

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20

On sharply 2-transitive groups with point stabilizer of exponent 2ⁿ.3

Enrico Jabara

To cite this article: Enrico Jabara (2018) On sharply 2-transitive groups with point stabilizer of exponent 2ⁿ·3, Communications in Algebra, 46:2, 544-551, DOI: 10.1080/00927872.2017.1324864

To link to this article: https://doi.org/10.1080/00927872.2017.1324864

	Accepted author version posted online: 08 May 2017. Published online: 08 May 2017.
	Submit your article to this journal $oldsymbol{C}$
ılıl	Article views: 39
Q ¹	View related articles 🗗
CrossMark	View Crossmark data 🗗

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lagb20

On sharply 2-transitive groups with point stabilizer of exponent $2^n \cdot 3$

Enrico Jabara 🗓

Dipartimento di Filosofia e Beni Culturali, Università di Ca' Foscari, Venezia, Italy

ABSTRACT

We describe sharply 2-transitive groups whose point stabilizer is a nilpotent {2,3}-group without elements of order 9 and, more generally, in which the third power of each element belongs to the FC-center. In particular, we will prove that these groups are finite.

ARTICLE HISTORY

Received 26 January 2016 Communicated by S. Bazzoni

FC-group; Frobenius group; near-domain; near-field; sharply 2-transitive permutation group

2000 MATHEMATICS SUBJECT CLASSIFICATION 20B22; 20F24; 20F28; 16Y30

1. Introduction

Let *G* be a sharply 2-transitive permutation group acting on a set Ω (finite or infinite, with $|\Omega| \ge 2$), that is, G is transitive on Ω and only the identity of G fixes more than one element of Ω .

In the finite case, sharply 2-transitive groups have been classified by Zassenhaus [15], in particular, they are *split*, that is, they have always a normal abelian subgroup N which is regular on Ω .

In the infinite case the situation is more complex and recently examples were built of *non-split* sharply 2-transitive groups [11].

In some cases, imposing special conditions on the structure of a point stabilizer $G_{\alpha} = \{g \in G \mid$ $g(\alpha) = \alpha$ of $G(\alpha \in \Omega)$, it can be shown that G is split. This is the case in which every conjugacy class of G_{α} is finite ([6], Theorem 9.6), G_{α} is a 2-group [12] and G_{α} has exponent 3 or 6 [7]. In this note we generalize Mayr's result proving the following

Theorem 1.1. Let G be a sharply 2-transitive permutation group on a set Ω , and let $H = G_{\alpha}$ be the stabilizer of an element $\alpha \in \Omega$. If H is nilpotent and has exponent $2^n \cdot 3$ with $n \geq 1$, then G is finite.

If X is a group and $g \in X$, by $g^X = \{g^x \mid x \in X\}$, we denote the conjugacy class of g in X. We define the FC-center of X as the set

$$\widehat{Z}(X) = \big\{ g \in X \mid |g^X| < \infty \big\},\,$$

which one can easily prove to be a characteristic subgroup of X. A group X is said to be a FC-group if X = Z(X).

Theorem 1.1 is consequence of a more general result.

Theorem 1.2. Let G be a sharply 2-transitive permutation group on a set Ω , and let $H = G_{\alpha}$ be the stabilizer of an element $\alpha \in \Omega$. If H is a $\{2,3\}$ -group and $H/\widehat{Z}(X)$ has exponent dividing 3, then $|\Omega| \in \mathbb{R}$ $\{5^2, 7^2, 17^2\}$ or Ω has prime order, in particular, G is finite.

2. Notation and Preliminary Results

In the following, G denotes a sharply 2-transitive permutation group on a set Ω , α a fixed element of Ω and $H = G_{\alpha}$ the stabilizer in G of α . An element $g \in G$ is called regular if g displaces all elements of Ω or, equivalently,

$$g \in G \setminus \bigcup_{x \in G} H^x = G \setminus \bigcup_{\omega \in \Omega} G_{\omega}.$$

Clearly *H* is malnormal in *G*, that is, $H \cap H^g = 1$ for every $g \in G \setminus H$.

Theorem 2.1 ([3], Theorem 20.7.1). Let $\omega_1, \omega_2 \in \Omega$ and suppose that at most one element taking ω_1 in ω_2 is regular. Then the identity and the regular elements of G form a transitive normal abelian subgroup N.

Lemma 2.2 ([3], Lemma 20.7.1). There exists one and only one involution in G which interchanges a specified pair of distinct elements $\omega_1, \omega_2 \in \Omega$.

Lemma 2.3 ([3], Lemmas 20.7.2 and 20.7.4). The involutions of G are in a single conjugacy class. The product of two different involutions is a regular element of G.

Lemma 2.4 ([3], Lemma 20.7.3 and Theorem 12.5.2). *If the involutions of G are not regular, then in H* there is a unique involution, which belongs to the center of H. In particular, a 2-subgroup of finite exponent of H is cyclic or quaternion, and hence finite.

Let J be the set of involutions of G and put $J^2 = \{jk \mid j, k \in J\}$. If X is a subset of G, we define $X^{\#} = X \setminus \{1\}.$

Lemma 2.5 ([6], II.4.1.b and II.9.2). *If the involutions of G are not regular, then* $(J^2)^{\#}$ *is a conjugacy class* in G. Moreover, every element of $(J^2)^{\#}$ has prime order $p \neq 2$ or infinite order.

The following is a standard definition.

Definition I. Let *G* be a sharply 2-transitive permutation group.

If an involution (and hence any involution) of G is not regular, we define char(G), the characteristic of G, to be p if an element of $(J^2)^{\#}$ has order p and char(G) = 0 if an element of $(J^2)^{\#}$ has infinite order. If the involutions of G are regular, we define char(G) = 2.

Lemma 2.6 ([6], II.9.2). If char(G) = p > 0, then H contains a cyclic subgroup of order p - 1.

Remark A. If char(G) = 0, then we can prove that H contains elements of infinite order. Since we will consider only the case in which H is periodic and contains elements of even order, from now we will assume that char(G) = p > 2.

Lemma 2.7 ([9], see also [1], Lemma 11.50 and Proposition 11.51). Let $j, k \in J$ be distinct involutions. Then

- (a) $C_G(jk) = jJ \cap kJ$ is abelian and inverted by j;
- (b) the set $\{C_G(x)^\# \mid x \in (J^2)^\#\}$ forms a partition of $(J^2)^\#$;
- (c) $N_G(C_G(jk)) = C_G(jk) \times N_H(C_G(jk))$ is a split sharply 2-transitive group.

If G = NH is split, then the group H acts freely on N, that is for all $v \in N^{\#}$ and all $h \in H^{\#}$, $v^h \neq v$.

Lemma 2.8 ([4], Theorem 1.1 and Corollary 1.2). Let N be an abelian group, and let H be a group of automorphisms of N. If H has exponent $2^m \cdot 3^n$ for 0 < m and 0 < n < 2 and H acts freely on N, then H is finite. Moreover, if NH is a sharply 2-transitive permutation group and n > 0, then $|N| \in \{5^2, 7^2, 17^2\}$ or N has prime order.

Lemma 2.9. Let N be an abelian group, and let H be a group of automorphisms of N acting freely on N. If H is locally finite and has finite exponent, then H is finite.

Proof. Denote by $\pi(H)$ the set of prime numbers that divide the order of some element of H. Since H is locally finite, if $p \in \pi(H)$, then every Sylow p-subgroup of H is cyclic or, if p = 2, quaternion ([2] Theorem 10.3.1). By hypothesis H has finite exponent and hence $\pi(H)$ is finite, moreover, every Sylow *p*-subgroup of *H* is finite and hence also *H* is finite. П

3. The $\lambda \rho$ -Method

Let t be the unique involution of H and fix $\vartheta \in J$, $\vartheta \neq t$. Since G is doubly transitive, we known that $G = H \cup H\vartheta H$ ([2], Theorem 2.7.2). In particular, by the sharply 2-transitivity of G, for every $h \in H^{\sharp}$, there is a unique $\lambda(h) \in H^{\#}$ and a unique $\rho(h) \in H^{\#}$ such that

$$\vartheta h\vartheta = \lambda(h)\vartheta\rho(h). \tag{1}$$

Thus this defines two maps $\lambda, \rho: H^{\#} \longrightarrow H^{\#}$ as in [10]. We define also

$$\Delta(h) = \lambda(h)\rho(h)$$
 and $\nabla(h) = \rho(h)\lambda(h)$ (2)

if $h \in H^{\#}$ and we extend Δ , ∇ to all H putting $\Delta(1) = \nabla(1) = t$.

It is an easy matter to verify that $\rho(t^{-1}) = \lambda(t)^{-1}$; we will put $\rho(t) = u$.

By Lemma 2.5, $|\langle t\vartheta \rangle| = \text{char}(G) = p > 2$. By Lemma 2.7.(c) $N_G(C_G(t\vartheta))$ is a split sharply 2transitive group with complement $N_H(C_G(t\vartheta))$, in particular, G is split if and only if $N_H(C_G(t\vartheta)) = H$. Since the subgroup $N_H(C_G(t\vartheta))$ of H assumes some importance in our arguments, then we will put

$$\mathcal{E}_{\vartheta}(H) = N_H(C_G(t\vartheta))$$

in order to simplify the notation; further, if there is no loss of clarity, we simply write $\mathcal{E}(H)$ in place of $\mathcal{E}_{\vartheta}(H)$.

Lemma 3.1. Let $h \in H^{\#}$, then

$$\lambda(\lambda(h)) = \rho(\rho(h)) = \Delta(\Delta(h)) = h,\tag{3}$$

in particular λ , ρ and Δ are bijections form $H^{\#}$ to $H^{\#}$. Moreover,

$$\lambda(\rho(h)) = \lambda(h)^{-1}, \qquad \rho(\lambda(h)) = \rho(h)^{-1}, \tag{4}$$

$$\lambda(h^{-1}) = \rho(h)^{-1}, \qquad \rho(h^{-1}) = \lambda(h)^{-1},$$
 (5)

$$\Delta(h^{-1}) = \Delta(h)^{-1}, \qquad \nabla(h^{-1}) = \nabla(h)^{-1}.$$
 (6)

Proof. From $\vartheta h \vartheta = \lambda(h) \vartheta \rho(h)$ we obtain $\vartheta \lambda(h) \vartheta = h \vartheta \rho(h)^{-1}$, so $\lambda(\lambda(h)) = h$ and $\rho(\lambda(h)) = h$ $\rho(h)^{-1}$. Similarly $\rho(\rho(h)) = h$ and $\lambda(\rho(h)) = \lambda(h)^{-1}$.

The proof of (5) is obtained by considering the equality

$$\rho(h)^{-1}\vartheta\lambda(h)^{-1} = \left(\lambda(h)\vartheta\rho(h)\right)^{-1} = \left(\vartheta h\vartheta\right)^{-1} = \vartheta h^{-1}\vartheta$$

and from (5) we deduce (6).

In order to prove (3), consider

$$\lambda(\Delta(h))\vartheta\rho(\Delta(h)) = \vartheta\Delta(h)\vartheta = \vartheta\lambda(h)\rho(h)\vartheta = \vartheta\lambda(h)\vartheta\vartheta\rho(h)\vartheta = h\vartheta\rho(h)^{-1}\lambda(h)^{-1}\vartheta h = h\vartheta\Delta(h)^{-1}\vartheta h = h\lambda(\Delta(h)^{-1})\vartheta\rho(\Delta(h)^{-1})h,$$

so, by equating the left part of the first and the last terms of the previous equality, we obtain $\lambda(\Delta(h))$ $h\lambda(\Delta(h)^{-1}) = h\rho(\Delta(h))^{-1}$ and hence $\Delta(\Delta(h)) = \lambda(\Delta(h))\rho(\Delta(h)) = h$.

Remark B. By Lemma 3.1, we can deduce that $\langle \lambda, \rho \rangle$ is a permutation group on the set $H^{\#}$ isomorphic to S_3 and we have $\lambda(\rho(\lambda(h))) = h^{-1} = \rho(\lambda(\rho(h)))$ for every $h \in H^{\#}$ (see also Section 2 in [10]).

Lemma 3.2. The map $\nabla: H \to H$ is injective and $\nabla(h)$ is conjugate to $\Delta(h)$ for every $h \in H$. If C is a conjugacy class in H, then $\nabla(\Delta(C)) \subset C$ and, if C is finite, $\nabla(\Delta(C)) = C$. In particular, $\widehat{Z}(H) \subset \nabla(H)$.

Proof. If $h \in H$, then

$$\vartheta \nabla(h) = \vartheta \rho(h)\lambda(h) = \left(\lambda(h)\vartheta \rho(h)\right)^{\lambda(h)} = (\vartheta h\vartheta)^{\lambda(h)} = h^{\vartheta \lambda(h)}. \tag{7}$$

Suppose $\nabla(h_1) = \nabla(h_2)$ with $h_1, h_2 \in H$, then, by (7), we can write $h_1^{\vartheta \lambda(h_1)} = h_2^{\vartheta \lambda(h_2)}$ and $h_1^{\vartheta\lambda(h_1)\lambda(h_2)^{-1}\vartheta}=h_2\in H$. Since H is malnormal $\vartheta\lambda(h_1)\lambda(h_2)^{-1}\vartheta\in H$, so $\lambda(h_1)=\lambda(h_2)$ and $h_1=h_2$ by Lemma 3.1.

Clearly, $\Delta(h) = \nabla(h)^{\lambda(h)}$, so $\Delta(h)$ and $\nabla(h)$ are conjugate. Let C be a conjugacy class of G, then, by Lemma 3.1, $\Delta(\Delta(C)) = C$ and since $\Delta(h)$ and $\nabla(h)$ are conjugate, we have $\nabla(\Delta(C)) \subseteq C$. Since ∇ is injective, if *C* is finite, then $\nabla(\Delta(C)) \subseteq C$ and this implies that $\widehat{Z}(H) \subseteq \nabla(H)$.

Lemma 3.3. If the map $\nabla: H \to H$ is surjective, then G is split.

Proof. By Theorem 2.1, it is sufficient to prove that the unique regular element in $H\vartheta$ is $t\vartheta$. Let $h \in H \setminus$ $\{1,t\}$ and $k \in H$ with $h = \nabla(k)$. The element $h\vartheta = \rho(k)\lambda(k)\vartheta$ is conjugate to $\lambda(k)\vartheta\rho(k) = \vartheta k\vartheta \in H^{\vartheta}$, and so $h\vartheta$ fixes an element of Ω .

Remark C. One can prove that ∇ is surjective if and only if G is split and is *planar*, that is, G = NH and for every $h \in H^{\#}$ the map

$$T_h: N \longrightarrow N \quad \nu \mapsto \nu^{-1} \nu^h$$

is surjective (see Proposition 5.3).

There are, in each characteristic, examples of sharply 2-transitive groups that are split and in which ∇ is not surjective. In the case where H is periodic, it can be shown that this case can not happen (see Proposition 5.4).

Remark D. By Lemma 3.3 we deduce that if H is a FC-group, then G is split. This provides a more direct proof of Theorem 9.6 in [6].

The special case where H is abelian has a curious history in what it has been proved at least four times. In 1952 by Tits ([13], "hidden" in the Remark 2, p. 47), in 1961 by Zemmer [16], in 1990 by Mazurov [8] and by Károlyi et al. [5].

Lemma 3.4. $\mathcal{E}(H) = \{ h \in H \mid \Delta(h) = th \}.$

Proof. We prove that $\Delta(h) = th$ if and only if $h \in E = N_H(C_G(t\theta))$. To do this, by Lemma 2.7 it sufficies to prove that $[t\vartheta, (t\vartheta)^h] = 1$ for all $h \in H$. The claim is obvious if h = 1 or h = t, so we assume $h \notin \{1, t\}$. Since $\vartheta t \vartheta = u^{-1} \vartheta u$ we can also write $\vartheta u^{-1} \vartheta = t \vartheta u^{-1}$ and $\vartheta u \vartheta = \vartheta t$ and hence, keeping in mind Lemma 3.1, if $\Delta(h) = th$, we obtain

$$\begin{split} t\vartheta \left(t\vartheta\right)^h &= t\vartheta \, h^{-1}t\vartheta \, h = t \Big(\vartheta \, h^{-1}\vartheta\Big) \Big(\vartheta \, t\vartheta\Big) h = t\lambda (h^{-1})\vartheta \rho (h^{-1})u^{-1}\vartheta \, u h = \\ t\lambda (h^{-1}) \Big(\vartheta \, u^{-1}\vartheta\Big) \Big(\vartheta \rho (h^{-1})\vartheta\Big) u h &= t\lambda (h^{-1})t\vartheta \, u^{-1}\lambda (\rho (h^{-1}))\vartheta \rho (\rho (h^{-1}))u h = \\ \lambda (h^{-1})\vartheta \rho (h)u^{-1}\vartheta \, u &= \lambda (h^{-1})\vartheta \rho (h)\vartheta \, \vartheta \, u^{-1}\vartheta \, u = \lambda (h^{-1})\lambda (\rho (h))\vartheta \, h\vartheta \, t\vartheta = \\ \rho (h)^{-1}\lambda (h)^{-1}\vartheta \, h\vartheta \, t\vartheta &= \Delta (h^{-1})\vartheta \, h\vartheta \, t\vartheta = h^{-1}t\vartheta \, h\vartheta \, t\vartheta = \Big(t\vartheta\Big)^h t\vartheta, \end{split}$$

that is $[t\vartheta, (t\vartheta)^h] = 1$.

If $[t\vartheta, (t\vartheta)^h] = 1$, we develop both members of $t\vartheta(t\vartheta)^h = (t\vartheta)^h t\vartheta$ obtaining

$$t\vartheta(t\vartheta)^h = t\lambda(th^{-1})\vartheta\rho(th^{-1})h$$

and

$$(t\vartheta)^h t\vartheta = th^{-1}\lambda(th)\vartheta\rho(th).$$

So
$$\rho(th^{-1})h = \rho(th)$$
, $\Delta(th) = \lambda(th)\rho(th) = \rho(th^{-1})^{-1}\rho(th) = h$ and finally $\Delta(h) = \Delta(\Delta(th)) = th$.

We also prove the following proposition that is not required for the proof of our theorems.

Proposition 3.5. If $u \in Z(H)$, then G is split. In particular, if char(G) = 3, then G is split.

Proof. Let h be an element in $H^{\#}$; we have

$$\lambda(th)\vartheta\rho(th) = \vartheta th\vartheta = \vartheta t\vartheta\vartheta h\vartheta = u^{-1}\vartheta u\lambda(h)\vartheta\rho(h) = u^{-1}\vartheta\lambda(h)u\vartheta\rho(h) = u^{-1}\vartheta\lambda(h)\vartheta\vartheta u\vartheta\rho(h) = u^{-1}h\vartheta\rho(h)^{-1}u\vartheta t\rho(h) = hu^{-1}\vartheta u\rho(h)^{-1}\vartheta\rho(h)t = h\vartheta t\vartheta\rho(h)^{-1}\vartheta\rho(h)t = h\vartheta t\vartheta$$

and hence $\lambda(th) = h\lambda(th^{-1})$, that is, $\Delta(th) = h$ and $\Delta(h) = th$. By Lemma 3.4 we obtain $H = \mathcal{E}(H)$ and hence *G* is split.

If
$$char(G) = 3$$
, then $(\vartheta t)^3 = 1$ and $\vartheta t\vartheta = t\vartheta t$, so $u = t \in Z(H)$.

Other proofs that a sharply 2-transitive group G with char(G) = 3 is split can be found in [6] (Theorem 8.7) and in [14].

The following two lemmas are a direct consequence of (7).

Lemma 3.6. Let h be an element of $H^{\#}$, then h and $\vartheta \nabla (h)$ have the same order.

Proof.
$$\vartheta \nabla (h) = \vartheta \rho(h) \lambda(h)$$
 is conjugate to $\lambda(h) \vartheta \rho(h) = \vartheta h \vartheta$.

Lemma 3.7. Let w be an element of H, $w \neq t$. If $w \in \nabla(H)$, then ϑw cannot be regular.

Proof. Let $h \in H$ be such that $w = \nabla(h)$. Then

$$\vartheta w = \vartheta \rho(h)\lambda(h) = (\lambda(h)\vartheta \rho(h))^{\lambda(h)} = h^{\vartheta \lambda(h)}$$

fixes a point of Ω .

4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2. In H there is a unique involution t and hence, by Lemma 2.4, the Sylow 2-subgroups of H are finite. In order to prove that H is finite we just prove that $T = \{h \in H \mid h^3 = 1\}$ is

finite. Let $h \in T^{\#}$ and $w = \nabla(h)$. By Lemma 3.6 we have $(\vartheta w)^3 = 1$, that is

$$1 = \vartheta w \vartheta w \vartheta w = \vartheta w \lambda(w) \vartheta \rho(w) w$$

or $\vartheta = w\vartheta w\vartheta w = w\lambda(w)\vartheta\rho(w)w$ which implies $\lambda(w) = w^{-1} = \rho(w)$. Since $(\vartheta w)^3 = 1$, we have also $(\vartheta w^{-1})^3 = 1$ and hence $\vartheta \vartheta^w \vartheta^{w^2} = w^3$ that is

$$\vartheta w^3 = \vartheta^w \vartheta^{w^2}$$

and ϑw^3 should be a regular element of G. By hypothesis $w^3 \in \widehat{Z}(H)$ and by Lemma 3.2 $\widehat{Z}(H) \subseteq \nabla(H)$, hence, by Lemma 3.7, $\nabla(w^3) = 1$ and $w^3 = t$. Now $\Delta(w) = w^{-2} = w^{-3}w = tw$ and, by Lemma 3.4, $w \in \mathcal{E}(H)$. By Lemma 2.8 $\mathcal{E}(H)$ is finite and hence, by Lemma 3.2, T is finite. Thus G is finite and the structure of *G* is as described in Lemma 2.8.

Proof of Theorem 1.1. Suppose H is nilpotent and of exponent $2^m \cdot 3$ for some $m \ge 1$. Let S be a Sylow 2-subgroup of H, since S contains a unique involution, then S is finite and $S \leq \widehat{Z}(H)$. Hence $H/\widehat{Z}(H)$ has exponent dividing 3, Theorem 1.2 applies.

As one can check (using for instance Theorem 20.7.2 in [3] and the list of exceptionals Zassenhaus' near-fields provided in [3], p. 391), if G is a group that satisfies the hypotheses of the Theorem 1.1, then H is necessarily cyclic. If G = NH satisfies the hypotheses of the Theorem 1.2 and N is not cyclic, then one of the following cases can occur:

- $N \simeq C_5 \times C_5$ and $H \simeq C_{24}$, or $H \simeq C_3 \rtimes C_8$, or $H \simeq SL(2,3)$;
- $N \simeq C_7 \times C_7$ and $H \simeq C_{48}$, or $H \simeq C_3 \rtimes C_{16}$, or $H \simeq GL(2,3)$;
- $N \simeq C_{17} \times C_{17}$ and $H \simeq C_{288}$, or $H \simeq C_9 \rtimes C_{32}$.

5. Appendix: Near-Fields and Near-Domains

Definition II. A *near-domain* is a set **F** equipped with two binary operations \oplus and \odot such that

- (\mathbf{F}, \oplus) is a *loop* with neutral element 0; (II.1)
- if $a \oplus b = 0$, then $b \oplus a = 0$; (II.2)
- $(\mathbf{F}^{\#}, \odot)$ is a *group* with neutral element 1; (II.3)
- $0 \odot a = 0$ for all $a \in \mathbf{F}$; (II.4)
- (II.5) $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$ for all $a, b, c \in \mathbf{F}$;
- for every $a, b \in \mathbf{F}$ there is $\partial_{a,b} \in \mathbf{F}^{\#}$ such that (II.6)

$$a \oplus (b \oplus x) = (a \oplus b) \oplus (\partial_{a,b} \odot x)$$

for all $x \in \mathbf{F}$ ($\partial_{a,b}$ is independent from x).

Definition III. A *near-field* is a near-domain such that (\mathbf{F}, \oplus) is a group.

It is clear that a near-domain **F** is a near-field if and only if $\partial_{a,b} = 1$ for every $a, b \in \mathbf{F}$.

Definition IV. A near-domain **F** is *planar* if for every $a, m \in \mathbf{F}$ with $m \notin \{0, 1\}$ there exists an $x \in \mathbf{F}$ such that a + mx = x.

A planar near-domain is necessarily a near-field ([6], II.3.7 and II.5.11).

Theorem 5.1 ([6] II.6.1, II.7.1, II.7.2). Let **F** be a near-domain, then the set of one-dimensional affine transformations on F

$$\mathbf{T}_2(\mathbf{F}) = \left\{ \mathbf{F} \longrightarrow \mathbf{F} \ x \mapsto a \oplus m \odot x \ \middle| \ a, m \in \mathbf{F}, \ m \neq 0 \right\}$$

is a group under the composition of maps. T₂(F) operates sharply 2-transitivity on the elements of F and

- (a) $T_2(\mathbf{F})$ is split if and only if \mathbf{F} is a near-field;
- (b) $T_2(F)$ is planar if and only if F is a planar near-field.

We can interpret the $\lambda \rho$ -method in the language of the near-domains.

Proposition 5.2. Let G be a sharply 2-transitive group on a set Ω . Assume char $(G) \neq 2$, let $H = G_{\alpha}$ be the stabilizer of an element $\alpha \in \Omega$ and let t be the unique involution in H. Put $\mathbf{F} = H \dot{\cup} \{0\}$ and in \mathbf{F} define two operations in the following way:

$$a \oplus b = \begin{cases} a\lambda(ta^{-1}b) & \text{if } a, b \in H \text{ and } a \neq tb \\ 0 & \text{if } a, b \in H \text{ and } a = tb \\ a & \text{if } b = 0 \\ b & \text{if } a = 0 \end{cases}$$

$$a \odot b = \begin{cases} ab & if \ a, b \in H \\ 0 & if \ a = 0 \text{ or } b = 0. \end{cases}$$

Then $(\mathbf{F}, \oplus, \odot)$ is a near-domain and G is isomorphic, as permutation group, to $\mathbf{T}_2(\mathbf{F})$.

Moreover, if $a, b \in \mathbb{F} \setminus \{0\} = H$, then $\partial_{a,b} = a\Delta(ta^{-1}b)b^{-1}$ and hence \mathbb{F} is a near-field if and only if $\Delta(h) = th \text{ for every } h \in H.$

Proof. A tedious but easy computation.

Proposition 5.3. Let G be a sharply 2-transitive group with char(G) \neq 2 and point stabilizer H and let F be the associated near-domain. Then **F** is a planar near-field if and only if $H = \nabla(H)$.

Proof 1. (near-field style). Suppose $H = \nabla(H)$ and $a, m \in \mathbf{F}$ with $m \notin \{0, 1\}$. If $m \neq t$ then, by hypothesis, there is $h \in H$ such that $ta^{-1}ma = \nabla(h)$ and define $x = a\lambda(h)^{-1}$. We have

$$a \oplus m \odot x = a \oplus mx = a\lambda(ta^{-1}mx) = a\lambda(ta^{-1}ma\lambda(h)^{-1})$$
$$= a\lambda(\nabla(h)\lambda(h)^{-1}) = a\lambda(\rho(h)) = a\lambda(h)^{-1} = x.$$

If m = t then, remembering that $\vartheta t \vartheta = u^{-1} \vartheta u$ and $\lambda(u) = u$, we define x = au and we obtain $a \oplus t \odot x = a\lambda(a^{-1}x) = a\lambda(u) = au = x.$

Suppose F planar; by definition $\nabla(1) = t$ and $\nabla(t) = 1$. Let $k \in H \setminus \{1, t\}$ and let $x \in H$ be such that $t \oplus k \odot x = x$. Then we can verify that $h = \lambda(tx^{-1})$ is an element such that $\nabla(h) = k$.

Proof 2. (group-theoretic style). By hypothesis $\nabla(H) = H$ and hence, by Lemma 3.3, G is split. So we can write G = NH with $N \subseteq G$ abelian and t acting by conjugation as the inversion on N. Let $v \in N$, since $v^t = v^{-1}$, there is an involution ϑ in G such that $v = t\vartheta$. Fix $h \in H^{\#}$, we have to show that the map $T_h: N \longrightarrow N, y \mapsto y^{-1}y^h$ is surjective. If h = t, the claim is trivial and hence we suppose $h \notin \{1, t\}$. Our assertion is proved if we can find an element $k \in H$ such that $(t\vartheta^k)^{-1}(t\vartheta^k)^h = t\vartheta$. If we choose k such that $h = t\nabla(\lambda(tk))^{-1}$, then, remembering that, since G is split, is $\Delta(k) = tk$, we obtain

$$\begin{split} & \left(t\vartheta^k\right)^{-1} \left(t\vartheta^k\right)^h = k^{-1}\vartheta \, k h^{-1} k^{-1}\vartheta \, k h = k^{-1}\vartheta \, k t \nabla (\lambda(tk)) k^{-1}\vartheta \, k t \nabla (\lambda(tk))^{-1} = \\ & k^{-1}\vartheta \, t k \rho(\lambda(tk)) \rho(\rho(tk)) k^{-1}\vartheta \, t k \left(\rho(\lambda(tk)) \rho(\rho(tk))\right)^{-1} = k^{-1}\vartheta \, k \rho(tk)^{-1}\vartheta \rho(tk) = \\ & k^{-1}\vartheta \left(\lambda(tk)\vartheta \rho(tk)\right) = k^{-1}\vartheta \left(\vartheta \, t k\vartheta\right) = t\vartheta, \end{split}$$

and the proof is complete.

Remark E. The two proofs of Proposition 5.3 show that the definitions given in Remark C and Definition IV are actually equivalent.

Remark F. If char(G) = 2, then we can choose and involution $\vartheta \in G$ and, if $H = G_\alpha$, we can define as above the maps λ , ρ , Δ and ∇ . In this case, if we put t=1, then it is not difficult to verify that Propositions 5.2 and 5.3 are still true. Moreover, G is split if and only if $H = \mathcal{E}(H) = \{h \in H \mid \Delta(h) = h\}$.

We conclude this short appendix with the following result.

Proposition 5.4. Let G be a split sharply 2-transitive group. If the point stabilizer H is periodic, then G is planar.

Proof. Write G = NH with $N \subseteq G$ and $N \cap H = \{1\}$. Since H is periodic, then, by Remark A, char(G) = p>0 and hence N is an elementary abelian p-group acted freely by H. Let $h\in H^{\#}$ be an element of order ℓ , then $(p,\ell)=1$ and hence there is a positive integer δ such that $p^{\delta}\equiv 1 \mod \ell$. Let \overline{h} be the automorphism induced by conjugation by h on N and let $q = p^{\delta}$. In the ring End(N), we have

$$(T_h)^q = (-1 + \overline{h})^q = -1 + \overline{h}^q = -1 + \overline{h} = T_h$$

that is, $T_h^{q-1} = id_N$, and hence T_h is a bijection.

ORCID

Enrico Jabara http://orcid.org/0000-0001-5913-1820

References

- [1] Borovik, A., Nesin, A. (1994). Groups of Finite Morley Rank. Oxford Logic Guides, Vol. 26. New York: Oxford Science Publications, The Clarendon Press, Oxford University Press.
- [2] Gorenstein, D. (1980). Finite Groups, 2nd ed. New York: Chelsea Publishing Co.
- [3] Hall, M. (1976). The Theory of Groups, Reprinting of the 1968 edition. New York: Chelsea Publishing Co.
- [4] Jabara, E., Mayr, P. (2009). Frobenius complements of exponent dividing 2^m · 9. Forum Math. 21(2):217–220.
- [5] Károlyi, Gy., Kovács, S. J., Pálfy, P. P. (1990). Doubly transitive permutation groups with abelian stabilizers. Aequationes Math. 39(2-3):161-166.
- [6] Kerby, W. (1974). On Infinite Sharply Multiply Transitive Groups. Hamburger Mathematische Einzelschriften, Neue Folge, Heft 6. Göttingen: Vandenhoeck & Ruprecht.
- [7] Mayr, P. (2006). Sharply 2-transitive groups with point stabilizer of exponent 3 or 6. Proc. Am. Math. Soc. 134(1):9–13.
- [8] Mazurov, V. D. (1990). Doubly transitive permutation groups. Sibirsk. Mat. Zh. 31(4):102-104, 222; English translation in Siberian Math. J. 31(4):615-617.
- [9] Nesin, A. (1992). Notes on sharply 2-transitive permutation groups. *Doga Mat.* 16(1):69–84.
- [10] Peterfalvi, T. (2005). Existence d'un sous-groupe normal régulier dans certains groupes 2-transitifs. J. Algebra 294(2):478-488.
- [11] Rips, E., Segev, Y., Tent, K. A sharply 2-transitive group without a non-trivial abelian normal subgroup. arXiv: 1406.0382
- [12] Suchkov, N. M. (2001). On the finiteness of some exactly doubly transitive groups. Algebra Logika 40(3):344–351, 374; English translation in *Algebra Logic* 40(3):190–193.
- [13] Tits, J. (1952). Généralisations des groupes projectifs basées sur leurs propriétés de transitivité. Acad. Roy. Belgique. Cl. Sci. Mm. Coll. in Facs. 2, Brussels.
- [14] Türkelli, S. (2004). Splitting of sharply 2-transitive groups of characteristic 3. Turkish J. Math. 28(3):295–298.
- [15] Zassenhaus, H. (1935). Über endliche Fastkörper. Abh. Math. Semin. Hamb. Univ. 11:187–220.
- [16] Zemmer, J. L. (1961). On a class of doubly transitive groups. Proc. Am. Math. Soc. 12:644-650.