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Introduction
The African Great Lakes region has an extensive human history 
with known human habitation for thousands of years. However, 
the connections between society and a changing climate during 
the East African Iron Age are not well known. Increased fire 
activity and grassland expansion is documented in the literature 
beginning approximately 2500 yr BP (Colombaroli et al., 2014; 
Finch and Marchant, 2011; Nelson et al., 2012; Thevenon et al., 
2003; Vincens et al., 2005) which coincides with regional human 
migration. Bayon et al. (2012) argue that Bantu colonists caused 
major vegetation changes centered around ~2500 yr BP, while 
Maley et al. (2012) ascribe the regional ‘rainforest crisis’ to natu-
ral climatic factors. Here, we use biomarkers in Lake Victoria 
sediment cores to examine the following hypothesis: Did the 
natural increase in fire activity create open spaces that conse-
quently encouraged human settlements or could a small group of 
humans trigger large fires that, in turn, created open spaces and 
thereby promote the growth of human societies?

During the Iron Ages, the development of increasingly struc-
tured and technologically advanced societies may have signifi-
cantly impacted the environment through land use for agricultural 
and herding activities. The Early Iron Age in East Africa is defined 

as ~2400 to ~1100 yr BP, coincident with the shift of the ceramic 
tradition from Urewe to roulette decorated ceramics (Ashley, 
2010; Sinclair et al., 1993). The term ‘Iron Age’ is generally used 
for convenience since significant regional and/or chronological 
variations occur in East Africa (Ashley, 2010). Archaeological and 
historical evidence demonstrated that human presence during this 
period was mainly because of the migrations of Bantu-speaking 
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Abstract
Organic molecular markers determined in a sediment core (V95-1A-1P) from Lake Victoria (East Africa) were used to reconstruct the history of human 
impact and regional fire activity during the Early Iron Age (~2400 to ~1100 yr BP). Fire history was reconstructed using levoglucosan and polycyclic 
aromatic hydrocarbons (PAHs) as markers for biomass burning that demonstrate two distinct fire periods peaking at 1450–1700 and 1850–2050 cal. yr 
BP. A partial correlation between levoglucosan and PAHs is interpreted as different transport behaviors and burn temperatures affecting the proxies. A 
fecal sterol index (CoP-Index) indicates the presence of humans near the lakeshore, where the CoP-Index lags a few centuries behind the fire peaks. The 
CoP-Index peaks between 1850 and1950 cal. yr BP and between 1400 and 1500 cal. yr BP. Retene, a PAH that indicates softwood combustion, differs 
from other PAHs and levoglucosan by abruptly increasing at ~1650 cal. yr BP and remaining high until 1200 cal. yr BP. This increase may potentially signal 
human activity in that the development of metallurgy and/or ceramic production requires highly efficient fuels. However, this increase in retene occurs 
at the same time as severe drought events centered at ~1500 and ~2000 yr BP where the droughts and associated woodland to grassland transition may 
have resulted in more intense fires. The grassland expansion could have created favorable conditions for human activities and triggered settlement growth 
that in turn may have created a positive feedback for further landscape opening.
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people (Huffman, 1989; Li et al., 2014; Russell et al., 2014). As a 
consequence, the increase in human activities combined with the 
development of metallurgy (Bower, 1991; Schmidt and Childs, 
1995) led to an increase in population (Vansina, 1995) and result-
ing forest clearance from slash-and-burn practices (Marchant and 
Taylor, 2000; Vincens et al., 2003).[AQ: 2]

Possible anthropogenic impacts on the environment are, how-
ever, superimposed on a period of severe drought throughout 
tropical East Africa, as suggested by lacustrine and terrestrial 
records (Chritz et  al., 2015; Halfman et  al., 1994; Ricketts and 
Johnson, 1996; Russell and Johnson, 2005). Sediment, pollen and 
diatom records indicate a diffuse expansion of grassland and drier 
montane forests of Podocarpus trees between 3000 and 1700 yr 
BP in the Lake Victoria region (Kendall, 1969; Ssemmanda and 
Vincens, 2002; Stager et al., 2003), and a similar expansion of dry 
montane forests was also observed in sedimentary pollen records 
from the neighboring Albertine Rift sites, from 4100 to 900 yr BP 
(McGlynn et al., 2013).

Drier climate conditions limit primary production of herba-
ceous litter but at the same time promote efficient burning of grass-
dominated savannahs when dry fuel is available (Colombaroli 
et al., 2014; Nelson et al., 2012; Thevenon et al., 2003). Regional, 
annual, and interannual natural fire frequency is a result of the lati-
tudinal movement of the intertropical convergence zone (ITCZ), 
which allows vegetation growth during the rainy seasons and 
favors burning events throughout the dry season from June to Sep-
tember (Pyne, 2001). Past East African fire regime reconstructions 
based on pollen and charcoal records showed a decrease in fire 
activity since ~5000 yr BP because of limited fuel, followed by a 
widespread increase since ~2000 yr BP (Colombaroli et al., 2014; 
Finch and Marchant, 2011; Nelson et al., 2012; Rucina et al., 2009; 
Thevenon et al., 2003; Vincens et al., 2005). Although grassland 
expansion and increased fire activity are sometimes ascribed to 
anthropogenic activities (Finch and Marchant, 2011; Kendall, 
1969; Stager and Johnson, 2000; Talbot and Laerdal, 2000; Theve-
non et al., 2003; Vincens et al., 2005), scientists actively debate 
whether the influence of humans on East African fire during the 
Iron Age and a shift in the ITCZ resulting in drought are the pri-
mary causes of fire activity during this period.

Previous studies (Cockerton et al., 2015; D’Anjou et al., 2012; 
Schüpbach et  al., 2015; Zou et  al., 2000) proposed the use of 
molecular markers in lake sediments or soil for obtaining infor-
mation on the evolution of human settlements in relation to herd-
ing and fire activities. These methods are based on determining 
different classes of chemical compounds present in the organic 
fraction of sediments. Among these markers, polycyclic aromatic 
hydrocarbons (PAHs) and monosaccharide anhydrides (MAs) are 
molecular proxies for fire (Gambaro et al., 2008; Kuo et al., 2011; 
Robertson et  al., 2006; Simoneit, 1999, 2002; Simoneit et  al., 
1993).[AQ: 3][AQ: 4] Levoglucosan (Lvg), the most repre-
sentative MA, is considered a source-specific proxy for biomass 
burning since it is generated solely during cellulose and lignin 
combustion (Simoneit, 2002; Zangrando et al., 2013). PAHs are 
less specific markers, except for the three-ring retene which is a 
specific marker for coniferous wood combustion (Fine et  al., 
2002; Hays et al., 2002, 2011; Lu et al., 2013; Muri et al., 2003; 
Ramdahl, 1983; Schauer and Cass, 2000; Vincente et al., 2011; 
Wakeham et al., 1980) or the low-temperature transformation of 
chemical precursors from coniferous plants (Muri et  al., 2003; 
Wakeham et al., 1980). Pollen grains of crop plants, soil erosion, 
and archaeological evidence indicate the anthropogenic influence 
on fire activity and landscape (Dotterweich et al., 2012; Moskal-
del Hoyo et al., 2015).

The use of fecal sterols (FeSts) as specific molecular markers 
for human and/or livestock presence (D’Anjou et al., 2012) is an 
attractive alternative to other discontinuous and fragmented his-
torical indicators. While FeSts can demonstrate the presence of 

ruminants, and thereby can be used to determine past herding, a 
large population of wild grazers including animals present in East 
Africa may also affect certain FeSt concentrations. FeSts can be 
determined in the same sediment sample as other molecular mark-
ers, thus ensuring the coincident timing of the recorded signals, 
even when core dating presents uncertainty. The stability of these 
compounds in sediments after burial is supported by studies 
where significant concentrations of Lvg, FeSts, and PAHs are 
present in soil and lacustrine sediments with ages older than 10 
kyr BP (D’Anjou et  al., 2012; Johnsen et  al., 2005; Schüpbach 
et  al., 2015), thus suggesting that degradation, if it occurs, is a 
low-kinetic process in these archives.

The use of these molecular markers for paleoenvironmental 
reconstructions is promising. For example, D’Anjou et al. (2012) 
were able to reconstruct human migration in relation with envi-
ronmental changes during the last 7000 yr BP in Southern Nor-
way, while Schüpbach et al. (2015) correlated the fire history of 
Petén Itza (Guatemala) with Mayan agricultural activities. How-
ever, to the best of our knowledge, Lvg and FeSts have never been 
studied in an African sequence.

We use a multi-biomarker method to analyze PAHs, FeSts, 
and Lvg in one section of the piston core V95-1P collected in 
1995 from Lake Victoria during the International Decade for the 
East African Lakes (IDEAL) multidisciplinary project (Berke 
et al., 2012; Johnson et al., 2000; Johnson and Odada, 1996). We 
investigate relative changes in different biomarker records to 
examine the role of humans in the increased fire activity during 
the Early Iron Age in East Africa. This time period encompasses 
both dramatic vegetation shifts from forests to grasslands, 
increased fire activity, and the migration of Bantu-speaking popu-
lations, but the connections between climate, land use, and human 
history are not yet clear.

Study site
Lake Victoria is located at 1134 m a.s.l. It is the largest African 
lake (Figure 1) with a surface area of ~69,000 km2 and a maxi-
mum water depth of~80 m (Crul, 1995; Johnson et  al., 2000; 
Stager et al., 2003). Core V95-1A-1P was recovered from a water 

Figure 1.  Map of East Africa, showing the location of Lake Victoria 
and the position of the collected sediment core V95-1A-1P used in 
this study.
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depth of 65 m at (1°13.9′S, 33°11.9′E). The lake is located 
between the eastern and western branches of the East African Rift 
System and straddles the equator (Cockerton et  al., 2015). The 
Kagera River and small tributaries are the principal inflow, and 
the only outflow occurs at Jinja (Cockerton et al., 2015). There-
fore, Lake Victoria acts as a huge pluviometer as the lake level is 
mainly regulated by the precipitation–evaporation (P:E) balance 
(Johnson et al., 2000).

Methods
Samples and age model
A total of seven piston cores of different lengths were collected 
from Lake Victoria in the multidisciplinary IDEAL project 
(1995), where the cores were later curated in refrigerated storage 
by the US National Lacustrine Core (LacCore) Facility at the 
Limnological Research Center, University of Minnesota. In this 
study, we use section 1 (0–45 cm) from the V95-IA-1P core. 
Details on the coring are reported at http://www.ngdc.noaa.gov/
geosamples/showsample.jsp?fac=LacCore&cru=Victoria&smp=
Victoria-LV95-1A&dev=downhole%20coring&inst= and in the 
literature (Berke et al., 2012; Johnson et al., 2000). The sediment 
core was subsampled into 1-cm samples taken every other centi-
meter, resulting in a total of 20 samples. Samples were shipped to 
the University of Venice, where they were freeze-dried, milled, 
homogenized, and stored at −20°C until extraction.

V95-1P section 1 spans the interval from 2400 to 1200 cal. yr 
BP, using the age–depth model proposed in the literature (see Fig-
ure 1B in Berke et al., 2012; Johnson et al., 2000) and data avail-
able at ftp://ftp.ncdc.noaa.gov. As reported, all ages were calibrated 
using CalPal (Weninger et  al., 2011), and since the uppermost 
sediments were not recovered, the core top was estimated to date 
back to ~1200 cal. yr BP, where the more recent dating point (5 cm 
depth) date back to 1342 ± 49 cal. yr BP (Johnson et al., 2000). The 
sedimentation rate of ~500 mm 1000 yr−1 observed in V95-1P is 
consistent with sedimentation values obtained in parallel cores 
(V95-2P and V95-3P) that resulted in rates of 700 and 
600 mm 1000 yr−1, respectively (Talbot and Laerdal, 2000). Holo-
cene Lake Victoria sediments, including those studied here, are 
fine-grained, dark diatomaceous mud (see also Talbot and Laerdal, 
2000; Verschuren et al., 2002) rich in organic matter (~20%) with 
high C/N ratios (15–20) that may result from predominantly phy-
toplankton source (Johnson et al., 2000).

Chemical analysis
In this study, we analyzed three different classes of compounds: 
PAHs, FeSts, and MAs. A detailed list of each compound is 
reported in Table 1. Standard PAH native compounds were pur-
chased from Dr Ehrenstorfer GmbH (Germany), and FeSts and 
Lvg were obtained from Sigma Aldrich (St Louis, MO). The 
determination of each compound was carried out using the inter-
nal standard method, employing 13C-labeled standards: 13C6-ace-
naphthylene and 13C6-phenanthrene for PAHs (13C-PAH), 
purchased from Cambridge Isotope Laboratories, Inc (Andover, 
MA), 13C6-Lvg (Cambridge Isotope Laboratories, Inc), and 
13C3-cholesterol (Sigma Aldrich).

Freeze-dried sediments of 0.5–1 g were extracted with a dichlo-
romethane (DCM):MeOH (9:1, v:v) mixture using accelerated 
solvent extraction (ASE; Dionex ASE 200; Thermo Fisher Scien-
tific) at 1500 lbf/in2 with two extraction cycles of 10 min.[AQ: 5] 
[AQ: 6] Prior to the extraction, samples were spiked with 100 µL 
of internal standards (13C3-cholesterol, 13C-PAH, and 13C6-Lvg at 
concentrations of 1 µg mL−1), and ~2 g of activated copper were 
added to the samples in order to remove possible sulfur interfer-
ences. The extracts (~30 mL) were pre-concentrated to a final vol-
ume of ~500 µL under a nitrogen stream (TurboVap; Biotage, 

Uppsala, Sweden). The cleanup and separation of three fractions 
(PAHs, FeSt, and Lvg) was performed using solid phase extraction 
cartridges (Discovery SPE DSC-Si silica tube 12 mL, 2 g; Supelco). 
Cartridges were topped with aluminum oxide (~1 g) and anhy-
drous sodium sulfate (~1 g) for removing trace water in the 
extracts. The cartridges were previously cleaned and conditioned 
with 40 mL DCM:Hex 1:1. The pre-concentrated sample was 
loaded onto the cartridge, and the PAH fraction was eluted with 
20 mL DCM:Hex 1:1, FeSt fraction with 70 mL DCM, and Lvg 
fraction with 20 mL acetonitrile. The FeSt and Lvg fractions were 
evaporated to dryness, and the residues were redissolved in DCM 
and pyridine, respectively. Prior to the analyses by gas chromatog-
raphy–mass spectrometry (GC-MS), FeSts and Lvg samples were 
derivatized by adding 100 µL of N,O-bis(trimethylsilyl)trifluoro-
acetamide (BSTFA) with 1% trimethylsilyl chloride (TMCS) and 
heated at 70°C for 1 h. We created and tested extraction blanks 
after every three sample extractions to ensure the absence of con-
taminants prior to analyzing the samples.

Concentrations are converted into flux values by considering 
the sedimentation rate (500 mm 1000 yr−1) obtained from the age 
depth model (Berke et al., 2012; Johnson et al., 2000)

Instrumental analysis
PAHs, FeSt, and Lvg fractions were analyzed by GC-MS (GC: 
7890A GC System; MS: Agilent 5975C; Agilent Technologies, 
Santa Clara, CA), using the analytical methods from Gambaro 
et al. (2004), Battistel et al. (2015), and Medeiros and Simoneit 
(2007). Separation was performed on a HP5-MS column (60 m 
length, 0.25 mm inside diameter, and 0.25 µm film thickness; Agi-
lent Technologies). Helium was used as a carrier gas with a flow 
of 1 mL min−1 where 2 µL of each sample was injected in split/
splitless mode (splitless time 1.5 min). The temperature program 
was designed and optimized for each single fraction as follows: 
PAHs: 70°C (held for 1.5 min) up to 150°C with a rate of 
10°C min−1 and then increased to 300°C at 3°C min−1 and held for 
15 min. FeSt: 150°C (held for 1 min) up to 220°C with a rate of 
30°C min−1and then increased to 300°C at 2°C min−1 and held for 
10 min. Lvg: 110°C (held for 5.5 min) up to 210°C with a rate of 
15°C min−1 and then increased to 220°C at 2°C min−1 and held for 
5 min. An electron ionization source was used for mass detection. 
Single-ion monitoring mode was performed for quantification, 
based on target ions and qualifiers. Target (qualifiers) m/z ratios 
for each compound were as follows: Nph: 128, Acy: 152, Ace: 
154, Flu: 166, Phe: 178, Ant: 178, Fla: 202, Pyr: 202, BaA: 228, 

Table 1.  [AQ: 15]

Class of compound Name Abbreviation

PAHs Naphthalene Nph
  Acenaphthylene Acy
  Acenaphthene Ace
  Fluorene Flu
  Phenanthrene Phe
  Anthracene Ant
  Fluoranthene Fla
  Benzo(a)anthracene BaA
  Chrysene Chr
  Retene Ret
  Pyrene Pyr
FeSt Coprostanol CoP
  epi-Coprostanol e-CoP
  Cholesterol Chol
  5α-Cholestanol 5α-Ch
  Stigmastanol Stg
MAs Levoglucosan Lvg

http://www.ngdc.noaa.gov/geosamples/showsample.jsp?fac=LacCore&cru=Victoria&smp=Victoria-LV95-1A&dev=downhole%20coring&inst=
http://www.ngdc.noaa.gov/geosamples/showsample.jsp?fac=LacCore&cru=Victoria&smp=Victoria-LV95-1A&dev=downhole%20coring&inst=
http://www.ngdc.noaa.gov/geosamples/showsample.jsp?fac=LacCore&cru=Victoria&smp=Victoria-LV95-1A&dev=downhole%20coring&inst=
http://ftp://ftp.ncdc.noaa.gov
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Chr: 228, Ret: 234, CoP: 370 (215), e-CoP: 370 (215), Chol: 368 
(353), 5α-Ch: 460 (355), Stg: 473 (215), and Lvg: 204 (217). The 
uncertainty of each single measurement was estimated as the 
uncertainty of the analytical method from extracting four repli-
cates of diatomaceous earth fortified with low (10 ng) and high 
(100 ng) amounts of native standard compounds. The uncertainty 
of the method resulted in 9–16% for PAHs, 12–18% for FeSt, and 
13–16% for Lvg.

Results
Lvg is a specific marker for biomass burning and is widely con-
sidered as a proxy for regional fire activity (Kirchgeorg et  al., 
2014; Simoneit, 2002) since it is produced by cellulose and lignin 
combustion (Kuo et  al., 2011; Robinson et  al., 2006; Simoneit 
et al., 1993). Along the core section, Lvg flux values in Lake Vic-
toria (Figure 2) ranged from 1 to 8 ng cm−2 yr−1. These values are 
slightly higher than, but comparable to, other Holocene sediment 
records, such as Lake Petén Itzá (Guatemala), where MAs fluxes 
ranged from 0.5 to 3 ng cm−2 yr−1 (Schüpbach et al., 2015). Figure 
2 demonstrates higher Lvg values in two distinct zones between 
14–20 and 31–40 cm (corresponding to about 1500–1700 and 
1850–2050 cal. yr BP, respectively) with the maximum values 
observed at 14 and 32 cm (~1550 and ~1900 cal. yr BP) followed 
by a sharp decrease. In these two zones, the Lvg signal is signifi-
cantly different from the rest of the core, as highlighted by the 
corresponding gray error bands in Figure 2. All Lvg and PAH val-
ues are reported as fluxes in order to allow a direct comparison 
with other records (Figure 2).

Individual PAH values at different depths are reported in Table 
2. Among the investigated PAHs, low-molecular-weight Nph, 
Acy, Ace, Flu, and Phe are the most abundant and constitute 65–
90% (average 82%, relative standard deviation (RSD) 7%) of the 
total PAH signal measured, while high-molecular-weight PAHs 
are less abundant. Several diagnostic ratios, such as Ant/
(Ant + Phe), have been proposed for assessing combustion source 
type since Ant/(Ant + Phe) ratios >0.10 are associated to pyro-
genic sources rather than petrogenic (Yunker et  al., 2002). The 
majority of samples had ratios >0.10. In samples where diagnos-
tic ratios were below 0.1, these values were still quite close to this 
indicative threshold.

The sum of individual PAH concentrations in Lake Victoria 
sediments varied from hundreds to thousands of nanograms per 
gram. In general, total PAH fluxes (ΣPAHs) in Lake Victoria (Fig-
ure 2) significantly increased between 6 and 16 cm (1400–1600 yr 
BP), where this trend is similar to Lvg.

Lvg and ΣPAHs records reported in Figure 2 do not signifi-
cantly correlate (r = 0.434, p = 0.055). This difference suggests 
that these proxies, although they are both indicative of fire, do not 
necessarily describe the characteristics and aspects of the same fire 
event. The increasing number of rings in PAHs relate to burning 
temperatures, where the greater the number of rings, the higher the 
burning temperature required (McGrath et al., 2003). In contrast, 
Lvg is produced at combustion temperatures centered around 
250°C, but concentrations diminish at higher temperatures 
(Kuo et al., 2011). Thus, since fire intensity affects the pyrolitic 
by-products, ΣPAHs and Lvg do not strictly correlate. However, 
Lvg flux correlates better with the sum of the low-molecular-
weight PAHs (Nph + Acy + Ace + Flu; r = 0.523, p = 0.018) rather 
than with the sum of high-molecular-weight PAHs (Phe + Ant + Fl
a + Pyr + BaA + Chr + Ret; r = 0.105, p = 0.661). This correlation is 
consistent with the occurrence low-temperature fire events. 
Although PAHs do not unambiguously differentiate between grass 
and wood fires, the higher abundance of low-molecular-weight 
PAHs instead of high-molecular-weight PAHs suggests a possible 
predominance of grass rather than wood fires, with a possible 
increase in grass fires during the last ~400 years of the record.

Retene is one of the few source-specific PAHs. The retene pro-
file differs from the other PAHs in that it demonstrates negligible 
except for at 20 cm (~1650 yr BP), where a significant, although 
fluctuating, increase was observed. The increase in retene could 
indicate a possible change in fire source, as retene derives from 
abietic acid-like structures, and it is a marker for conifer wood 
combustion (Fine et al., 2002; Hays et al., 2002, 2011; Lu et al., 
2013; Muri et al., 2003; Schauer and Cass, 2000; Vincente et al., 

Figure 2.  (a) %Mg in calcite from Lake Edward (from Russell and 
Johnson, 2005). Organic molecular proxy records from V95-1A-1P 
(Lake Victoria): (b) levoglucosan, (c) ΣPAHs, (d) retene, (e) CoP-
Index calculated as (CoP + e-CoP)/Chol, and (f) 5α-Index calculated 
as 5α-Ch/Chol.
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2011; Wakeham et al., 1980). This increase in conifer burning is 
consistent with the timing of the increase in the ΣPAHs (Figure 2), 
but retene concentrations spike again at 1300 yr BP while ΣPAHs 
and Lvg concentrations remain relatively low suggesting that 
conifer burning may have had a bigger impact during this time 
period than during the rest of the record. Individual or groups of 
PAHs, therefore, provide more information than is possible 
through only examining the ΣPAHs record.

When comparing individual or summed PAHs and Lvg, trans-
port mechanisms and stability must also be considered. Both 
PAHs and Lvg can be present in gas and particle phases, with 
different gas/particle partitioning (George et al., 2016; Xie et al., 
2014; Yang et al., 2007). Since the atmospheric lifetimes of PAHs 
range from 1–3 h (gas phase) to 4–5 days (particulate phase; Lam-
mel et al., 2009; Stier et al., 2005), and the lifetime of Lvg ranges 
between 1 and 26 days (Bai et al., 2013; Lai et al., 2014; Slade and 
Knopf, 2013), both PAHs and Lvg may be potentially subject to 
long-range transport but with different dynamics. A previous 
study of a small North American lake indicated that although 
PAHs can successfully detect recent fire events within 0.5 km, 
PAHs failed in detecting known fire events occurring 1–2 km 
away from the lake site (Denis et al., 2012). Similar studies have 
not yet been performed for Lvg in sediments, but Lvg has been 
detected in polar ice dating back 10 kyr BP (Zennaro et al., 2014), 
suggesting that Lvg survives long-range transport.

Within-lake transport could also affect the stability of these 
proxies prior to deposition. In previous studies carried out in Lake 
Baikal (Russia) which is deeper than Lake Victoria, sediments 
from a location with several hundreds of meters of water above 
the interface, demonstrate similar organic compounds (several 
PAHs and steroids), are not subject to substantial alteration under 
these conditions (Reznikov and Adzhiev, 2015; Tani et  al., 
2009).[AQ: 7] In Lake Victoria, surface wave activity can affect 
sediment accumulation for water depths shallower than ~50 m 
(Johnson et  al., 2000). The core studied in this paper was col-
lected at a water depth of ~70 m, and so, we assume that such 
wave action did not affect the samples.

Also, different transport mechanisms between atmospheric 
(fire proxies) and terrestrial (FeSts) should be considered. Atmo-
spheric transport may act faster than terrestrial transport, intro-
ducing an artificial lag between these classes of proxies. However, 
it is beyond the scope of this study to quantify such a lag. There-
fore, we assume that atmospheric and terrestrial inputs are basi-
cally synchronous and that possible lags are slight enough to not 
strongly affect our interpretations.

Although FeSts can also be reported as fluxes, we opted to use 
several fecal indexes obtained from sterol concentrations (Table 
2). Fecal indexes are generally used as pollution indicators in 
sediments. However, since in situ anaerobic processes can pro-
duce coprostanol through hydrogenation reactions (Fattore et al., 
1996) and/or e-CoP from CoP epimerization (Bull et al., 2002), it 
has been recognized that sterol ratios are a more robust approach 
for assessing human inputs (Tse et al., 2014). We used the fecal 
index (CoP + e-CoP)/Chol (hereafter referred to as the CoP-Index) 
as an indicator of human presence (Leeming et  al., 1996). The 
CoP-Index ranged from 0.08 to 0.44 with maximum values in two 
distinct zones at 8–12 cm (1400–1500 cal. yr BP) and at 29–35 cm 
(1850–1950 cal. yr BP), indicating a higher CoP input during 
these periods. Further information on redox conditions in the 
sedimentary columns can be obtained from 5α-Ch/Chol ratios 
(Vane et al., 2010; referred to as the 5α-Index). In anaerobic sedi-
ments, bacteria can reduce cholesterol to 5α-cholestanol, and 
therefore, higher 5α-Index ratios describe more reducing environ-
ments. However, 5α-Index (Figure 2) fluctuates from 0.5 to 0.9 
(mean: 0.7 ± 0.1). Similarly, 5α-Index values in shallow UK lakes 
(Vane et  al., 2010) were interpreted as indicators of a slightly 
reducing environment.

The FeSt Stg is a marker of the presence of ruminants and, 
therefore, allows inferring pastoralism (D’Anjou et al., 2012). In 
the Lake Victoria samples (Table 1), Stg values have large associ-
ated errors negating the possibility of determining significant 
variations through time. Wild fauna (Bloesch, 2008) may influ-
ence the Stg signal, overlaying any pastoralism signal. For this 
reason, we do not further discuss the Stg signal in this paper.

Discussion
Lake Victoria is the largest lake in Africa with a surface area of 
almost 70,000 km2 and a maximum depth of ~80 m. This size sug-
gests that Lake Victoria is suitable for collecting atmospheric and 
terrestrial signals from a large region. The absence of substantial 
tributaries restricts external perturbations to sedimentation pro-
cesses and the evaporation/precipitation balance regulates lake 
levels. The constant sedimentation rate of ~500 mm 1000 yr−1 
observed in V95-1P is consistent with sedimentation values 
obtained in parallel cores (V95-2P and V95-3P), which have sedi-
mentation rates of 700 and 600 mm 1000 yr−1, respectively (Talbot 
and Laerdal, 2000). This core section encompasses a reducing 
environment over its entire length, which minimizes the occur-
rence of oxidizing reactions that may cause diagenetic transfor-
mations that can alter biomarkers. These overall characteristics 
make Lake Victoria a suitable catchment for collecting both a 
large spatial scale atmospheric signal (fire) as well as a terrestrial 
signal (human presence) and for reconstructing human and fire 
history with a suitable temporal resolution. Considering the vast 
area of the lake, the terrestrial input may be more representative 
of the development of large-scale settlements and migrations 
affecting much of the lake’s perimeter rather than reflecting local-
ized settlements. Therefore, we consider both the human history 
and fire results to reflect regional changes.

This fire history, as determined by Lvg flux, indicates a peak in 
biomass burning between 1850 and 2050 cal. yr BP (Figure 2). 
High-resolution charcoal fluxes in neighboring lakes such as Lake 
Katinda (Colombaroli et al., 2014) demonstrate a similar increase 
in biomass burning magnitude and frequency at 1850–2150 cal. yr 
BP coincident with a vegetation transition to open savannah (Fig-
ure 3). A regional transition to drier conditions occurs at ~1850 cal. 
yr BP as evidenced by Lake Edward %Mg and biogenic silica 
records (Cockerton et al., 2015; Russell and Johnson, 2005) and 
carbonate maxima content in Lake Katinda. Although the PAH 
profile in Lake Victoria marks the same relatively intense fire 
period, this peak is not as pronounced as in the Lvg record (Figure 
2). As previously discussed, PAHs and Lvg do not necessarily cor-
relate because of differences in the fire temperatures and transport. 
However, the relatively greater correlation between Lvg and low-
molecular-weight PAHs suggests the occurrence of low-tempera-
ture combustion episodes during this time.

The second fire period (1500–1700 cal. yr BP) is consistent 
with the later transition from wetter to drier conditions observed 
in the biogenic silica decrease and %Mg increase at ~1500 cal. yr 
BP in Lake Edward (Russell and Johnson, 2005). During this 
period, Lvg better matches the overall ΣPAHs record, and particu-
larly the low-molecular-weight PAHs while also agreeing with 
the high-resolution charcoal record in Lake Katinda (Colombaroli 
et  al., 2014). These observations support a regional increase in 
low-temperature fire events and are consistent with the wet-to-dry 
climate transitions observed in other records.

The retene record provides more specific information on fire 
sources. As evident from Figure 2, the retene record abruptly 
increases at ~1650 cal. yr BP, indicating the input of resinous soft-
wood vegetation to biomass burning. The retene signal remains 
elevated, although fluctuating, even when the Lvg and ΣPAHs sig-
nals decrease. Thus, retene records softwood burning independent 
of ΣPAHs and Lvg. This signal is supported by the progressive 
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increase in Podocarpus pollen (Kendall, 1969; Kiage and Liu, 
2006) and suggests a change in biomass burning dynamics where 
the anthropogenic influences cannot be excluded, based on the 
increase in phytoliths observed in Lake Victoria during this same 
time period (Stager and Johnson, 2000).[AQ: 8] Several conifers 
such as Podocarpaceae (Podocarpus and the endemic Afrocarpus) 
and Cupressaceae (i.e. Juniperus procera) are predominant in 
afromontane forests, though sparse specimens can be found at 
lower altitudes (Adie and Lawes 2010; Katende et  al., 1995; 
Mumbi et al., 2008; Thompson and Young, 1999). The present-day 
distribution indicates that modern mountain forests are located 
several tens of kilometers from the lake. Thus, if the retene derives 
from natural fire, then the signal is likely because of long-distance 
transport, where this deduction agrees, with the pollen record (Fig-
ure 3). However, an alternate possibility also exists. As detailed 
later in the paper, conifer wood could have been used for obtaining 
charcoal and transported from the mountain forests to the lake and 
used for burning at settlements close to the shore.

The anthropogenic contribution to forest clearance has been 
claimed by several authors and is mainly supported by historical 
evidence and pollen records (Finch and Marchant, 2011; Kendall, 
1969; Thevenon et  al., 2003; Vincens et  al., 2005). The CoP-
Index record (Figure 2) supports the idea of a connection between 
the increase in fire activity and human presence. The increase in 
human activity in the local area as inferred from the CoP-Index 
lagged the initial increase in fire signal by 1–2 centuries. Although 
it must be kept in mind that the FeSts signal is potentially very 
local, we propose two possible interpretations: (a) the natural 
increase in fire activity created open spaces that consequently 
encouraged human settlements and (b) even a small group of 
humans could trigger large fires that contributed to create open 
spaces and promote the growth of human societies. A dynamic 
similar to the latter possible interpretation was proposed for the 
South Island of in New Zealand where the arrival of a limited 
human community was sufficient to trigger a significant increase 
in fire activity (McWethy et al., 2014).

In Lake Victoria, both of these dynamics may be possible dur-
ing 1800–2000 yr BP (I) and 1400–1600 yr BP (II; see Figure 2), 
where events I and II preferentially support hypotheses a and b, 
respectively. Arid conditions extended across much of East Africa 
during the time period encompassing event I, as evidenced by the 
ratio of Mg to Ca in authigenic calcite (%Mg) in Lake Edward 
where this ratio serves as a robust indicator of drought (Russell and 
Johnson, 2005, 2007; Figure 2). Lake Tanganyika also records a 
prolonged drought during this time period (Cohen et al., 2005; Fig-
ure 1). This drought may have acted as the main forcing for 
increased fire activity, while human inputs may be a secondary 
effect. In equatorial Africa, the ITCZ passes over the region twice a 
year, creating rainy seasons in October to December and again in 
March to May (Nicholson, 1996; Russell and Johnson, 2007). 
Changes in the biannual migration of the ITCZ influence the 
amount of precipitation deposited over East Africa. Over multi-
decadal to millennial timescales, these fluctuations in the ITCZ, 
coupled with the changes in the Indian Ocean Monsoon to the east 
and the Congo Air Boundary to the west can together create pro-
longed droughts over East Africa (Nicholson, 1996; Russell and 
Johnson, 2007). The spatial extent of the 1800–2000 yr BP present 
drought suggests that this regional aridity resulted in heightened 
fire activity, as reflected in the increased Lvg concentrations in 
Lake Victoria (Figure 2) and increased CHAR in Lake Katinda 
(Figure 3). The CoP-Index indicates that human communities were 
present near the lakeshore during this time period, but this index 
can only detect relatively local settlements (Figure 2). Hypothesis a 
– where regional opening of land by fire encouraged human settle-
ments – is, therefore, more likely during this time period because of 
the spatial extent and climatic drivers of drought-associated fires.

Figure 3.  (a) Biogenic silica from Lake Edward (Russell and 
Johnson, 2005); charcoal record from (b) Lake Masoko (Thevenon 
et al., 2003) and (c) Lake Katinda (Colombaroli et al., 2014); pollen 
record from (d) Lake Katinda (Colombaroli et al., 2014), (e) Lake 
Masoko (Thevenon et al., 2003), and (f) Lake Victoria (Chritz et al., 
2015); (g) Podocarpus pollen from Muchoya Swamp (Taylor, 1990); (h) 
map of Podocarpus distribution in Africa (Adie and Lawes, 2010).



8	 The Holocene ﻿

However, event II, from 1400 to 1600 yr BP, proposes a differ-
ent scenario. In event II, drought, fires, and the presence of humans 
do not all occur at the same time. The %Mg identifies a drought 
between ~1500 and 1600 yr BP which may be partially responsible 
for a coincident increase in biomass burning as identified by a 
peak in Lvg concentrations (Figure 2). The presence of humans in 
the area lags these fires by approximately a century where human 
settlements appear to be independent of or at least not linearly 
dependent on the other variables. The development of technologi-
cal innovations (as described later in greater detail) suggested by 
the retene record and the evidence of increasingly elaborate 
archaeological findings (Ashley et al., 2010) suggest the develop-
ment of a more complex society during this time period.[AQ: 9] 
Retene concentrations remarkably differ before and after ~1600 yr 
BP (Figure 2). A retene signal is completely absent during event I, 
but conifer burning becomes elevated around ~1600 yr BP and 
then has three major peaks after this initial change. This conifer 
fuel burning coincides with the major decrease in arboreal pollen 
in Lake Masoko beginning at ~1600 yr BP and remains low until 
~900 yr BP while grassland pollen dominates the signal during this 
time period (Figure 3). This combination suggests that the 
increased conifer burning is not because of any increased avail-
ability of conifer vegetation, as forest vegetation declines during 
this time period. Lvg concentrations demonstrate that general bio-
mass burning is relatively low at ~1500 yr BP, while the human 
presence and conifer burning are high, suggesting the preferential 
burning of this fuel and supporting hypothesis b.

The increase in human presence in events I and II differs since 
the parallel increase in retene during event II may be linked with 
technological innovations. Historical evidence suggests the devel-
opment of early metallurgy and ceramic production that required 
high-temperature fires and burning fuels that provide sufficiently 
high heat of combustion for processing metals and clays. Available 
resinous softwood may have provided such a fuel source (Ore-
musova et al., 2014), which is consistent with an analogous increase 
in retene that was interpreted as a possible anthropogenic input in 
Central Europe (Musa Bandowe et al., 2014). For example, in for-
ested areas of Kenya, coniferous wood (Juniperus procera) was 
preferentially used for obtaining charcoal for fuel supplies for iron 
production (Thompson and Young, 1999). The spatial and temporal 
diffusion of metallurgy and clay processing is still uncertain in East 
Africa. Thompson and Young (1999) proposed 2800 yr BP as a pos-
sible initiation of metallurgy, but the expansion was limited to only 
certain settlements in East Africa. It seems reasonable that the 
intensification of these practices approximately 1000 years later 
took advantage of the earlier techniques.

However, in both events I and II, the human presence near 
Lake Victoria does not appear to be permanent. The increase and 
subsequent decrease in the CoP-Index suggest that the growth of 
human settlements is followed by drops in population that can be 
interpreted as possible migration events that could have also been 
triggered by other factors, such as resource availability, social 
dynamics, or even because of the ‘woodland tsetse belt’, as argued 
by some archaeologists (Cecchi et al., 2008; Chritz et al., 2015; 
Ford, 1971). The fluctuation of human settlements enforces the 
idea that humans responded to variations in climate, and their 
impact on environment was limited during this time period. This 
interpretation supports the hypothesis that the creation of natural 
openings and woodland corridors in the forest was triggered by 
natural climatic conditions, which, in turn, allowed Bantu-speak-
ing people to spread throughout Central Africa and East Africa 
(Maley et al., 2012; Neumann et al., 2012).

Conclusion
In this study, we used a multi-proxy approach for reconstructing 
fire and human history at Lake Victoria using PAHs and Lvg as 

molecular markers for biomass burning and FeSts as markers of 
human presence. A total of two peak fire periods occurred at 
1400–1700 and 1850–2050 cal. yr BP and were dominated by 
low-temperature fires. The presence of humans near the lake-
shores, reconstructed using the CoP-Index, mimics the fire signal 
although human settlements lagged behind fire peaks by a few 
centuries. The retene record differs from other PAHs and Lvg in 
that it abruptly increases beginning at ~1650 cal. yr BP. This peak 
may correlate with human activity and, in particular, with anthro-
pogenic fire usage for the development of metallurgy and/or for 
ceramic production, both of which require the types of fires asso-
ciated with softwood combustion such as Podocarpus trees. 
However, the occurrence of severe drought events peaking at 
~1500 and 2000 cal. yr BP combined with grassland expansion 
may have intensified fires and overlapped with human activity. 
The onset of favorable conditions for human activities could have 
been created by new climate conditions and may have triggered 
human settlement growth that, in turn, extended the open spaces. 
Further insights on this climate and land-use relationship could be 
obtained by investigating a high-resolution sediment core span-
ning the pre–Iron Age period and/or also including smaller lakes 
in the region, especially where archaeological studies have been 
already conducted. Such studies would allow better determining 
human impacts on land use, fires, and vegetation distribution in 
East Africa. Discerning the contributions of anthropogenic versus 
natural forcing on the climate system before the Industrial Revo-
lution remains a major climate science goal. These human impacts 
vary both regionally and through time, but such studies improve 
our understanding of how humans interacted with and changed 
their environments before industrialization.
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