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1. Introduction

Let G be a sharply 2-transitive permutation group acting on a set 2 (finite or infinite, with |Q2| > 2), that
is, G is transitive on €2 and only the identity of G fixes more than one element of .

In the finite case, sharply 2-transitive groups have been classified by Zassenhaus [15], in particular,
they are split, that is, they have always a normal abelian subgroup N which is regular on Q.

In the infinite case the situation is more complex and recently examples were built of non-split sharply
2-transitive groups [11].

In some cases, imposing special conditions on the structure of a point stabilizer G, = {g € G |
g(@) = a} of G (¢ € Q), it can be shown that G is split. This is the case in which every conjugacy class
of Gy is finite ([6], Theorem 9.6), Gy is a 2-group [12] and G, has exponent 3 or 6 [7]. In this note we
generalize Mayr’s result proving the following

Theorem 1.1. Let G be a sharply 2-transitive permutation group on a set 2, and let H = Gy be the
stabilizer of an element o € Q. If H is nilpotent and has exponent 2" - 3 with n > 1, then G is finite.

If X is a group and g € X, by g¥ = {g* | x € X}, we denote the conjugacy class of g in X. We define
the FC-center of X as the set

2% = {g e X | Ig"] < o0},

which one can easily prove to be a characteristic subgroup of X. A group X is said to be a FC-group if
X =ZX).
Theorem 1.1 is consequence of a more general result.

Theorem 1.2. Let G be a sharply 2-transitive permutation group on a set 2, and let H = Gq be the
stabilizer of an element o € Q. If H is a {2, 3}-group and H/Z(X) has exponent dividing 3, then |Q2| €
{52,72,17%} or Q has prime order, in particular, G is finite.

CONTACT Enrico Jabara @jabara@unive.it e Dipartimento di Filosofia e Beni Culturali, Universita di Ca’ Foscari, Dorsoduro 3484/D,
Venezia 30123, Italy.
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2. Notation and Preliminary Results

In the following, G denotes a sharply 2-transitive permutation group on a set €2, « a fixed element of €
and H = G, the stabilizer in G of «. An element g € G is called regular if g displaces all elements of 2
or, equivalently,

geG\|JH =G\ | Go-

xeG weR

Clearly H is malnormal in G, thatis, H N HS = 1 for everyg € G \ H.

Theorem 2.1 ([3], Theorem 20.7.1). Let wi,wy € K2 and suppose that at most one element taking
w1 in wy is regular. Then the identity and the regular elements of G form a transitive normal abelian
subgroup N.

Lemma 2.2 ([3], Lemma 20.7.1). There exists one and only one involution in G which interchanges a
specified pair of distinct elements wy, wy € Q.

Lemma 2.3 ([3], Lemmas 20.7.2 and 20.7.4). The involutions of G are in a single conjugacy class. The
product of two different involutions is a regular element of G.

Lemma 2.4 ([3], Lemma 20.7.3 and Theorem 12.5.2). If the involutions of G are not regular, then in H
there is a unique involution, which belongs to the center of H. In particulat, a 2-subgroup of finite exponent
of H is cyclic or quaternion, and hence finite.

Let ] be the set of involutions of G and put J? = {jk | j,k € J}. If X is a subset of G, we define
X*=Xx\{1}.

Lemma 2.5 ([6], I1.4.1.b and 11.9.2). If the involutions of G are not regular, then (J*)* is a conjugacy class
in G. Moreover, every element of (J*)* has prime order p # 2 or infinite order.

The following is a standard definition.

Definition I. Let G be a sharply 2-transitive permutation group.
If an involution (and hence any involution) of G is not regular, we define char(G), the characteristic
of G, to be p if an element of (J?)* has order p and char(G) = 0 if an element of (J?)* has infinite order.
If the involutions of G are regular, we define char(G) = 2.

Lemma 2.6 ([6], 11.9.2). Ifchar(G) = p > 0, then H contains a cyclic subgroup of order p — 1.

Remark A. If char(G) = 0, then we can prove that H contains elements of infinite order. Since we will
consider only the case in which H is periodic and contains elements of even order, from now we will
assume that char(G) = p > 2.

Lemma 2.7 ([9], see also [1], Lemma 11.50 and Proposition 11.51). Let j, k € ] be distinct involutions.
Then

(a) Cg(jk) = jJ N K] is abelian and inverted by j;

(b) the set {Cg(x)# | x € (]2)#}forms a partition of(]z)#;

(c) No(Cg(jk)) = Cg(jk) x Nu(Cg(jk)) is a split sharply 2-transitive group.

If G = NH is split, then the group H acts freely on N, that is for all v € N* and all h € H*, v/ # v.
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Lemma 2.8 ([4], Theorem 1.1 and Corollary 1.2). Let N be an abelian group, and let H be a group of
automorphisms of N. If H has exponent 2™ - 3" for 0 < m and 0 < n < 2 and H acts freely on N, then H
is finite. Moreover, if NH is a sharply 2-transitive permutation group and n > 0, then |N| € {5%,7%,17%}
or N has prime order.

Lemma 2.9. Let N be an abelian group, and let H be a group of automorphisms of N acting freely on N. If
H is locally finite and has finite exponent, then H is finite.

Proof. Denote by 7 (H) the set of prime numbers that divide the order of some element of H. Since H
is locally finite, if p € w(H), then every Sylow p-subgroup of H is cyclic or, if p = 2, quaternion ([2]
Theorem 10.3.1). By hypothesis H has finite exponent and hence 7 (H) is finite, moreover, every Sylow
p-subgroup of H is finite and hence also H is finite. O

3. The Ap—Method

Let t be the unique involution of H and fix ¥ € J, ¥ # t. Since G is doubly transitive, we known that
G = HU H®H ([2], Theorem 2.7.2). In particular, by the sharply 2-transitivity of G, for every h € H*,
there is a unique A(h) € H* and a unique p(h) € H* such that

Oho = A(h)dp(h). (1)
Thus this defines two maps A, p : H* — H* asin [10]. We define also
A(h) = A(h)p(h) and V(h) = p(h)A(h) (2)

if h € H* and we extend A, V to all H putting A(1) = V(1) = ¢.

It is an easy matter to verify that p(t™h) = ()~ we will put p(t) = u.

By Lemma 2.5, [(t¢)| = char(G) = p > 2. By Lemma 2.7.(c) Ng(Cg(t?})) is a split sharply 2-
transitive group with complement Ny (Cg(£1)), in particular, G is split if and only if Ny (Cg(£9)) = H.
Since the subgroup Ny (Cg(t9)) of H assumes some importance in our arguments, then we will put

&y (H) = Nu(Cq(t))
in order to simplify the notation; further, if there is no loss of clarity, we simply write £(H) in place of

Ey (H).

Lemma 3.1. Let h € H?, then

A(A(h) = p(p(h)) = A(A(h) = h, (3)
in particular X, p and A are bijections form H* to H*. Moreover,
AMpm) =1~ p((h) = p)7!, )
MY =pm~ phThH =AY (5)
AW™YH =AM, Vi =vm L (6)

Proof. From ©ht = A(h)9p(h) we obtain 9A(h)? = h¥p(h)~!, so A(A(h)) = hand p(A(h)) =
p(h)~L. Similarly p(p(h)) = hand A(p(h)) = A(h)~".
The proof of (5) is obtained by considering the equality

1

p(~ oA = (Myph) ' = (9h9) ' = vh~ly

and from (5) we deduce (6).
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In order to prove (3), consider

MAM)p(A() = FAMNY = dr(h)p(h)D = dr(h)ddp(h)d =
hop(h) " 'A(h) " 'oh = hd A(h) " "0 h = ha(A() " Hop(Ah) ™ Hh,

so, by equating the left part of the first and the last terms of the previous equality, we obtain A(A(h)) =
(AW ™Y = hp(A(h))~! and hence A(A(h) = A(A(h)p(A(h)) = h. O

Remark B. By Lemma 3.1, we can deduce that (}, p) is a permutation group on the set H* isomorphic
to S3 and we have A(p(A(h))) = h™! = p(A(p(h))) for every h € H” (see also Section 2 in [10]).

Lemma 3.2. The map V : H — H is injective and V (h) is conjugate to A(h) for everyh € H.IfCisa
conjugacy class in H, then V(A(C)) C C and, if C is finite, V(A(C)) = C. In particular, Z(H) C V(H).

Proof. Ifh € H, then
IV () = Dp(Wrh) = (Amwpm) " = @ho )P = 2", )

Suppose V(h1) = V(hy) with hyj,h, € H, then, by (7), we can write hlln(hl) = hg)‘(hZ) and

hlf)"(hl)}"(hzrlﬂ = hy € H. Since H is malnormal 9 A (h)A(hy) "1 € H, so A(h) = A(hy) and by = hy
by Lemma 3.1.

Clearly, A(h) = V(h)*™ _ so A(h) and V(h) are conjugate. Let C be a conjugacy class of G, then, by
Lemma 3.1, A(A(C)) = C and since A(h) and V(h) are conjugate, we have V(A(C)) C C. Since V is
injective, if C is finite, then V(A(C)) € C and this implies that Z(H) € V(H). O

Lemma 3.3. Ifthe map V : H — H is surjective, then G is split.

Proof. By Theorem 2.1, it is sufficient to prove that the unique regular element in H? is to. Leth € H \
{1,t} and k € H with h = V (k). The element h} = p(k)A(k)? is conjugate to A (k)9 p (k) = Dk € H?,
and so h fixes an element of 2. O

Remark C. One can prove that V is surjective if and only if G is split and is planar, that is, G = NH and
for every h € H* the map

T,: N — N v v
is surjective (see Proposition 5.3).
There are, in each characteristic, examples of sharply 2-transitive groups that are split and in which
V is not surjective. In the case where H is periodic, it can be shown that this case can not happen (see
Proposition 5.4).

Remark D. By Lemma 3.3 we deduce that if H is a FC-group, then G is split. This provides a more direct
proof of Theorem 9.6 in [6].

The special case where H is abelian has a curious history in what it has been proved at least four times.
In 1952 by Tits ([13], “hidden” in the Remark 2, p. 47), in 1961 by Zemmer [16], in 1990 by Mazurov [8]
and by Karolyi et al. [5].

Lemma3.4. £(H) = {h € H| A(h) = th}.
Proof. We prove that A(h) = thifand onlyif h € E = Ny(Cg(t8)). To do this, by Lemma 2.7 it

sufficies to prove that [t7, (t9)"] = 1 forall h € H. The claim is obvious if h = 1 or h = t, so we assume
h & {1,t}. Since ¥t = u~ 'Y u we can also write 9u~ 19 = t9u~! and du® = ¥t and hence, keeping
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in mind Lemma 3.1, if A(h) = th, we obtain
10 (t9)" = o'tk = (@R D) (910)h = Ak )P p(hYu P uh =
th (™) (Pu™19) (P (h™ )9 )uh = tA(hHtdu " A(p(h ™)) dp(p(h))uh =
AEHOp M u u = A Hp )9S 9u = A(hHA(p(h)Ohoty =
oM AW 19hoty = A(h™YHYohoto = h Liwhoty = (tz?)htﬁ,
that is [, (19)"] = 1.
If [t99, (t9)"] = 1, we develop both members of 9 (tl?)h = (tz?)htl? obtaining
tl?(tl?)h = tA(th~" )9 p(th~ Yk
and
(t9)"t9 = th™"A(thyop (th).
So p(th™HYh = p(th), A(th) = A(th)p(th) = p(th )" lp(th) = h and finally A(h) = A
(A(th)) = th. O
We also prove the following proposition that is not required for the proof of our theorems.

Proposition 3.5. Ifu € Z(H), then G is split. In particular, if char(G) = 3, then G is split.

Proof. Let h be an element in H*; we have

A(th)9p(th) = 9thy = 9199hd = u~ " Wur(W)Op(h) = u " 9r()udp(h) =
u L or(h)dudph) = uthop(h) " udtp(h) = hu Y Yup(h) dph)t =
hot9p(h) " 9p(h)t = hoth Y9 a(h) p(h)t = ha(th™ )9 p(th™H A

and hence A(th) = hA(th™!), that is, A(th) = h and A(h) = th. By Lemma 3.4 we obtain H = £(H)
and hence G is split.
If char(G) = 3, then (91)3 = 1 and 9+ = t9t,sou = t € Z(H). O

Other proofs that a sharply 2-transitive group G with char(G) = 3 is split can be found in [6]
(Theorem 8.7) and in [14].

The following two lemmas are a direct consequence of (7).
Lemma 3.6. Let h be an element of H, then h and ¥V (h) have the same order.
Proof. 9V (h) = 9p(h)A(h) is conjugate to A(h)Pp(h) = VhD. O
Lemma 3.7. Let w be an element of H, w # t. If w € V(H), then Uw cannot be regular.
Proof. Let h € H be such that w = V(h). Then

dw = 9p(Ath) = (A(W)op()® = p?®
fixes a point of €. O

4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2. In H there is a unique involution ¢ and hence, by Lemma 2.4, the Sylow
2-subgroups of H are finite. In order to prove that H is finite we just prove that T = {h € H | h*> = 1} is
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finite. Let h € T* and w = V (k). By Lemma 3.6 we have (9 w)> = 1, that is
1 = 9widwdw = dwi(w)dp(w)w

or ¥ = wdwdw = wA(w)dp(w)w which implies A(w) = w™! = p(w). Since (9w)> = 1, we have also
(@w1)? =1 and hence HOYI™ = wd that is

owd = oV

and ¥ w> should be a regular element of G. By hypothesis w* € Z(H) and by Lemma 3.2 Z(H) C V(H),
hence, by Lemma 3.7, V(w®) = 1and w® = t. Now A(w) = w2 = w3w = tw and, by Lemma 3.4,
w € E(H). By Lemma 2.8 £(H) is finite and hence, by Lemma 3.2, T is finite. Thus G is finite and the
structure of G is as described in Lemma 2.8. O

Proof of Theorem 1.1. Suppose H is nilpotent and of exponent 2" - 3 for some m > 1. Let S be a Sylow
2-subgroup of H, since S contains a unique involution, then § is finite and S < Z(H). Hence H/Z(H)
has exponent dividing 3, Theorem 1.2 applies. O

As one can check (using for instance Theorem 20.7.2 in [3] and the list of exceptionals Zassenhaus’
near-fields provided in [3], p. 391), if G is a group that satisfies the hypotheses of the Theorem 1.1, then
H is necessarily cyclic. If G = NH satisfies the hypotheses of the Theorem 1.2 and N is not cyclic, then
one of the following cases can occur:

e N~ Cs x Csand H =~ Cyy, or H >~ C3 x Cg, or H >~ SL(2, 3);
e N~ C7 X C7 and H ~ C48, or H >~ C3 X C16,OI'H ~ GL(2,3);
e N~ C17 X C17 and H >~ ngg,OI'H ~ C9 X C32.

5. Appendix: Near-Fields and Near-Domains

Definition II. A near-domain is a set F equipped with two binary operations & and © such that
(I1.1) (F, 69) is a loop with neutral element 0;

(I1.2) ifa®b=0,thenb®a=0;

(IL3)  (F*,©) is a group with neutral element 1;

(I4) 0Ga=0foralla € F;

I15) a0 b®dc)=@Ob ®(@Oc) foralla,b,ceF

(IL6) for everya,b € F thereis 9, € F* such that

a@(b@x):(a@b)@((%,b@x)

for all x € F (9, is independent from x).
Definition III. A near-field is a near-domain such that (F, @) is a group.
It is clear that a near-domain F is a near-field if and only if 9, = 1 for every a,b € F.

Definition IV. A near-domain F is planar if for every a,m € F with m ¢ {0, 1} there existsan x € F
such that a + mx = x.

A planar near-domain is necessarily a near-field ([6], I1.3.7 and I1.5.11).

Theorem 5.1 ([6] 11.6.1, I1.7.1, I1.7.2). Let F be a near-domain, then the set of one-dimensional affine
transformations on F

T2(F)={F—>F xHa@mQx‘a,meF,m#O}
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is a group under the composition of maps. T»(F) operates sharply 2-transitivity on the elements of F and
moreover

(a) T2(F) is split if and only if F is a near-field;

(b) T2(F) is planar if and only if F is a planar near-field.

We can interpret the Ap-method in the language of the near-domains.

Proposition 5.2. Let G be a sharply 2-transitive group on a set Q. Assume char(G) # 2, let H = G, be
the stabilizer of an element o € Q and let t be the unique involution in H. Put F = HU{0} and in F define
two operations in the following way:

ar(ta"'b) ifa,b € Handa # tb

fdb— 0 z:fa,beHanda:tb
ifb=0
b ifa=0
fa, %
fOb= ab z.fabe
0 ifa=00rb=0.

Then (F,®, ®) is a near-domain and G is isomorphic, as permutation group, to T, (F).
Moreover, ifa,b € F\ {0} = H, then 8, = aA(ta~'b)b~! and hence F is a near-field if and only if
A(h) = th for every h € H.

Proof. A tedious but easy computation. O

Proposition 5.3. Let G be a sharply 2-transitive group with char(G) # 2 and point stabilizer H and let F
be the associated near-domain. Then F is a planar near-field if and only if H = V (H).

Proof 1. (near-field style). Suppose H = V(H) and a,m € F with m & {0,1}. If m # t then, by
hypothesis, there is h € H such that ta~lma = V(h) and define x = ai(h)~!. We have

abmOx=a®dmx= ak(ta_lmx) = ak(ta_lmak(h)_l)
= ar(VIA(W) ™) = ar(p(h) = ar(h) ™" = x.
If m = t then, remembering that 9t = u~'®u and A(u) = u, we define x = au and we obtain
a®tOx=arla %) =ar(u) = au = x.

Suppose F planar; by definition V(1) = tand V() = 1. Letk € H \ {1,t} and let x € H be such that
t @ k © x = x. Then we can verify that h = A(tx™!) is an element such that V(h) = k. O

Proof 2. (group-theoretic style). By hypothesis V(H) = H and hence, by Lemma 3.3, G is split. So we
can write G = NH with N < G abelian and t acting by conjugation as the inversion on N. Let v € N,
since V! = v~L, there is an involution ¥ in G such that v = t%. Fix h € H*, we have to show that the map
Tp: N —> N, y > y~1y" is surjective. If h = ¢, the claim is trivial and hence we suppose h ¢ {1, }.
Our assertion is proved if we can find an element k € H such that (") Ltk = 9. 1f we choose k
such that h = tV(A(tk)) "}, then, remembering that, since G is split, is A (k) = tk, we obtain

(tﬂk)*l(tﬁk)h =k '0kh Tk 0 kh = K10kt O (th) kO KtV (A (th)) ! =
K10 tkp (.(t)) p (p (k) k™ 2 (0 (1) p (p (80))) ™ = k' @ (th) 19 (k) =
Ko (Mt 9o (th) = k™19 (9 tkd) = 9,

and the proof is complete. O
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Remark E. The two proofs of Proposition 5.3 show that the definitions given in Remark C and Definition
IV are actually equivalent.

Remark F. If char(G) = 2, then we can choose and involution ©+ € G and, if H = G, we can define as
above the maps A, p, A and V. In this case, if we put t = 1, then it is not difficult to verify that Propositions
5.2 and 5.3 are still true. Moreover, G is splitif and onlyif H = E(H) = {h € H | A(h) = h}.

We conclude this short appendix with the following result.

Proposition 5.4. Let G be a split sharply 2-transitive group. If the point stabilizer H is periodic, then G is
planar.

Proof. Write G = NH with N <G and NN H = {1}. Since H is periodic, then, by Remark A, char(G) =
p > 0and hence N is an elementary abelian p-group acted freely by H. Let h € H* be an element of
order £, then (p,£) = 1 and hence there is a positive integer § such that p> = 1 mod £. Let h be the
automorphism induced by conjugation by & on N and let ¢ = p°. In the ring End(N), we have

(1) =(-1+h)!'=-14+h""=-1+h=T,

that is, TZ_I = idy, and hence T}, is a bijection. O
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