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Recent numerical simulations of hard helical particle systems unveiled the existence of a novel chiral
nematic phase, termed screw-like, characterised by the helical organization of the particle C2 symmetry
axes round the nematic director with periodicity equal to the particle pitch. This phase forms at high
density and can follow a less dense uniform nematic phase, with relative occurrence of the two phases
depending on the helix morphology. Since these numerical simulations were conducted under three-
dimensional periodic boundary conditions, two questions could remain open. First, the real nature of
the lower density nematic phase, expected to be cholesteric. Second, the influence that the latter, once
allowed to form, may have on the existence and stability of the screw-like nematic phase. To address
these questions, we have performed Monte Carlo and molecular dynamics numerical simulations of
helical particle systems confined between two parallel repulsive walls. We have found that the removal
of the periodicity constraint along one direction allows a relatively-long-pitch cholesteric phase to
form, in lieu of the uniform nematic phase, with helical axis perpendicular to the walls while the
existence and stability of the screw-like nematic phase are not appreciably affected by this change of
boundary conditions. Published by AIP Publishing. https://doi.org/10.1063/1.4996610

I. INTRODUCTION

The propagation of chirality from the microscopic to the
macroscopic scale is an issue of importance, both for funda-
mental science and potential applications. One very interesting
case is represented by chiral particles experiencing only steric
interactions. Within this class, one of the most natural and
simplest models is the hard helix. More than 40 years ago,1

hard helices of sufficiently high aspect ratio were predicted
to form a cholesteric (N∗c) phase, a nematic liquid-crystal2

phase in which the main (usually long) particle axes are locally
preferentially aligned parallel to one another and the aver-
age alignment axis, the nematic director (̂n), revolves in a
helical fashion round a perpendicular axis (̂h) with a half-
pitch (P/2) a few orders of magnitude larger than any particle
dimension. Within the same framework,1 a relationship was
proposed between the handedness of the N∗c phase and the
morphology (not simply the handedness) of the constituent
helices. More recently, we addressed the phase behaviour of
hard helical particles by Onsager-like (density functional) the-
ory and Monte Carlo numerical simulation.3–7 We found a rich
liquid-crystal polymorphism in terms of the helix morphology.
Particularly noteworthy was the observation of a novel chiral
nematic phase, termed screw-like (N∗s ), distinct from the N∗c
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phase. In the N∗s phase, n̂ || ĥ, and it is a transverse director (m̂)
that revolves in a helical fashion round ĥ with a pitch equal
to that of the particle. While the N∗c phase can be exhibited by
any non-racemic system of chiral nematogenic particles, the
N∗s phase is special to helical particles, and its formation sensi-
tively depends on the helix morphology. It is this N∗s phase that
was observed in experiments on colloidal suspensions of heli-
cal flagella,8 and its possible existence in dense DNA solutions
was also interestingly hypothesized.9

In our previous numerical simulations,3–7 three-
dimensional periodic boundary conditions (3D-PBC) were
used. While entirely compatible with the N∗s phase, 3D-PBC
can clearly be inadequate in the case of a N∗c phase with a
value of P/2 orders of magnitude larger than computational
box dimensions.10 In our numerical simulations, a uniform
nematic (N) phase was thus observed, which could precede
the N∗s phase on increasing density from the isotropic phase.
Theoretical calculations made by us,5,7 reproduced by oth-
ers,11–13 confirm the expectation1,3,4,6 that this N phase is
actually cholesteric while providing a prediction for the sign
and the value of the corresponding P.14–17 This could raise the
question of the actual observability of a N∗c phase for helical
particles together with that of the actual existence and stabil-
ity of the N∗s phase with respect to a change in the boundary
conditions that would allow a proper N∗c phase to form.18 The
aim of the present study is to address both these points.

The numerical simulation of cholesteric liquid crys-
tals poses specific problems.19 In the last few years, this

0021-9606/2017/147(22)/224903/10/$30.00 147, 224903-1 Published by AIP Publishing.

https://doi.org/10.1063/1.4996610
https://doi.org/10.1063/1.4996610
mailto:giorgio.cinacchi@uam.es
mailto:alberta.ferrarini@unipd.it
mailto:achille.giacometti@unive.it
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4996610&domain=pdf&date_stamp=2017-12-08


224903-2 Cinacchi et al. J. Chem. Phys. 147, 224903 (2017)

challenging objective has been particularly pursued.20–22 Hard
helical particles were marginally addressed in Ref. 21 where
difficulties arising in this case, related to the narrow stability
range of the N∗c phase and the length of P, were remarked.

Here, we further clarify the nature of the nematic phases
formed by helical particles, removing any doubt about possible
artefacts deriving by the use of 3D-PBC. By using two different
independent numerical simulation methods, Monte Carlo and
molecular dynamics, we will explicitly show the existence of
a N∗c phase for not-too-curly helical particles, thus supporting
the suggestion3–7 that the previously observed N phase will
actually turn cholesteric once 3D-PBC will have been suitably
removed, as well as confirm the existence and stability of the
N∗s phase for sufficiently curly helical particles also under these
other boundary conditions.23

In Sec. II, we will recall the model and describe the numer-
ical simulation protocols. Section III presents the results of
this study preceded by a summary of past results to cast it in
the appropriate perspective. Section IV summarises the main
findings.

II. MODEL AND COMPUTATIONAL DETAILS

In keeping with previous studies,3–7,24 the model parti-
cles considered are made of 15 partially overlapping hard-
or soft-repulsive spheres of diameter D, the unit of length,
equidistantly and rigidly arranged along a right-handed helix
of fixed contour length L = 10D, varying radius r and pitch p
and whose long and short axes are, respectively, denoted as
û and ŵ (Fig. 1).

In case the spherical beads are soft-repulsive, two of them
belonging to different particles interact via the repulsive part
V (rkl) of the common separation of the Lennard-Jones poten-
tial energy function25

FIG. 1. Illustration of a particle composed of 15 partially overlapping spher-
ical beads of diameter D whose centres are equidistantly and rigidly arranged
along a right-handed helical cord of length L, radius r, and pitch p. The mechan-
ical state of any such helical particle can be defined by specifying its reference
frame with respect to the laboratory reference frame: the position of the origin
r◦ and the orientation of the three mutually perpendicular unit vectors: û, v̂,
and ŵ.
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with rkl being the distance between the centres of beads k and
l and ε being the unit of energy.

For an on-lattice model, self-determined spiralling bound-
ary conditions were devised as the solution to the problem
of dealing with phases whose structure is characterised by
a length scale that may be incommensurate to the dimen-
sions of the lattice.26,27 In the same remarkable work,26 it
was stated that the next best solution to this problem would
be to employ free boundary conditions. For an off-lattice
model, self-determined spiralling boundary conditions can-
not be properly employed. Then, we have followed the sug-
gestion20 that a N∗c phase can be investigated in a numeri-
cal simulation by confining the system between two suitable
ĥ-perpendicular walls. The price to pay is to deal with a
confined rather than bulk system. However, if the slab is suffi-
ciently thick, the properties of the confined system sufficiently
far away from the walls are equivalent to the corresponding
properties of the bulk system.

Thus, the adopted computational protocol consists of two
parts. First, it is observed that confining between two parallel
hard- or soft-repulsive walls a sufficiently large and potentially
cholesterogenic system, previously studied under 3D-PBC and
seen to be nematogenic, does not alter its properties away from
the walls; it only makes n̂ twist and a N∗c phase result. Second, it
is observed that the N∗s phase either remains stable even under
confinement, when a N∗c phase could form, or spontaneously
develops when starting from a cholesteric configuration.

(Enantiomerically) pure systems of N ∈ [1500, 5000]
(freely translating and rotating) hard- or soft-repulsive helical
particles, identified by the pair (r, p), were placed between two
fixed parallel, respectively, hard- or soft-repulsive, flat walls
perpendicular to the x axis of the laboratory reference frame.
In case of soft-repulsive walls, their interactions with a spher-
ical bead k were described via the potential energy function
W9/3(rk)

W9/3(rk) =


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with rk being the distance of the centre of the spherical bead
k from a wall. Such helical-particle–wall interactions promote
planar alignment of the helical particles close to the walls so
that ĥ ‖x.

The systems were investigated via, respectively, the
Monte Carlo (MC) method28 or the molecular dynamics (MD)
method.29 Both were run in the isobaric-isothermal (NPT)
ensemble30–32 for several values of pressure P measured in
units kBT/D3, with kB being the Boltzmann constant and T
being the absolute temperature, in the MC case and in units
ε /D3, with kBT/ε = 1, in the MD case. Both the MC-NPT
and MD-NPT calculations were carried out under rectangular
periodic boundary conditions along the y and z axes of the
laboratory reference frame.20 The MC-NPT calculations were
organised in cycles, each consisting of 2N attempts to translate
or rotate a randomly selected helical particle plus an attempt
to change the cuboidal computational box shape and volume
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FIG. 2. Summary of the phase diagrams, obtained from
numerical simulations with 3D-PBC, for three different
helix morphologies, as a function of the volume fraction
η = %3, with 3 being the volume of a helical parti-
cle whose image is included: (top left) r = 0.2D and
p = 8D; (bottom left) r = 0.2D and p = 4D; (bottom
right) r = 0.4D and p = 4D. Here, I = isotropic phase,
N = uniform nematic, N∗s = screw-like nematic, S∗A,s
= screw-like smectic A, and S∗B,s = screw-like smectic B.

SB ,p = polar smectic B. The relations betweenη and %D3

for these three cases as well as the case with r = 0.2D and
p = 9.92D are explicitly given (top right).

by independently changing the length of its Ly or Lz edge.20

The MD-NPT calculations were carried out with the program
LAMMPS,33 integrating the equations of motion via a rigid-
particle algorithm34 with a time step τ = 0.01

√
mD2/ε , with m

being the mass of a spherical bead, and using a semi-isotropic
barostat, allowing the cuboidal computational box to fluctuate
in the yz plane, and a thermostat whose damping parameters to
control pressure and temperature, τP and τT, were both equal
to

√
mD2/ε . Both MC-NPT and MD-NPT calculations were

started: (i) either from a configuration equilibrated during pre-
vious numerical simulations and inserted between the two par-
allel hard- or soft-repulsive walls taking care to remove those
particles that happened to overlap with them; (ii) or a moder-
ately dense orthorhombic lattice configuration with all helical
particle û axes perfectly aligned along the z axis; (iii) or a con-
figuration obtained as an output of a run at a nearby value of
pressure P. Rather lengthy simulations had to be employed. In
the MC case, most runs were of 15 or more million MC cycles.
In the MD case, the trajectories were up to 320 × 106 time step
long.

In the (production) runs, averages of several quantities
were accumulated and configurations were stored for the
subsequent analysis. The calculated quantities include the

number density, %, the nematic order parameter,35 S2, and the
angle, θ, that the local nematic director, n̂(x), forms with the
y axis, as a function of x, along with a few suitable pair cor-
relation functions to further ascertain the modulated-nematic
nature of a phase. From a linear fit of θ(x), whose slope coin-
cides with q = 2π/P, an estimate of P was obtained. One pair
correlation function is

gû
2 (x) =

〈∑N
i=1

∑N
j>i P2

(
ûi · ûj

)
δ(x − xij)∑N

i=1
∑N

j>i δ(x − xij)

〉
, (3)

with Pn() being the nth-order Legendre polynomial, δ() being
the standard δ-function, xij being the distance between par-
ticle i and j, rij, resolved along the x axis, and 〈〉 rep-
resenting an average over configurations. This function is
expected to behave as S2

2P2(cos (qx)) if a cholesteric order-
ing is present and to be essentially flat otherwise. One more
correlation function is gŵ

1
(
r‖ , x

)
, the suitable generalisation

of the pair correlation function gŵ
1

(
r‖

)
previously defined.4,6

Rather than explicitly considering this two-variable func-
tion, it proves convenient to consider either the function
Gŵ

1 (x) = gŵ
1 (0, x) ≡ max

r‖
gŵ

1
(
r‖ , x

)
or the function gŵ,̂u

1,∆

(
r//
)

defined as

gŵ,̂u
1,∆

(
r//
)
=

〈∑N
i=1

∑N
j>i P1

(
ŵi · ŵj

) [
(xij − ∆) < 0

]
δ
(
r//− rij · ûi

)
∑N

i=1
∑N

j>i

[
(xij − ∆) < 0

]
δ
(
r//− rij · ûi

) 〉
, (4)

with [(xij − ∆) < 0] being an Iverson bracket. This
variant of gŵ

1
(
r‖

)
is expected to develop a well-defined

p-periodic cosinusoidal form if a screw-like ordering is
overall present and to be essentially flat otherwise. In

case gŵ,̂u
1,∆

(
r//
)

reveals a presence of screw-like ordering,

the function Gŵ
1 (x) can further specify its dependence on

x. Together, the pair correlation function gû
2 (x) and the

duet Gŵ
1 (x) – gŵ,̂u

1,∆

(
r//
)

reveal whether the two types of
modulated-nematic ordering are present, either jointly or
separately.



224903-4 Cinacchi et al. J. Chem. Phys. 147, 224903 (2017)

III. RESULTS
A. Systems under investigation

The present work builds upon past extensive numerical
simulations, employing 3D-PBC, of systems of hard helical
particles with various parameters (r,p).3,4,6,7 Here, we have
focused on three representative cases which were found to
exhibit different propensity to form N and N∗s phases, as
schematically summarised in Fig. 2.

For helical particles with small r and relatively long p
(r = 0.2D and p = 8D), a broad-range N phase was found
followed, at a progressively higher density, by a N∗s phase, on
a very narrow region, and screw-like smectic A and B phases.
For helical particles with the same r and a smaller p (r = 0.2D
and p = 4D), we found both N and N∗s phases to be present in
respective regions of comparable width. For helical particles

FIG. 3. Behaviour of dimensionless pressure
PD3

kBT
(a) and nematic order

parameter S2 (b) as a function of dimensionless number density %D3 for a
system of hard helical particles with r = 0.2D and p = 9.92D as obtained in
MC numerical simulations employing 3D-PBC (pbc, black circles) or confin-
ing the system between two parallel hard walls (hw, red squares). While in
the former case, a uniform nematic phase is formed; in the latter, a cholesteric
phase is observed. For comparison, a few data obtained for a system of soft-
repulsive helical particles confined between two parallel soft-repulsive walls
(sw, green diamonds) which forms a cholesteric phase have been also included.
In both panels, the gray slender box delimits either of these nematic phases
and the coexistent isotropic phase.

with a larger r and the same p (r = 0.4D and p = 4D), the N
phase was absent and a region of N∗s phase was found.

These findings were rationalized4,6 in terms of an entropy
gain triggered by the coupling between the translation of the
particles along n̂ and rotation round their own û. On increas-
ing their curliness, neighbouring parallel helical particles tend
to mutually interlock their grooves, thus restraining rotation
round their û. This rotational entropy loss can be compen-
sated by a translational motion along n̂ in a way similar to a
screw, hence the name given to the new chiral nematic phase.

B. r = 0.2D and p = 9.92D

The examination of the obtained results starts with
those for systems of helical particles having r = 0.2D and
p = 9.92D. This value of p is such that for a contour length L,
it corresponds to a single helical turn. These helical particles,
nearly straight rods, have a wider N phase as compared to the
p = 8D counterpart (Fig. 2) and are expected to form the N∗c
phase only.3,4,6,7,36 In order to confirm this, Fig. 3 reports
the equation of state (EoS) and the density dependence of
S2 as obtained for a bulk system of hard helical particles

FIG. 4. (a) Behaviour of the angle θ that the local nematic director forms with
the y axis as a function of x for a system of hard helical particles with r = 0.2D
and p = 9.92D at PD3/kBT = 0.5. The various coloured thin full curves shown
are each an average over 200, one-thousand-MC-cycle separated, configura-
tions while the black thick full curve is their global average and the black thick
dashed line is the linear fit to the latter taking into account only the region
enclosed by the dotted rectangle. (b) Image37 of the cholesteric phase for a
system of hard helical particles with r = 0.2D and p = 9.92D at PD3/kBT
= 0.5. The hard helical particles are coloured according to the angle that their
û axes forms with the eigenvector corresponding to the largest eigenvalue of
the global nematic order matrix.35
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FIG. 5. (a) Behaviour of dimensionless wavevector qD =
2π
P

D as a function of dimensionless number density %D3 (red squares) for a system of hard helical

particles with r = 0.2D and p = 9.92D. The red dashed line is a quadratic fit to the data, meant as a mere guide to the eye. Included also are a few data obtained
for a system of soft-repulsive helical particles confined between two parallel soft-repulsive walls (green diamonds). The gray slender box delimits the cholesteric

phase and the coexistent isotropic phase. (b) pair correlation functions gû
2 (x) (red dashed line) and gŵ,̂u

1,∆

(
r//

)
(red dotted line) for a system of hard helical particles

with r = 0.2D and p = 9.92D at PD3/kBT = 1. The black thinner full line is a fit of gû
2 (x) with the function S2

2P2 (cos (qx)) with S2 = 0.950 and |q|D = 0.0554 as
fitting parameters, consistent with, respectively, the value of S2 in Fig. 3(b) and the absolute value of qD in (a).

employing 3D-PBC and for a system of the same parti-
cles confined between two parallel hard walls. Included are
also a few data obtained for a system of soft-repulsive heli-
cal particles confined between two parallel soft-repulsive
walls. In all cases, the average values of S2 correspond to
the average values of this quantity calculated by discard-
ing the contribution of particles closer than 10D to either
wall. The choice of this distance had been made by plot-
ting the number density %(x) and nematic order parameter
S2(x) profiles with respect to x, and by observing that, far-
ther than that distance, confinement effects had reasonably
faded away. From Fig. 3, it can be seen that: (i) the isotropic-
nematic (cholesteric) phase transition is slightly shifted to a
lower value of density as compared to the case r = 0.2D and
p = 8D, as expected in view of the increased aspect ratio of the

helical particles and (ii) both the EoS and S2 versus % graphs
for the confined system match the corresponding graphs for the
bulk system. However, the latter is in the N phase whereas the
former relatively promptly forms a N∗c phase. Figure 4 shows
the behaviour of θ(x), calculated at PD3/kBT = 0.5, along with
an image of a configuration in the N∗c phase at the same value
of dimensionless pressure. Discarding the contribution of the
slices closer than 10D to either wall, linear fits to the vari-
ous calculated θ(x)’s were performed. The values of q thus
estimated are given in Fig. 5(a) as a function of %. The neg-
ative sign of q indicates a left-handed N∗c phase, as predicted
by Straley1 and Onsager-like theory calculations5,7,11–13 for
right-handed hard helical particles with geometric parameters
analogous to those of the system under investigation. The large
error bars reflect wide fluctuations of the local director which

FIG. 6. For a system of hard helical particles with
r = 0.4D and p = 4D: (a) the angle θ that the local
nematic director forms with the y axis as a function of x
at PD3/kBT = 0.75, the various coloured thin full curves
shown being each an average over 1000, one-thousand-
MC-cycle separated, configurations; (b) the pair correla-

tion function gŵ,̂u
1,∆ (r//) at PD3/kBT = 0.7, 0.75, 0.8, 0.9;

(c) image37 of the screw-like nematic phase at PD3/kBT
= 0.75. The hard helical particles are coloured according
to the angle that their û axes forms with the eigenvec-
tor corresponding to the largest eigenvalue of the global
nematic order matrix.35
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do not allow a precise determination of P.38 Nonetheless, the
magnitude of q, corresponding to P in the range of 100–200D,
which decreases with increasing density, compares well to the
theoretical calculations for hard helical particles with r = 0.2D
and p = 8D in Ref. 7. The functions gû

2 (x) and gŵ,̂u
1,∆

(
r//
)

at

PD3/kBT = 1 are shown in Fig. 5(b). Their behaviour con-
firms the cholesteric character of the nematic phase and the
expected absence of screw-like ordering [yet, an extremely
tenuous short-range undulation is already visible in the func-
tion gŵ,̂u

1,∆

(
r//
)
]; these helical particles are not sufficiently curly

to promote, at these values of %, the setting in of the latter type
of ordering.

C. r = 0.4D and p = 4D

The case of curly helical particles with r = 0.4D and
p = 4D stands at the other extreme. Their nematic phase
is screw-like, existing in the interval PD3/kBT∈ (0.7, 0.9),
bounded by a less dense isotropic phase and a denser screw-
like smectic B phase.4,6,7 This phase sequence, previously
obtained by employing 3D-PBC for systems of hard-4,6,7 and
soft-repulsive24 helical particles with these values of r and
p, is confirmed by the present MC-NPT calculations carried
out under confinement of two parallel hard walls. Starting
from a previously obtained configuration carefully inserted
in between the two parallel hard walls, the N∗s phase remains

FIG. 7. Pair correlation functions gû
2 (x) (dashed line) and gŵ,̂u

1,∆

(
r//

)
(dotted

line) for a system of hard helical particles with r = 0.2D and p = 4D at
PD3/kBT = 0.55 from an initial nematic configuration (red); PD3/kBT = 0.6
from an initial nematic configuration (green); PD3/kBT = 0.6 from an initial
configuration taken from the run at PD3/kBT = 0.9, in its turn started from an
orthorhombic lattice configuration (indigo).

stable at PD3/kBT = 0.7, 0.8, 0.9 in the course of runs up to
7 million-MC cycle long (Fig. 6), while at PD3/kBT = 0.6, it
transits directly to the isotropic phase.

FIG. 8. Pair correlation functions gŵ,̂u
1,∆

(
r//

)
and the angle

θ that the local nematic director form with the y axis as a
function of x for a system of hard helical particles with r
= 0.2D and p = 4D as obtained in MC numerical sim-
ulations starting from a nematic configuration inserted
between two parallel hard walls at PD3/kBT = 0.7 [(a)
and (b)] and 0.8 [(c) and (d)]. The various coloured thin
full curves shown in (b) and (d) are each an average over
1000, one-thousand-MC-cycle separated, configurations.
In (e), the function Gŵ

1 (x) is also shown at PD3/kBT = 0.7

(red) and PD3/kBT = 0.8 (green).
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D. r = 0.2D and p = 4D

The last representative case is given by helical parti-
cles with r = 0.2D and p = 4D, where both cholesteric and
screw-like orderings are present (Fig. 2). For these hard heli-
cal particle systems, a number of MC-NPT calculations were
carried out at the following values of PD3/kBT: 0.55; 0.6; 0.7;
0.8; and 0.9. In previous numerical simulations employing 3D-
PBC, the state points at PD3/kBT = 0.55 and 0.6 were assigned
to a N phase. Starting from a configuration obtained in the
course of these previous numerical simulations and carefully
putting up the two parallel hard walls, the systems of hard
helical particles with r = 0.2D and p = 4D too were relatively
promptly seen to develop a twist of their local nematic direc-
tor, that is, they were transforming to state points within a N∗c
phase, as the relevant functions gû

2 (x) finally indicate (Fig. 7).
Both the sign and the order of magnitude of the corresponding
P are found in agreement with theoretical calculations, though
reaching a reasonable stationary value for the still negative q
required lengthier runs than in the case of systems of hard
helical particles with r = 0.2D and p = 9.92D. With respect to
the latter hard helical particle systems (Fig. 5), the functions
gŵ,̂u

1,∆

(
r//
)

nonetheless reveal an incipient screw-like ordering
(Fig. 7) suggesting that it could further develop at larger values
of PD3/kBT. This is already the case at PD3/kBT = 0.7 and 0.8
where the functions gŵ,̂u

1,∆

(
r//
)

show an undamped cosinusoidal
form [Figs. 8(a) and 8(c)], in accord with previous numerical
simulations employing 3D-PBC that assigned these two state
points to a N∗s phase. Rather than starting from a screw-like
nematic configuration previously obtained at the same value
of dimensionless pressure, these numerical simulations were
deliberately started from the same nematic configuration from
which the present run at PD3/kBT = 0.6 (Fig. 7) did start. If
the behaviour of gŵ,̂u

1,∆

(
r//
)

thus proves that screw-like ordering
has spontaneously developed even once the system had been
confined between two parallel hard walls, the corresponding
θ profiles [Figs. 8(b) and 8(d)] are not flat. Rather, at both
these values of dimensionless pressure, the system appears as
having ended up blocked into configurations characterised by
two, overall flat, extremal regions with a noticeable screw-like
ordering, separated and tied by an intermediate region of vari-
able thickness in which θ(x) accordingly drops and the degree
of screw-like ordering reduces [Figs. 8(b), 8(d), and 8(e)]. One
natural interpretation of these results is that each extremal
region corresponds to a screw-like nematic film wetting the
respective hard wall. The further growing of these two films
into one single domain could be impeded for two alternative
reasons. Either the intermediate region corresponds to an in-
bulk thermodynamically stable N∗c phase and the two, overall
flat, extremal regions are nothing more than screw-like nematic
films wetting the respective hard wall or the N∗s phase is the
in-bulk thermodynamically stable phase and the two extremal
region misalignment takes very long to heal. To help resolve
this doubt, we resorted to the MD method to exploit its capa-
bility of naturally dealing with the system constituent particle
collective motion. Starting from a cholesteric configuration
previously obtained at PD3/kBT = 0.6, a lengthy MD-NPT cal-
culation was carried out on a system of soft-repulsive helical
particles confined between two parallel soft-repulsive walls at

PD3/kBT = 0.8. The system loses its initial cholesteric char-
acter after ∼2 × 106 time steps and, by forming also a central
region with an overall flat θ(x) profile, apparently progresses
towards a single-domain untwisted screw-like nematic config-
uration; after 320 × 106 time steps, this situation is so nearly
reached that one may confidently state that a neat N∗s phase
is indeed forming starting from a cholesteric configuration
(Fig. 9). The latter untwisting process was eventually observed
also at PD3/kBT = 0.9 in a system of hard helical particles
confined between two parallel hard walls. Starting from a
cholesteric configuration taken from the early stage of the
run at PD3/kBT = 0.7 and then letting the system evolve
[Figs. 10(a) and 10(b)], a complete spontaneous untwisting
of the local nematic director was finally detected [Fig. 10(c)].
This final phase is a screw-like (weakly) smectic A as deter-
mined by calculating the smectic order parameter39 τ = 0.25,
suitable pair correlation functions, as well as confirmed by
direct visualisation [Figs. 10(d) and 10(e)]. The same results

FIG. 9. Evolution of the local nematic director θ as a function of x at several
moments of the MD-NPT calculation carried out on a system of soft-repulsive
helical particles with r = 0.2D and p = 4D; apart from the initial, each profile
is an average over 10 × 106 of time steps the final instant contributing to
this average being that one indicated in the label. Images37 are shown of
the initial (top) and final (bottom) configuration. The soft-repulsive helical
particles are coloured according to the angle that their û axes forms with the
eigenvector corresponding to the largest eigenvalue of the global nematic order
matrix.35
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FIG. 10. Evolution of dimensionless number density (a)
and nematic order parameter (b) as a function of MC
cycles in a system of hard helical particles with r = 0.2D
and p = 4D starting from a cholesteric configuration at
PD3/kBT = 0.9; (c) local nematic director angle θ as a
function of x at several “instants” of MC “time” during the
same calculation of (a) and (b); (d) pair correlation func-

tion gŵ,̂u
1,∆ (r//); (e) image37 of the system of hard helical

particles with r = 0.2D and p = 4D in the screw-like smec-
tic A phase as seen from the yz plane normal; observe the
layered structure in which these particles self-assemble
and glimpse a very few of them lying in the inter-layer
regions transverse to the layer normal. The hard helical
particles are coloured according to the angle that their
û axes forms with the eigenvector corresponding to the
largest eigenvalue of the global nematic order matrix.35

were obtained starting from a moderately dense orthorhom-
bic lattice in which the hard helical particles were perfectly
aligned along the z axis; the only differences being that

FIG. 11. Pair correlation functions gŵ,̂u
1,∆

(
r//

)
(top panel) and the angle θ that

the local nematic director forms with the y axis as a function of x (bottom
panel) for a system of hard helical particles with r = 0.2D and p = 4D as
obtained in MC numerical simulations starting from a configuration obtained
at PD3/kBT = 0.9, in its turn, obtained at the end of a run started from a
moderately dense orthorhombic lattice configuration inserted between two
parallel hard walls at PD3/kBT = 0.8 (a) and 0.7 (b). The various coloured thin
full curves shown in the bottom panel of (a) and (b) are each an average over
1000, one-thousand-MC-cycle separated, configurations.

reaching the equilibrium state was significantly faster and
the degree of smectic ordering was larger (τ = 0.67). These
findings are consistent with those previously obtained at the
same dimensionless pressure by employing 3D-PBC.6,7 Start-
ing from a screw-like smectic A configuration obtained in this
latter run, additional MC-NPT calculations were carried out at
PD3/kBT = 0.8, 0.7, and 0.6. The flatness of the θ profile, the
waviness of the function gŵ,̂u

1,∆ (r//), and the small value of τ
= 0.09 are all indicative of a single-domain N∗s phase at
PD3/kBT = 0.8 [Fig. 11(a)]. The same considerations would
also hold at PD3/kBT = 0.7 were it not for those fringes now vis-
ible at either hard walls; a symptom that the N∗c phase is close
to forming [Fig. 11(b)]. In fact, it does at PD3/kBT = 0.6, con-
sistent with the results also obtained by starting from a nematic
configuration inserted between the two parallel hard walls
(Fig. 7).

IV. CONCLUSIONS

The aim of the present study was to address two important
points originated from our past work on hard helical particle
system. First, the observability of the cholesteric phase; (elon-
gated) hard helical particles are expected to form a cholesteric
phase, but its pitch can be orders of magnitude larger than usual
computational box dimensions and thus a proper cholesteric
twist can remain unobservable using three-dimensional peri-
odic boundary conditions. Second, the stability of the screw-
like nematic phase, a novel chiral nematic phase special to
helical particles that we observed in past work, against a proper
cholesteric phase.

By using isobaric-isothermal Monte Carlo and molecular
dynamics methods, we have studied systems of helical parti-
cles confined between two parallel repulsive walls so as to give
a proper cholesteric phase the possibility to form. Our findings
confirm the existence of the two chiral nematic phases and are
tersely summarised as

(I) for weakly curly helical particles (r = 0.2D and
p = 9.92D), we observe a cholesteric phase.
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(II) In the opposite limit of relatively curly helical particles
(r = 0.4D and p = 4D), we find a screw-like nematic
phase and no evidence of the cholesteric phase.

(III) In the intermediate case (r = 0.2D and p = 4D), both
the cholesteric and the screw-like nematic phases are
present at, respectively, lower and higher densities.

In principle, both cholesteric and screw-like nematic
phases can exist for a system of helical particles, but the parti-
cle morphology controls the relative stability of these phases
so that, for a given system, either may be absent. For this rea-
son, phase diagrams and trends obtained without taking into
account both cholesteric and screw-like nematic phases should
be taken with caution.

The features of the cholesteric phase, when present, are in
general agreement with current Onsager-like theory results.
For r = 0.2D, with both p = 4D and p = 9.92D, a left-
handed cholesteric phase is observed, as predicted by Straley1

for right-handed helical particles with geometric parameters
similar to those under study. Besides handedness, the Onsager-
like theory calculations5,7,11–13 provide reasonable estimates
of the magnitude of the cholesteric pitch, of the order of
100–200D, which slightly decreases on going from D = 9.92 to
D = 4. The decrease of the pitch with increasing density found
for the case r = 0.2D and p = 9.92D is also in agreement
with the theoretical calculations for r = 0.2D and p = 8D in
Ref. 7. Indeed, a decrease of the cholesteric pitch, i.e., an
increase of phase chirality, with increasing density is gen-
erally predicted for hard helical with p/D values larger than
a few units. In Refs. 12 and 13, the opposite trend, i.e., an
increase of the cholesteric pitch with increasing density, is
reported for both r = 0.4D and p = 4D and r = 0.2D and
p = 4D. However, such theoretical predictions refer to den-
sity ranges where the cholesteric phase does not seem to exist.
Indeed, our numerical simulations do not show any cholesteric
phase for the former helical particles, whereas for the latter,
the cholesteric range is so restricted that it is admittedly hard
to identify a trend for the pitch as a function of density. In
both these cases, we have found the screw-like nematic phase
instead.4,6,7

The theoretical calculations for the cholesteric phase pre-
sented thus far5,7,11–13 cannot account for screw-like nematic
ordering. There is a need for a more general approach,
as outlined in Ref. 40, to describe both chiral nematic
phases.

Our present evidence suggests that the two chiral nematic
phases are mutually exclusive. However, we cannot fully
exclude that cholesteric and truly long-ranged screw-like
orderings might find a way to indeed coexist (e.g., via the
analog of the twist-grain-boundary smectic phase41).

Note added in proof: Following the acceptance of our
manuscript and its ensuing posting on the arXiv, Randall
Kamien (University of Pennsylvania) kindly pointed out to
us that his theory published in J. Phys. II France,42 originally
dealing with the effects of a competition between cholesteric
and hexatic bond-orientational orderings in a nematic phase,
may be more generally re-interpreted as relevant to a nematic
phase where the cholesteric ordering competes with any order-
ing that, like screw-like ordering, perpendicularly twists round
a fixed nematic director; in this light, our results appear

to support this theory and we are grateful to him for this
comment.
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