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ABSTRACT

We describe sharply 2-transitive groups whose point stabilizer is a nilpotent
{2, 3}-group without elements of order 9 and, more generally, in which the
third power of each element belongs to the FC-center. In particular, we will
prove that these groups are �nite.
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1. Introduction

LetG be a sharply 2-transitive permutation group acting on a set� (�nite or in�nite, with |�| ≥ 2), that
is, G is transitive on � and only the identity of G �xes more than one element of �.

In the �nite case, sharply 2-transitive groups have been classi�ed by Zassenhaus [15], in particular,
they are split, that is, they have always a normal abelian subgroup N which is regular on �.

In the in�nite case the situation is more complex and recently examples were built of non-split sharply
2-transitive groups [11].

In some cases, imposing special conditions on the structure of a point stabilizer Gα = {g ∈ G |

g(α) = α} of G (α ∈ �), it can be shown that G is split. This is the case in which every conjugacy class
of Gα is �nite ([6], Theorem 9.6), Gα is a 2-group [12] and Gα has exponent 3 or 6 [7]. In this note we
generalize Mayr’s result proving the following

Theorem 1.1. Let G be a sharply 2-transitive permutation group on a set �, and let H = Gα be the
stabilizer of an element α ∈ �. If H is nilpotent and has exponent 2n · 3 with n ≥ 1, then G is �nite.

If X is a group and g ∈ X, by gX = {gx | x ∈ X}, we denote the conjugacy class of g in X. We de�ne
the FC-center of X as the set

Ẑ(X) =
{
g ∈ X

∣∣ |gX| < ∞
}
,

which one can easily prove to be a characteristic subgroup of X. A group X is said to be a FC-group if
X = Ẑ(X).

Theorem 1.1 is consequence of a more general result.

Theorem 1.2. Let G be a sharply 2-transitive permutation group on a set �, and let H = Gα be the
stabilizer of an element α ∈ �. If H is a {2, 3}-group and H/Ẑ(X) has exponent dividing 3, then |�| ∈

{52, 72, 172} or � has prime order, in particular, G is �nite.

CONTACT Enrico Jabara jabara@unive.it Dipartimento di Filoso�a e Beni Culturali, Università di Ca’ Foscari, Dorsoduro 3484/D,
Venezia 30123, Italy.
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2. Notation and Preliminary Results

In the following, G denotes a sharply 2-transitive permutation group on a set �, α a �xed element of �
and H = Gα the stabilizer in G of α. An element g ∈ G is called regular if g displaces all elements of �
or, equivalently,

g ∈ G \
⋃

x∈G

Hx = G \
⋃

ω∈�

Gω.

Clearly H ismalnormal in G, that is, H ∩ Hg = 1 for every g ∈ G \ H.

Theorem 2.1 ([3], Theorem 20.7.1). Let ω1,ω2 ∈ � and suppose that at most one element taking
ω1 in ω2 is regular. Then the identity and the regular elements of G form a transitive normal abelian
subgroup N.

Lemma 2.2 ([3], Lemma 20.7.1). There exists one and only one involution in G which interchanges a
speci�ed pair of distinct elements ω1,ω2 ∈ �.

Lemma 2.3 ([3], Lemmas 20.7.2 and 20.7.4). The involutions of G are in a single conjugacy class. The
product of two di�erent involutions is a regular element of G.

Lemma 2.4 ([3], Lemma 20.7.3 and Theorem 12.5.2). If the involutions of G are not regular, then in H
there is a unique involution, which belongs to the center of H. In particular, a 2-subgroup of �nite exponent
of H is cyclic or quaternion, and hence �nite.

Let J be the set of involutions of G and put J2 = {jk | j, k ∈ J}. If X is a subset of G, we de�ne
X# = X \ {1}.

Lemma 2.5 ([6], II.4.1.b and II.9.2). If the involutions of G are not regular, then (J2)# is a conjugacy class
in G. Moreover, every element of (J2)# has prime order p 6= 2 or in�nite order.

The following is a standard de�nition.

De�nition I. Let G be a sharply 2-transitive permutation group.
If an involution (and hence any involution) of G is not regular, we de�ne char(G), the characteristic

of G, to be p if an element of (J2)# has order p and char(G) = 0 if an element of (J2)# has in�nite order.
If the involutions of G are regular, we de�ne char(G) = 2.

Lemma 2.6 ([6], II.9.2). If char(G) = p > 0, then H contains a cyclic subgroup of order p − 1.

Remark A. If char(G) = 0, then we can prove that H contains elements of in�nite order. Since we will
consider only the case in which H is periodic and contains elements of even order, from now we will
assume that char(G) = p > 2.

Lemma 2.7 ([9], see also [1], Lemma 11.50 and Proposition 11.51). Let j, k ∈ J be distinct involutions.
Then
(a) CG(jk) = jJ ∩ kJ is abelian and inverted by j;
(b) the set

{
CG(x)# | x ∈ (J2)#

}
forms a partition of (J2)#;

(c) NG(CG(jk)) = CG(jk) ⋊ NH(CG(jk)) is a split sharply 2-transitive group.

If G = NH is split, then the group H acts freely on N, that is for all ν ∈ N# and all h ∈ H#, νh 6= ν.
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546 E. JABARA

Lemma 2.8 ([4], Theorem 1.1 and Corollary 1.2). Let N be an abelian group, and let H be a group of
automorphisms of N. If H has exponent 2m · 3n for 0 ≤ m and 0 ≤ n ≤ 2 and H acts freely on N, then H
is �nite. Moreover, if NH is a sharply 2-transitive permutation group and n > 0, then |N| ∈ {52, 72, 172}
or N has prime order.

Lemma 2.9. Let N be an abelian group, and let H be a group of automorphisms of N acting freely on N. If
H is locally �nite and has �nite exponent, then H is �nite.

Proof. Denote by π(H) the set of prime numbers that divide the order of some element of H. Since H
is locally �nite, if p ∈ π(H), then every Sylow p-subgroup of H is cyclic or, if p = 2, quaternion ([2]
Theorem 10.3.1). By hypothesis H has �nite exponent and hence π(H) is �nite, moreover, every Sylow
p-subgroup of H is �nite and hence also H is �nite.

3. The λρ–Method

Let t be the unique involution of H and �x ϑ ∈ J, ϑ 6= t. Since G is doubly transitive, we known that
G = H ∪ HϑH ([2], Theorem 2.7.2). In particular, by the sharply 2-transitivity of G, for every h ∈ H#,
there is a unique λ(h) ∈ H# and a unique ρ(h) ∈ H# such that

ϑhϑ = λ(h)ϑρ(h). (1)

Thus this de�nes two maps λ, ρ : H# −→ H# as in [10]. We de�ne also

1(h) = λ(h)ρ(h) and ∇(h) = ρ(h)λ(h) (2)

if h ∈ H# and we extend 1, ∇ to all H putting 1(1) = ∇(1) = t.
It is an easy matter to verify that ρ(t−1) = λ(t)−1; we will put ρ(t) = u.
By Lemma 2.5, |〈tϑ〉| = char(G) = p > 2. By Lemma 2.7.(c) NG(CG(tϑ)) is a split sharply 2-

transitive group with complement NH(CG(tϑ)), in particular, G is split if and only if NH(CG(tϑ)) = H.
Since the subgroup NH(CG(tϑ)) of H assumes some importance in our arguments, then we will put

Eϑ (H) = NH(CG(tϑ))

in order to simplify the notation; further, if there is no loss of clarity, we simply write E(H) in place of
Eϑ (H).

Lemma 3.1. Let h ∈ H#, then

λ(λ(h)) = ρ(ρ(h)) = 1(1(h)) = h, (3)

in particular λ, ρ and 1 are bijections form H# to H#. Moreover,

λ(ρ(h)) = λ(h)−1, ρ(λ(h)) = ρ(h)−1, (4)

λ(h−1) = ρ(h)−1, ρ(h−1) = λ(h)−1, (5)

1(h−1) = 1(h)−1, ∇(h−1) = ∇(h)−1. (6)

Proof. From ϑhϑ = λ(h)ϑρ(h) we obtain ϑλ(h)ϑ = hϑρ(h)−1, so λ(λ(h)) = h and ρ(λ(h)) =

ρ(h)−1. Similarly ρ(ρ(h)) = h and λ(ρ(h)) = λ(h)−1.
The proof of (5) is obtained by considering the equality

ρ(h)−1ϑλ(h)−1 =
(
λ(h)ϑρ(h)

)−1
=

(
ϑhϑ

)−1
= ϑh−1ϑ

and from (5) we deduce (6).
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In order to prove (3), consider

λ(1(h))ϑρ(1(h)) = ϑ1(h)ϑ = ϑλ(h)ρ(h)ϑ = ϑλ(h)ϑϑρ(h)ϑ =

hϑρ(h)−1λ(h)−1ϑh = hϑ1(h)−1ϑh = hλ(1(h)−1)ϑρ(1(h)−1)h,

so, by equating the le� part of the �rst and the last terms of the previous equality, we obtain λ(1(h)) =

hλ(1(h)−1) = hρ(1(h))−1 and hence 1(1(h)) = λ(1(h))ρ(1(h)) = h.

Remark B. By Lemma 3.1, we can deduce that 〈λ, ρ〉 is a permutation group on the set H# isomorphic
to S3 and we have λ(ρ(λ(h))) = h−1 = ρ(λ(ρ(h))) for every h ∈ H# (see also Section 2 in [10]).

Lemma 3.2. The map ∇ : H → H is injective and ∇(h) is conjugate to 1(h) for every h ∈ H. If C is a
conjugacy class in H, then ∇(1(C)) ⊆ C and, if C is �nite, ∇(1(C)) = C. In particular, Ẑ(H) ⊆ ∇(H).

Proof. If h ∈ H, then

ϑ∇(h) = ϑρ(h)λ(h) =
(
λ(h)ϑρ(h)

)λ(h)
= (ϑhϑ

)λ(h)
= hϑλ(h). (7)

Suppose ∇(h1) = ∇(h2) with h1, h2 ∈ H, then, by (7), we can write h
ϑλ(h1)
1 = h

ϑλ(h2)
2 and

h
ϑλ(h1)λ(h2)

−1ϑ
1 = h2 ∈ H. Since H is malnormal ϑλ(h1)λ(h2)

−1ϑ ∈ H, so λ(h1) = λ(h2) and h1 = h2
by Lemma 3.1.

Clearly, 1(h) = ∇(h)λ(h), so 1(h) and ∇(h) are conjugate. Let C be a conjugacy class of G, then, by
Lemma 3.1, 1(1(C)) = C and since 1(h) and ∇(h) are conjugate, we have ∇(1(C)) ⊆ C. Since ∇ is
injective, if C is �nite, then ∇(1(C)) ⊆ C and this implies that Ẑ(H) ⊆ ∇(H).

Lemma 3.3. If the map ∇ : H → H is surjective, then G is split.

Proof. By Theorem 2.1, it is su�cient to prove that the unique regular element inHϑ is tϑ . Let h ∈ H \

{1, t} and k ∈ H with h = ∇(k). The element hϑ = ρ(k)λ(k)ϑ is conjugate to λ(k)ϑρ(k) = ϑkϑ ∈ Hϑ ,
and so hϑ �xes an element of �.

Remark C. One can prove that∇ is surjective if and only if G is split and is planar, that is, G = NH and
for every h ∈ H# the map

Th : N −→ N ν 7→ ν−1νh

is surjective (see Proposition 5.3).
There are, in each characteristic, examples of sharply 2-transitive groups that are split and in which

∇ is not surjective. In the case where H is periodic, it can be shown that this case can not happen (see
Proposition 5.4).

Remark D. By Lemma 3.3 we deduce that ifH is a FC-group, thenG is split. This provides a more direct
proof of Theorem 9.6 in [6].

The special case whereH is abelian has a curious history in what it has been proved at least four times.
In 1952 by Tits ([13], “hidden” in the Remark 2, p. 47), in 1961 by Zemmer [16], in 1990 byMazurov [8]
and by Károlyi et al. [5].

Lemma 3.4. E(H) =
{
h ∈ H | 1(h) = th

}
.

Proof. We prove that 1(h) = th if and only if h ∈ E = NH(CG(tθ)). To do this, by Lemma 2.7 it
su�cies to prove that [tϑ , (tϑ)h] = 1 for all h ∈ H. The claim is obvious if h = 1 or h = t, so we assume
h 6∈ {1, t}. Since ϑtϑ = u−1ϑu we can also write ϑu−1ϑ = tϑu−1 and ϑuϑ = ϑt and hence, keeping
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548 E. JABARA

in mind Lemma 3.1, if 1(h) = th, we obtain

tϑ
(
tϑ

)h
= tϑh−1tϑh = t

(
ϑh−1ϑ

)(
ϑtϑ

)
h = tλ(h−1)ϑρ(h−1)u−1ϑuh =

tλ(h−1)
(
ϑu−1ϑ

)(
ϑρ(h−1)ϑ

)
uh = tλ(h−1)tϑu−1λ(ρ(h−1))ϑρ(ρ(h−1))uh =

λ(h−1)ϑρ(h)u−1ϑu = λ(h−1)ϑρ(h)ϑϑu−1ϑu = λ(h−1)λ(ρ(h))ϑhϑtϑ =

ρ(h)−1λ(h)−1ϑhϑtϑ = 1(h−1)ϑhϑtϑ = h−1tϑhϑtϑ =
(
tϑ

)h
tϑ ,

that is [tϑ , (tϑ)h] = 1.

If [tϑ , (tϑ)h] = 1, we develop both members of tϑ
(
tϑ

)h
=

(
tϑ

)h
tϑ obtaining

tϑ
(
tϑ

)h
= tλ(th−1)ϑρ(th−1)h

and
(
tϑ

)h
tϑ = th−1λ(th)ϑρ(th).

So ρ(th−1)h = ρ(th), 1(th) = λ(th)ρ(th) = ρ(th−1)−1ρ(th) = h and �nally 1(h) = 1

(1(th)) = th.

We also prove the following proposition that is not required for the proof of our theorems.

Proposition 3.5. If u ∈ Z(H), then G is split. In particular, if char(G) = 3, then G is split.

Proof. Let h be an element in H#; we have

λ(th)ϑρ(th) = ϑthϑ = ϑtϑϑhϑ = u−1ϑuλ(h)ϑρ(h) = u−1ϑλ(h)uϑρ(h) =

u−1ϑλ(h)ϑϑuϑρ(h) = u−1hϑρ(h)−1uϑtρ(h) = hu−1ϑuρ(h)−1ϑρ(h)t =

hϑtϑρ(h)−1ϑρ(h)t = hϑth−1ϑλ(h)ρ(h)t = hλ(th−1)ϑρ(th−1)1(t)

and hence λ(th) = hλ(th−1), that is, 1(th) = h and 1(h) = th. By Lemma 3.4 we obtain H = E(H)

and hence G is split.
If char(G) = 3, then (ϑt)3 = 1 and ϑtϑ = tϑt, so u = t ∈ Z(H).

Other proofs that a sharply 2-transitive group G with char(G) = 3 is split can be found in [6]
(Theorem 8.7) and in [14].

The following two lemmas are a direct consequence of (7).

Lemma 3.6. Let h be an element of H#, then h and ϑ∇(h) have the same order.

Proof. ϑ∇(h) = ϑρ(h)λ(h) is conjugate to λ(h)ϑρ(h) = ϑhϑ .

Lemma 3.7. Let w be an element of H, w 6= t. If w ∈ ∇(H), then ϑw cannot be regular.

Proof. Let h ∈ H be such that w = ∇(h). Then

ϑw = ϑρ(h)λ(h) =
(
λ(h)ϑρ(h)

)λ(h)
= hϑλ(h)

�xes a point of �.

4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2. In H there is a unique involution t and hence, by Lemma 2.4, the Sylow
2-subgroups ofH are �nite. In order to prove thatH is �nite we just prove that T = {h ∈ H | h3 = 1} is
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�nite. Let h ∈ T# and w = ∇(h). By Lemma 3.6 we have (ϑw)3 = 1, that is

1 = ϑwϑwϑw = ϑwλ(w)ϑρ(w)w

or ϑ = wϑwϑw = wλ(w)ϑρ(w)w which implies λ(w) = w−1 = ρ(w). Since (ϑw)3 = 1, we have also

(ϑw−1)3 = 1 and hence ϑϑwϑw2
= w3 that is

ϑw3 = ϑwϑw2

and ϑw3 should be a regular element of G. By hypothesis w3 ∈ Ẑ(H) and by Lemma 3.2 Ẑ(H) ⊆ ∇(H),
hence, by Lemma 3.7, ∇(w3) = 1 and w3 = t. Now 1(w) = w−2 = w−3w = tw and, by Lemma 3.4,
w ∈ E(H). By Lemma 2.8 E(H) is �nite and hence, by Lemma 3.2, T is �nite. Thus G is �nite and the
structure of G is as described in Lemma 2.8.

Proof of Theorem 1.1. Suppose H is nilpotent and of exponent 2m · 3 for some m ≥ 1. Let S be a Sylow
2-subgroup of H, since S contains a unique involution, then S is �nite and S ≤ Ẑ(H). Hence H/Ẑ(H)

has exponent dividing 3, Theorem 1.2 applies.

As one can check (using for instance Theorem 20.7.2 in [3] and the list of exceptionals Zassenhaus’
near-�elds provided in [3], p. 391), if G is a group that satis�es the hypotheses of the Theorem 1.1, then
H is necessarily cyclic. If G = NH satis�es the hypotheses of the Theorem 1.2 and N is not cyclic, then
one of the following cases can occur:
• N ≃ C5 × C5 and H ≃ C24, or H ≃ C3 ⋊ C8, or H ≃ SL(2, 3);
• N ≃ C7 × C7 and H ≃ C48, or H ≃ C3 ⋊ C16, or H ≃ GL(2, 3);
• N ≃ C17 × C17 and H ≃ C288, or H ≃ C9 ⋊ C32.

5. Appendix: Near-Fields and Near-Domains

De�nition II. A near-domain is a set F equipped with two binary operations ⊕ and ⊙ such that
(II.1)

(
F,⊕

)
is a loop with neutral element 0;

(II.2) if a ⊕ b = 0, then b ⊕ a = 0;
(II.3)

(
F
#,⊙

)
is a group with neutral element 1;

(II.4) 0 ⊙ a = 0 for all a ∈ F;
(II.5) a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c) for all a, b, c ∈ F;
(II.6) for every a, b ∈ F there is ∂a,b ∈ F

# such that

a ⊕
(
b ⊕ x

)
=

(
a ⊕ b

)
⊕

(
∂a,b ⊙ x

)

for all x ∈ F (∂a,b is independent from x).

De�nition III. A near-�eld is a near-domain such that
(
F,⊕

)
is a group.

It is clear that a near-domain F is a near-�eld if and only if ∂a,b = 1 for every a, b ∈ F.

De�nition IV. A near-domain F is planar if for every a,m ∈ F with m 6∈ {0, 1} there exists an x ∈ F

such that a + mx = x.

A planar near-domain is necessarily a near-�eld ([6], II.3.7 and II.5.11).

Theorem 5.1 ([6] II.6.1, II.7.1, II.7.2). Let F be a near-domain, then the set of one-dimensional a�ne
transformations on F

T2(F) =
{
F −→ F x 7→ a ⊕ m ⊙ x

∣∣ a,m ∈ F, m 6= 0
}
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550 E. JABARA

is a group under the composition of maps. T2(F) operates sharply 2-transitivity on the elements of F and
moreover
(a) T2(F) is split if and only if F is a near-�eld;
(b) T2(F) is planar if and only if F is a planar near-�eld.

We can interpret the λρ-method in the language of the near-domains.

Proposition 5.2. Let G be a sharply 2-transitive group on a set �. Assume char(G) 6= 2, let H = Gα be
the stabilizer of an element α ∈ � and let t be the unique involution in H. Put F = H∪̇{0} and in F de�ne
two operations in the following way:

a ⊕ b =





aλ(ta−1b) if a, b ∈ H and a 6= tb

0 if a, b ∈ H and a = tb

a if b = 0

b if a = 0

a ⊙ b =

{
ab if a, b ∈ H

0 if a = 0 or b = 0.

Then
(
F,⊕,⊙

)
is a near-domain and G is isomorphic, as permutation group, to T2(F).

Moreover, if a, b ∈ F \ {0} = H, then ∂a,b = a1(ta−1b)b−1 and hence F is a near-�eld if and only if
1(h) = th for every h ∈ H.

Proof. A tedious but easy computation.

Proposition 5.3. Let G be a sharply 2-transitive group with char(G) 6= 2 and point stabilizer H and let F
be the associated near-domain. Then F is a planar near-�eld if and only if H = ∇(H).

Proof 1. (near-�eld style). Suppose H = ∇(H) and a,m ∈ F with m 6∈ {0, 1}. If m 6= t then, by
hypothesis, there is h ∈ H such that ta−1ma = ∇(h) and de�ne x = aλ(h)−1. We have

a ⊕ m ⊙ x = a ⊕ mx = aλ(ta−1mx) = aλ
(
ta−1maλ(h)−1)

= aλ
(
∇(h)λ(h)−1) = aλ(ρ(h)) = aλ(h)−1 = x.

If m = t then, remembering that ϑtϑ = u−1ϑu and λ(u) = u, we de�ne x = au and we obtain
a ⊕ t ⊙ x = aλ(a−1x) = aλ(u) = au = x.

Suppose F planar; by de�nition ∇(1) = t and ∇(t) = 1. Let k ∈ H \ {1, t} and let x ∈ H be such that
t ⊕ k ⊙ x = x. Then we can verify that h = λ(tx−1) is an element such that ∇(h) = k.

Proof 2. (group-theoretic style). By hypothesis ∇(H) = H and hence, by Lemma 3.3, G is split. So we
can write G = NH with N � G abelian and t acting by conjugation as the inversion on N. Let ν ∈ N,
since νt = ν−1, there is an involution ϑ inG such that ν = tϑ . Fix h ∈ H#, we have to show that themap
Th : N −→ N, y 7→ y−1yh is surjective. If h = t, the claim is trivial and hence we suppose h 6∈ {1, t}.
Our assertion is proved if we can �nd an element k ∈ H such that (tϑk)−1(tϑk)h = tϑ . If we choose k
such that h = t∇(λ(tk))−1, then, remembering that, since G is split, is 1(k) = tk, we obtain

(
tϑk

)−1(
tϑk

)h
= k−1ϑkh−1k−1ϑkh = k−1ϑkt∇(λ(tk))k−1ϑkt∇(λ(tk))−1 =

k−1ϑtkρ(λ(tk))ρ(ρ(tk))k−1ϑtk
(
ρ(λ(tk))ρ(ρ(tk))

)−1
= k−1ϑkρ(tk)−1ϑρ(tk) =

k−1ϑ
(
λ(tk)ϑρ(tk)

)
= k−1ϑ

(
ϑtkϑ

)
= tϑ ,

and the proof is complete.
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Remark E. The two proofs of Proposition 5.3 show that the de�nitions given inRemarkC andDe�nition
IV are actually equivalent.

Remark F. If char(G) = 2, then we can choose and involution ϑ ∈ G and, if H = Gα , we can de�ne as
above themapsλ,ρ,1 and∇ . In this case, if we put t = 1, then it is not di�cult to verify that Propositions
5.2 and 5.3 are still true. Moreover, G is split if and only if H = E(H) = {h ∈ H | 1(h) = h}.

We conclude this short appendix with the following result.

Proposition 5.4. Let G be a split sharply 2-transitive group. If the point stabilizer H is periodic, then G is
planar.

Proof. WriteG = NH withN�G andN ∩H = {1}. SinceH is periodic, then, by Remark A, char(G) =

p > 0 and hence N is an elementary abelian p-group acted freely by H. Let h ∈ H# be an element of
order ℓ, then (p, ℓ) = 1 and hence there is a positive integer δ such that pδ ≡ 1 mod ℓ. Let h be the
automorphism induced by conjugation by h on N and let q = pδ . In the ring End(N), we have

(
Th

)q
=

(
− 1 + h

)q
= −1 + h

q
= −1 + h = Th

that is, T
q−1
h = idN , and hence Th is a bijection.
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