistent, with an approxi-

mate median probability of πhh = 0.9. The probability of staying in a regime of

high network connectdness is slightly lower than the corresponding probability of a

lack of systemic risk to persist, which is compatible with the empirical evidence that

turbulent periods of crisis and contagion tend to be less persistent than “normal”

times.

Figure 3 and 4 plot the posterior of the between-state differences of conditional

intercepts, i.e., the so-called Jensen’s alphas, and betas from the Fama-French three-

factor model and an I-CAPM implementation, respectively. For each stock in our

sample, we report the box-plot of the posterior distributions of the parameters. For

ease of exposition, we cluster the ticks on the horizontal axis according to an indus-

try classification, in the sense that posterior of the different coefficients for each of

the stocks are grouped around a tick that indicates the industry they belong to. The

top-left panel shows the difference in the regime-specific Jensen’s alphas for the three-

factor model. Interestingly, we estimate substantial changes in the abnormal average

pricing error across different regimes of network connectivity. Such differences, espe-

cially those derived from the I-CAPM, are predominantly positive, i.e., alphas tend

to be higher in calm, low systemic risk environments, when as a result, factor pric-

ing models seem to systematically under-estimate average excess returns. Therefore

it is when the meta-factor represented by systemic risk variations is added into the

picture that the factor models are providing the best performance, in terms of lower

Jensen’s alphas. Moreover, the exposure to market risk (top-right panel) increases

quite dramatically in states of high systemic risk and this tends to occur across most

stocks, even though the effect is especially visible for stocks from the financial sector,
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when the increase in mean posterior beta is in the order of almost 0.3. A similar

increasing exposure to market risk, is also estimated for some stocks in the Materials

and Tech industries. Similarly, the finance sector seems to be more exposed to the

value risk factor (bottom-right panel) when aggregate connectedness is estimated to

be higher. The Industrial and Materials sectors also show an increasing exposure to

value mimicking factor portfolio when systemic risk is higher.

[Insert Figures 3 and 4 about here]

Figure 4 shows similar results for the I-CAPM specification. The market betas (top-

right panel) behave in a way that is hard to tell apart from the Fama-French three-

factor regression specification. Unlike the three-factor model, the Energy sector shows

now that the impact of market risk tend to be lower when network connectivity is

high. The bottom-left panel shows the change of betas on default risk. On average,

the exposure to default risk is higher when systemic risk is high, although for a

large fraction of the sample such negative relationship is hardly significant, in the

sense that posterior confidence regions often include a zero difference in betas. The

bottom-right panel shows that stock exposures to dividend yield risk tend to display

instead a counter-cyclical effect for both the Energy and Financial sectors, in the

sense that betas are higher during periods of crisis and high systemic risk. Also Tech

firms tend to react more to a surprise in the dividend yield in periods of high systemic

risk.

4.2 Network Estimates

Under the MCMC estimation scheme outlined in section 3, it is possible to define the

posterior distribution of the graph and covariances p(Σk, Gk|y1:T ) and to assess the

statistical properties of the firm-specific network contribution using equation (20).

Denote as qk our weighted eigenvector centrality measure. Its posterior distribution
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can be approximated as;

pJ(qk|y1:T ) =
1

J

J
∑

j=1

δqj
k
(qk) (24)

where δ(·) is a Dirac’s delta function, qjk the average weighted centrality measure which

takes as input the state-dependent graph G
(j)
k and covariance Σ

(j)
k sampled from the

posterior distribution, and J is the number of Gibbs iterations. We explicitly account

for the posterior uncertainty associated with the weighted graph G̃k by using the

integrated measure

∫ ∫

M(Gk)×G

q(G̃k)p(Σk, Gk|y1:T )dΣkdGk ≈

∫

Q

qk pJ(qk|y1:T )dqk (25)

which is the empirical average of the sequence of measures qjk, j = 1, . . . , J , associ-

ated with the MCMC draws. We first display the network implied by the posterior

median graphs computed according to equation (25). Figures 5-6 show the results

obtained from the Fama-French three-factor model and the I-CAPM implementation,

respectively. The size and the color of the nodes are proportional to their relevance

in the network measured by weighted eigenvector centrality. The darker (bigger) the

color (size) of the node, the higher its marginal contribution to aggregate systemic

risk.

[Insert Figure 5 and 6 about here]

A few comments are in order. First, the strength of cross-firm connectedness differs

substantially across different specifications of the factor models. The network tends

to be more sparse for the I-CAPM where more state variables are included. This is

possibly due to the residual nature of the estimated network. In this respect, by in-

cluding a significant risk factor the ability of our model to clear the network structure

from spurious linkages increases. As shown in Figure 4 the betas on dividend-yield

for the I-CAPM tend to be highly significant in the cross-section of firms, which

implies that, unlike the Fama-French specification, the network from the I-CAPM

is conditional on the aggregate market under- or over-valuation. Second, financial
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firms are increasingly pivotal to the network during periods of high systemic risk.

This is consistent with the conventional wisdom that posits that the financial sector

is central in the transmission mechanism of exogenous shocks during crises. Third,

firms within the Energy sector show instead the highest degree of network centrality

in more tranquil periods.

The role of energy firms is not entirely unexpected. Historically, a number of

aggregate shocks to the US economy – that was otherwise close to a full-employment

path – have come from energy shocks and most or all such shocks did come as a

genuine surprise (as triggered by international conflicts or by OPEC’s decisions), it

is not completely surprising that we find that in good times, periods of low systemic

shocks, energy firms may occupy a more central position in the estimated network.

Figure 1 and Figures 5-6 combined, confirm that during periods of market tur-

moil, the systemic importance of the financial sector substantially increases. Finally,

the marginal importance of each firm in the network is confirmed even explicitly

conditioning on size and book-to-market beta exposures as sources of risk. In this

respect, the key role of the Financial (Energy) sector when systemic risk is high (low)

is confirmed even when size and value exposures are netted out.

We now shift our attention to the contribution of individual stocks/firms to ag-

gregate systemic risk. Figure 7 shows the top 20 stocks ranked according to the

posterior median of the weighted eigenvector centrality measure in Eq.(19). The red

(blue) line with circle (square) marks shows the centrality measure across companies

when aggregate network connectedness is low (high).

[Insert Figure 7 about here]

The left panel shows the results for the Fama-French three-factor model. In a state

of low aggregate network connectivity, energy stocks such as Exxon Mobil (XOM)

and Schlumberger (SLB), tend to carry the highest weight in the system. Moreover,

financials stocks rank at the top positions in terms of their weight in our estimates

of systemic risk in a state of high aggregate connectedness. For instance, Bank of
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America (BAC) has double the effect of Exxon Mobil (XOM) and for times the weight

of ConocoPhillips (COP) on system risk. The right panel of Figure 7 extends these

results to the I-CAPM model. First, by conditioning on macroeconomic-oriented

factors, the relative contribution of energy companies becomes now lower. Compa-

nies such as Anadarko Ptl. (APC), ConocoPhillips (COP), Occidental Ptl. (OXY),

Apache (APA), and Schlumberger (SLB) show now a much lower centrality in the

posterior estimated network. This suggests that much of the effect of energy com-

panies in the three-factor model may be due to the fact that traded factors cannot

accurately capture and represent the state of the macroeconomy, which in its turn

appears to be inherently related to energy shocks. Analogously to the Fama-French

model, however, when aggregate systemic risk is higher (blue line), the weight of

financial institutions in the network tend to dominate all other industries.

These measures of firm-specific eigenvector centrality can be generalized at the in-

dustry level by averaging γ∗
i,k within a certain industry. For instance, for the financial

sector can be approximated as

γfin,k =
1

nfin,k

∑

i∈Dfin,k

γ∗
i,k (26)

with nfin = |Dfin,k|, and Dfin,k ⊂ Dk the set of nodes associated to firms classified

in industry groups according to the Global Industry Classification Standard (GICS),

developed by MSCI. We use the first layer of classification which consists of 11 sec-

tors into which S&P has categorized all major public companies. Thus, none of the

sectors is composed by just 2-3 companies (let alone one). Such wide classification

coupled with the fact that the S&P 100 represent about 63% of the market capi-

talization of the S&P 500 likely make our industry-based results robust, at least in

their qualitative implications, with respect to more broad indexes, e.g. S&P500. The

industry-level centrality measures are obtained by taking the median of firm-specific

measures averaged out within industries. Figure 8 shows the results; left (right) panel

shows the results for the state of low (high) aggregate connectivity.

[Insert Figure 8 about here]
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Both the financial and the energy sectors tend to dominate across regimes. When ag-

gregate connectedness is high, the importance of industries such as utilities, telecom-

munications, health care, consumer staples, and discretionary consumption goods are

almost negligible. This is due to a substantial concentration of the network around

few firms that belong to either the financial and the energy industries. As a whole,

although the visual representation of the network graphs in Figures 5-6 may change

across factor pricing models, key features such as the ranking of firms and industries

in terms of their systemic importance are robust across factor pricing model specifi-

cations. A possible explanation is based on the dominance of the market risk factor,

which is included as independent variable in all of our regression specifications. In

this respect, while additional factors might help to refine the analysis of the graph

network, the key properties of cross-firm connectedness depend on the fact that a

benchmark market portfolio is included in the set of risk factors.13

4.3 Market Value, Financial Losses, and Network Centrality

The network centrality of a firm/industry is possibly linked to its relative market

value. For instance, the relative equity weight of the financial sector has dropped from

20% in 2006 to less than 10% by the end of the financial crisis of 2008-2009, when

network connectedness had been high (see Figure 1). This implies the existence of an

inverse relationship between the centrality of the financial sector and its corresponding

market value. The opposite is true for the energy sector: the relative market value

of the energy sector has increased through our sample and has tended to becomer

higher during periods characterized by high aggregate network connectivity. The

same positive relationship can be seen to apply, although to a weaker extent, to

telecommunication service stocks, while listed companies belonging to industrial and

material sectors do not display a clear mapping between their relative importance and

aggregate systemic risk. Also, the relative market value of the technology industry did

13Notice that the results that we have obtained in the application are necessarily sample-specific.
It is well possible that by ending our data sample before the Great Financial Crisis, the overall
picture concerning which firms are leading because of their network centrality may change. Once
more, this has to do with the fact that our framework is based on a reduced-form multi-factor pricing
model which does not allow to perform structural analysis.
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considerably increase during the late 1990s to then deflate back to the original values

beginning in 2000, in correspondence to the burst of what has been then defined to

be a dot.com bubble.

Because these empirical facts are rather stark, we also proceed to test for the

existence of a significant relationship between firm-level network centrality and mar-

ket values across regimes. We do so by estimating a set of univariate cross-sectional

regressions where the dependent variable is the centrality measure for each firm in

regime k, and the explanatory variable is the corresponding market value averaged

across the periods identified by regime k. We compute such regression for each factor

pricing model and the two different regimes isolated early on. For each regression, we

control for industry heterogeneity by including a fixed effect that identifies the indus-

try of where each firm belongs. We report the regression coefficient, its t-statistic, and

the adjusted R2, together with a rank-correlation coefficient as in Kendall (1938). We

first rank stocks according to their centrality within the network and then we rank

them according to their average market value across regimes. Kendall’s τ coefficient

measures the correspondence between the two rankings. Table 1 shows the empirical

results.

[Insert Table 1 about here]

We find evidence that systemic risk and market value are not decisively correlated.

Top panel shows the results for our weighted centrality measure. The slope coefficient

is low in magnitude and not statistically significant across regimes. The t-statistics

are below the 5% significance threshold, and the adjusted R2 is below 3% across

models and regimes.

One may argue that this finding does not square well with other evidence in the

literature especially in the banking and insurance sectors. Indeed, except for the peak

of the financial crisis episodes, the empirical evidence provided so far in the literature

tend to be a positive association between the contribution to systemic risk and market

capitalization or the asset value of a firm. However, on the one hand, it should be clear

that our concern was not to over-throw a result in the empirical finance literature,

but to reject a concern that our empirical network analysis may just represent an
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involute and complex way to talk about firm and/or sector value-weighted size, to

the borders of triviality. Our results in Table 1 show that this is not the case: there

is only weak correlation between market value and network connectedness, although

such correlation is indeed positive. On the other hand, clearly the largest financial

institutions caused major systemic effects (even though the largest among the US

banks, Citigroup, in fact has been little discussed and mentioned in accounts of the

crisis, even though its role in the US financial network and implied systemic risk

begs no doubts, we trust). Here the re-solution of the apparent puzzle lies in two

facts: first, our paper does not concern stock market crises, it is more generally about

the estimation of systemic weakness through network connectedness; as a result it is

possible that accounts from memorable crisis episodes may concern just a subset of

the relevant dynamic linkages that we have isolated. Second, although the financial

crisis looms large in our memories and was actually characterized by a major role

by the large institutions, there have been other, earlier crises triggered by smaller

companies (also within the financial sector, think of the case of Long-Term Capital

Management default) and sectors characterized by smaller companies (think of the

dot-com crisis).

One further implication for any systemic risk measure is its ability to accurately

correlate with potential losses experienced by firms. To this end, we test the null that

those firms more exposed to systemic risk are those that tend to have higher losses.

For each model and regime we regress the average maximum percentage financial loss

(AM%L henceforth) onto the network centrality measure for i = 1, . . . , N firms.14

Again, we control for industry heterogeneity by inclusing an industry fixed effect.

The results are reported in Table 2.

[Insert Table 2 about here]

We find that companies more exposed to the overall systemic risk of the network, i.e.,

14Suppose that a regime of high systemic risk lasts from t to t + h. The maximum percentage
loss for a firm is defined to be the maximum difference between the market capitalization of an
institution at time t and t+ h dividend by its market capitalization at time t. The average measure
is computed by averaging out such maximum percentage loss across those periods identified by the
hidden state st.
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those with higher weighted eigenvector centrality, are more likely to suffer significant

losses and hence a declining relative market value, when aggregate systemic risk is

larger. In this respect, our centrality measure is similar to the marginal expected

shortfall (MES) measure originally proposed by Acharya, Pedersen, Phillippon, and

Richardson (2017), which tracks the sensitivity of returns on stock i to a system-

wide extreme event, thereby providing a market-based measure of fragility of a firm.

Table 2 shows indeed that firms that are more contemporaneously interconnected

with the rest of the market are also those that experience major losses in terms of

market valuation in periods where such interconnections matter because systemic

risk is high. The cross-sectional regression coefficient is indeed significant at standard

confidence levels and the adjusted R2 is around 12% across models. However, such

positive correlation between network centrality and market losses is marginally less

significant when aggregate connectedness decreases, i.e., in states of low systemic risk.

Table 2 also reports a Kendall’s rank-correlation coefficient obtained by ranking

firms from 1 to N according to their centrality first and then according to the opposite

of their cumulative returns (losses) suffered across regimes. The rank correlation

results confirm that there is a significant relationship between network centrality and

value losses across firms, especially during periods of high aggregate systemic risk,

i.e., firms more exposed to systemic risks will face larger losses on average. This is

consistent with previous empirical evidence in Billio et al. (2012) and Diebold and

Yilmaz (2014), and the theoretical framework of Acemoglu et al. (2012).

5 Conclusions

In the aftermath of the great financial crisis, one of the main questions for economists

and market participants has concerned the extent to which the economy is robust

to unexpected shocks. In the language of network analysis, this translates into a

desire to understand the nature and density of cross-firm connectivity. The concern

of researchers and policy-makers alike is whether and when it may be possible for a

shock originating in a corner of a complex web of economic and financial market con-
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nections to initiate aggregate, systemic shocks with a large, widespread impact. We

address this question by developing a novel Markov Switching Graphical Seemingly

Unrelated model, which allows us to jointly estimate standard SUR-type relationships

along with firms’ or asset prices’ connectedness from the error terms of linear multi-

factor pricing model specifications. By conditioning on different sources of systematic

risk, we implicitly recognize that systematic and systemic risk might be conditionally

independent but not mutually exclusive.

Methodologically, we develop a Markov Chain Monte Carlo (MCMC) scheme

which allows to sample the posterior estimates of all the variables of interests. The

label-switching identification problem is solved using the graph-theoretic properties

of the state-specific conditional dependence structures of the regression residuals. In

this respect, we propose a new weighted eigenvector centrality measure, which ac-

counts not only for the number of adjacent nodes, but also for the weights of the

edges and for the number of indirect connections between nodes. More generally, our

new measure implies that the existence of a financial linkage between two firms is

encoded in the presence or absence of an edge, while the strength of the linkage is

measured by their covariance.
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Appendix

A Proofs of the results of Section 3

A.1 Proof of the result in Eq. 14

The complete likelihood of the data is then defined as

p (y1:T , s1:T |θ, G) =
T
∏

t=1

p (yt|st,θ, G) p (st|st−1,θ) p (s0) (A.27)

=
T
∏

t=1

(2π)−n/2 |Σ(st)|
−1/2 exp
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2
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π
ξlk,t
lk π0,

with ξlk,t = I{k} (st) I{l} (st−1). Thus the full conditional of Σk given y1:T , θ, s1:T , is

p (Σk|y1:T ,θ, s1:T ,βk) ∝
T
∏

t=1

(2π)−n/2 |Σ(st)|
−1/2 exp
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where Tk = {t : st = k}, et = yt − Z ′
tβ(st) and etk = yt − Z ′

tβk. Exploiting the

conditional independence structure encoded in k-th state graph Gk it follows

p (Σk|y1:T ,θ, s1:T ,βk) ∝
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where A∗
Pj ,k

is the block of A∗
k corresponding to ΣPj ,k, TBj ,k = Card(Bj, k) and ΣBj ,k

defined over the set of separators as Eq. (9).

A.2 Proof of Proposition 1

The proof of Proposition 1 is in two parts. First we show that our weighted eigenvector

centrality measure is the limit of the rescaled Bonacich’s c(β)centrality (see Bonacich

2007) of the graph G̃k of regime k ∈ K. In the second part we show that the

Bonacich’s c(β) centrality can be written as a state-specific weighed sum over all

walks between all pairs of nodes of the graph G̃k.

Let σ̃ij,k be the i-th row j-th column entry of Σ̃k, the relative weighted centrality

scores of G̃k

λkγi,k =
n
∑

j=1

σ̃ij,kγj,k, i = 1, . . . , n

can be re-written in a more compact format as the eigenvector equation Σ̃kγk = λkγk

with n solutions given by the eigenvalues λi,k, with λ1,k ≤ . . . ≤ λn,k, and the associ-

ated eigenvectors γk = (γ1,k, . . . , γn,k)
′. Since Σ̃k is symmetric then the decomposition

Σ̃l
k = γkΛ

l
kγ

′
k holds true with Γk = (γ1,k, . . . ,γn,k), Λk = diag{λ1,k, . . . , λn,k}, and

γi,k i = 1, . . . , n orthonormal eigenvectors.

In general, the Bonacich’s c(β) centrality can be defined as

c(β) = lim
L→∞

L
∑

l=1

βl−1Σ̃l
kι

with ι the n-dimensional unit vector. By applying the previous decomposition this

measure can be written as

c(β) = lim
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1

β

L
∑

l=1

βl(γkΛ
l
kγ

′
k)ι = lim

L→∞

1

β

L
∑

l=1

βl

(

n
∑

i=1

γi,kλ
l
i,kγ

′
i,k

)

ι =

=
1

β

n
∑

i=1

(

lim
L→∞

L
∑

l=1

βlλli,k

)

γi,kγ
′
i,kι (A.30)
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Under the assumptions the eigenvectors are orthonormal and |β| < 1/λn,k it follows

that (see, e.g. Bonacich 2007);

c(β) =
1

β

n
∑

i=1

ϕi(β, k)γi,k,

where

ϕi(β, k) =
βλi,k

1− βλi,k

Now considering the limit as β tends to 1/λ−n,k

lim
β→1/λ−

n,k

(

n
∑

i=1

ϕi(β, k)

)−1

c(β) =
n
∑

i=1

(

lim
β→1/λ−

n,k

ϕi(β, k)
∑n

j=1 ϕj(β, k)
γi,k

)

= γn,k (A.31)

since ϕn(β, k) diverges with β and ϕi(β, k) converges to a finite quantity for all i < n.

To conclude the first part of the proof we just need to find the relationship between

our centrality measure q(G̃k) and the limit given above. This follows immediately

from the definition of q(G̃k), that is

q(G̃k) =
1

n
ι′γn,k = lim

β→λ−

n,k

1

κ(β, k)
ι′c(β) (A.32)

where κ(β, k) = 1
n

∑n
j=1 ϕj(β, k).

For the second part of the proof, we can use Definition 1 and 2 in the main text

and rewrite part the right-hand side of Eq. A.32 as:

ι′c(β) = lim
L→∞

1

β

L
∑

l=1

βlι′Σ̃l
kι (A.33)

which can be further re-written as a function of the sum of the weights over all possible
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walks between all pairs of nodes;

ι′Σ̃l
kι =
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Let air−1ir,k be the (ir−1, ir)-th element of the adjacency matrix Ak associated with Gk

and P
(l)
ij,k = {(Dk(p), Vk(p)); Vk(p) = {i0, . . . , il} ⊂ Vk, Dk(p) = {e1, . . . , el} ⊂ E, i0 =

i, il = j} be the set of all walks of length l between i and j. Since
∏l

r=1 σ̃ir−1ir,k =
∏l

r=1 air−1ir,kσir−1ir,k and
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1 if (i0, e1, . . . , el, il) ∈ P
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0 otherwise

it follows that
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where
∏l

r=1 σir−1ir,k is the path weight. By plugging (A.36) in (A.33) and substituting

the result in (A.32) we obtain Eq.(21) in the text.

A.3 Proof of Corollary 1

From Proposition 1, our centrality measure has the following representation

q(G̃k) = lim
β→1/λ−

n,k

1

κ(β, k)
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Then, since it is possible to obtain a path from a walk by removing its sub-cycles we

can define for each pair of nodes i and j the set of paths P ∗
ij,k between i and j with
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minimum length l∗ij (shortest paths) and the set P
(l)
ij,k of all remaining walks between

the two nodes with length l > l∗ij . Since P
(l)
ij,k = ∅ for all l < l∗, it follows that
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which gives the desired decomposition.

A.4 Proof of Corollary 2

The weighted eigenvector centrality measure q(G̃k) can be written as

q(G̃k) = lim
β→1/λ−

n,k

1

κ(β, k)

1

β

n
∑

i=1

∞
∑

l=1

(βλi,k)
lι′γi,kγ

′
i,kι (A.38)

Let us denote the element-wise positive and negative parts of γi,k, with γ+
i,k and γ−

i,k

respectively. Then, ι′γi,k = ι′(γ+
i,k − γ−

i,k) and

n
∑

i=1

βλi,k
1− βλi,k

ι′γi,kγ
′
i,kι =
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(ι′γ+i,k)
2 +
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(ι′γ−
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2

− 2
n
∑
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βλi,k
1− βλi,k

ι′γ+i,kι
′γ−i,k

which yields the decomposition for q(G̃k) given in Eq. (23).

B Simulated Evidence

In this section, we investigate the ability of our inferential scheme to detect the exis-

tence of linkages in a network of moderate size, that represents our null model, i.e.,

from which we perform simulations. To keep simulations and estimations simple,

we consider a single-factor model. We also compare our Markov switching Gaussian

graphical model to a similar specification without the graph structure in the covari-

ance matrix of residuals. We simulate a sample of T = 1000 observations yt, for

n = 20 assets and considering a single factor Zt ∼ i.i.d. N (0, 1). For simplicity, we
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assume that the betas on a single factor are constant across assets and are different

across states, βi,1 = 0.6 and βi,2 = 1.2, for i = 1, . . . , n, as well as the existence of

two persistent states with π11 = π22 = 0.95. The residual covariance structure also

changes across regimes and is consistent with an underlying graph-based network Gk.

Network connectedness is set to be more concentrated in state st = 2, which there-

fore represents a regime of high systemic risk. To avoid any particular effect of prior

elicitation we choose fairly vague priors for both states. Top Panels of Figure A.1

show the adjacency matrix that defines the true network against the posterior median

estimates of G2;

[Insert Figure A.1 about here]

The figure makes it clear that the model has a fairly good performance in identi-

fying network connectivity; visually, the estimated network almost entirely overlaps

with the original. We further compare our Markov switching graphical model with

a benchmark without network structure in the residuals, i.e. M2, by computing the

estimation risk on Σk for different sample sizes using Stein’s loss function

L
(

Σ̂2,Σ2

)

= tr
(

Σ̂2Σ
−1
2

)

− log |Σ̂2Σ
−1
2 | − n (A.39)

where Σ̂2 and Σ2 are the posterior median estimates and true covariance matrix of

the residuals assuming st = 2, respectively. We conduct the experiment for different

sample sizes, T = 50, 100, and 200, with n = 20 assets and considering a single factor

as above, under identical specifications for the betas and state persistence. Bottom

Panel of Figure A.1 shows box plots of the risk associated by different estimators

across different sample sizes. The figure shows that our model, i.e. M1, offers large

gain over a standard Markov-switching specification. This gain is particularly sig-

nificant when the ratio between the number of assets and the sample size (n/T ) is

relatively large. This is consistent with previous evidence on the efficiency of sparse

covariance estimators (see e.g. Carvalho et al. 2007 and Wang and West 2009, among

others).
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C Testing the Number of Regimes

Our Markov regime switching Gaussian graphical model implies that network connec-

tivity is state-dependent with a finite number of regimes. Economic theory assumes

that contagion and systemic risk represent more of a shift concept than steady, recur-

ring regimes justifying our initial choice of K = 2. As a result, one may argue that

two states may not enough to capture the dynamic features of an extensive and com-

plex network such as the one that is likely defined by US equities. To deal with this

conjecture, we test the null hypothesis H0 : K = 2 against the alternative H′
1 : K = 1

and H′′
1 : K = 3 on the basis of Bayes factors comparing the model with i regimes Mi

against a model with j regimes Mj. Bayes factors are based on marginal likelihoods

(see Kass and Raftery 1995) so that comparing, a two-state vs. a j-state model can

be accomplished by computing:

Bij =
p(y1:T |Mi)p (Mi)

p(y1:T |Mj)p (Mj)
, (A.40)

As customary, values of Bi,j in excess of 10, or better values of log10 Bi,j in excess of

1 are to be considered strong evidence in favor of Mi over Mj. In our application,

the marginal likelihoods are computed by integrating out both parameter and state

uncertainty from the posterior distribution of latent states and parameters obtained

from the Metropolis-within-Gibbs sampler detailed in section 3. The marginal likeli-

hood however, is not available in closed form and can be approximated numerically

as in Chib (1995). We assume p (Mi) = p (Mj). Table C.1 shows the results across

models.

[Insert Table C.1 about here]

Panel A shows that the marginal likelihoods are systematically higher for models with

two regimes, meaning that the empirical evidence provided by Bayes factors in log-10

scale is strongly in favor of a model with two regimes vs. three states and two vs.

time-invariant models. In fact the minimal value for log10 B2,3 across different pricing

models is 6.22 while the minimal value for log10 B2,1 is 6.16. This evidence should not

be subject to dispute.
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Table 1. Network Centrality and Market Values

This table reports the results from a cross-sectional regression where the dependent variable is the
centrality measure computed for each firm and industry and the explanatory variable is the firm-
specific market value. We control for industry heterogeneity by including and industry fixed-effect
for both regimes of systemic risk. Kendall (1938) rank correlation coefficients are computed by first
ranking firms according to their centrality within the network, then ranking firms according to their
average market value for each regime. The rank correlation coefficient τ measures the correspondence
of the ranking. Standard errors are corrected for heteroskedasticity and autocorrelation in the
residuals using Newey-West HAC correction. Rank correlations are highlighted in grey when the
null hypothesis is rejected at least at a 5% significance level.

Weighted Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.021 1.201 0.012 0.054 0.011 1.291 0.021 0.061 0.021 1.254 0.013 0.045

Low 0.035 1.581 0.029 0.084 0.052 1.271 0.013 0.085 0.039 1.432 0.024 0.055
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Table 2. Network Centrality and Realized Financial Losses

This table reports the results from a cross-sectional regression model where the dependent variable is
the ranking of firms (within industries) on the basis of their average maximum percentage financial
loss suffered across the two separate regimes and the explanatory variable is the firm-specific market
value. We control for industry heterogeneity by including and industry fixed-effect for both regimes
of systemic risk. Kendall (1938) rank correlation coefficients are computed by first ranking firms
according to their centrality within the network, then ranking firms according to their average market
value for each regime. The rank correlation coefficient τ measures the correspondence of the ranking.
Standard errors are corrected for heteroskedasticity and autocorrelation in the residuals using the
Newey-West HAC correction. Rank correlations are highlighted in grey when the null hypothesis is
rejected at least at a 5% significance level.

Panel A: Weighted Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.751 2.261 0.121 0.211 0.871 2.314 0.101 0.205 0.340 2.181 0.112 0.198

Low 0.412 1.901 0.145 0.181 0.301 1.913 0.062 0.171 0.456 1.859 0.061 0.169

Table C.1. Testing the Number of Regimes

This table reports the results of a formal test for the number of regimes for each factor pricing model
specification. We report the (log) marginal likelihoods and the corresponding Bayes factor in log-
scale comparing the null hypothesis H0 : K = 2 against the alternative H′

1
: K = 1 and H′′

1
: K = 3.

Bayes factors are based on marginal likelihoods computed by integrating out both parameter and
state uncertainty from the posterior distribution of latent states and parameters obtained from the
Metropolis-within-Gibbs sampler (see Kass and Raftery 1995).

Panel A: Log Marginal Likelihoods

CAPM Fama-French I-CAPM

K = 1 −1.84e+ 06 −1.86e+ 06 −1.87e+ 06

K = 2 −1.75e+ 05 −1.63e+ 05 −1.56e+ 05

K = 3 −1.60e+ 06 −1.62e+ 06 −1.63e+ 06

Panel B: Log10 Bayes Factors

CAPM Fama-French I-CAPM

Bk=2,k=3 6.2223 6.2302 6.2346

Bk=2,k=1 6.1547 6.1632 6.1680
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Figure 1. Systemic Risk Filtered Probabilities

This figure shows the filtered probability of being in a state of high systemic risk computed from
the Markov Switching Gaussian graphical model. The left panel shows the probabilities from the
Fama-French three-factor specification, and the right panel shows the results from an I-CAPM. The
grey area represents the filtered probability of high-systemic risk, the red solid line shows the NBER
recession indicator for the period following the peak of the recession to the trough.
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Figure 2. Transition Probabilities

This figure shows the transition probabilities of the latent states from the Markov switching Gaussian
graphical model. The first (last) three columns represent the probability of staying in a state of low
(high) systemic risk. The red line shows the posterior median, the blue box reports the 25th and
75th quantiles.

I-CAPM Fama-French I-CAPM Fama-French

0.85

0.9

0.95

1

T
ra

ns
iti

on
 P

ro
ba

bi
lit

y

ll

hh

43



Figure 3. Changes in Betas Across Regimes, Three-Factor Model

This figure shows the changes in the intercepts (to be interpreted as a Jensen’s alpha because of the tradability of the factors) and betas between two
regimes of low and high systemic risk, respectively, and across stocks for the Fama-French three-factor model. The top left panel shows the changes
in the interecept, i.e. Jensen’s alpha. The top right panel reports the changes in the betas on the market portfolio. The bottom left and right panels
report the changes in the betas measuring exposures to size and value mimicking portfolios.

ConDisc ConStap Energy Financials Health Care Indust Materials Tech Telc Util

D
iff

e
re

n
ce

 a
cr

o
ss

 r
e

g
im

e
s

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Jensen's Alphas

ConDisc ConStap Energy Financials Health Care Indust Materials Tech TelcUtils

D
iff

e
re

n
ce

 a
cr

o
ss

 r
e

g
im

e
s

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Market Betas

Cons. Disc. Cons. Stap. Energy Financials Health Care Industrials Materials Tech Telec Utils

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8 Betas on the Size Mimicking Portfolio

Cons. Disc. Cons. Stap. Energy Financials Health Care Industrials Materials Tech Telec Utils

−1

−0.5

0

0.5

Betas on the Value Mimicking Portfolio

44



Figure 4. Changes in Betas Across Regimes, I-CAPM

This figure shows the changes in the intercepts (to be interpreted as a Jensen’s alpha because of the tradability of the factors) and betas between
two regimes of low and high systemic risk, respectively, and across stocks for an I-CAPM. The top left panel shows the changes in the interecept, i.e.
Jensen’s alpha. The top right panel reports the changes in the betas on the market portfolio. The bottom left and right panels report the changes on
the betas measuring exposure to default risk and aggregate dividend yield.
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Figure 5. Network Connectivity: Three-Factor Model

This figure reports the posterior median estimates of the network across regimes obtained from the Fama-French three-factor model residuals. The
left panel shows the structure of the network when cross-firm connectedness is low; the right panel shows the structure of the network when cross-firm
connectedness is high. The size and the color of the nodes are proportional to their relevance in the network measured by weighted eigenvector
centrality. The darker (bigger) the color (size) of the node, the higher its marginal contribution to aggregate systemic risk.
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Figure 6. Network Connectivity: I-CAPM

This figure reports the posterior median estimates of the network across regimes obtained from the I-CAPM model residuals. The left panel shows the
structure of the network when cross-firm connectedness is low; the right panel shows the structure of the network when cross-firm connectedness is
high. The size and the color of the nodes are proportional to their relevance in the network measured by weighted eigenvector centrality. The darker
(bigger) the color (size) of the node, the higher its marginal contribution to aggregate systemic risk.
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Figure 7. Firm-Level Network Centrality

This figure plots the posterior median weighted eigenvector centrality sorted for the top 20 stocks in
both low (red line) and high (blue line) systemic risk. The network structure is estimated from the
residuals of a Fama-French three-factor model (left panel) and an I-CAPM (right panel). Graphs
are sampled from the Metropolis-within-Gibbs sampler outlined in Section 3.

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

XOM

SLB

UTX
PG

PFE JNJ LLY BAC HON UNP COP APA OXY USB ABT CSCO PEP GD BA

COST

BAC
C

WFC

JPM

BK

XOM

CVX

INTC

AIG

CSCO

TWX
CAT

UTX APC TGT USB
KO LOW BMY

KO

M
e

d
ia

n
 W

e
ig

h
te

d
 E

ig
e

n
v
e

c
to

r 
C

e
n

tr
a

li
ty

Ranking

Three−Factor Fama−French

 

 

Low Systemic Risk
High Systemic Risk

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
C

AIG

BAC

JPM
BK

WFC
APC

CSCO
USB

PG
INTC UTX

BMY

OXY
SLB

CVX ALL JNJ DVN XOM

JNJ

COP CAT
UTX

APC
XOM INTC WFC WMT TGT

OXY BAC LLY ABT APA

CSCO UNP BA HON AXP

M
e

d
ia

n
 W

e
ig

h
te

d
 E

ig
e

n
v
e

c
to

r 
C

e
n

tr
a

li
ty

Ranking

I−CAPM

 

 

High Systemic Risk
Low Systemic Risk

Figure 8. Industry-Level Network Centrality

This figure plots the posterior median weighted eigenvector centrality clustered at the industry level.
The industry-level centrality measures are obtained by taking the median of firm-specific measures
averaged out within industries. Posterior median estimates of the network structure is computed
from the residuals of a Fama-French three-factor model (green line) and an I-CAPM specification
(blue line). Graphs are sampled from the Metropolis-within-Gibbs sampler outlined in Section 3.
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Figure A.1. Simulation Example

This figure plots the estimation results on a simulated dataset. Top panels compare the estimated
network (right) to the true one (left). The length of the simulated time series is T = 1000 and the
number of unites (assets) is n = 20. Bottom panel shows the results of applying a Stein Loss to
compare our model to a standard Markov regime-switching SUR model without network structure
in the residuals and for different sample sizes equal to T = 50, 100, 200. We consider n = 20 and a
single factor as above.
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