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Abstract

This work reports some considerations on the possible contribution of sulfide and ammonia to the toxicity of elutriate samples of

sediments from the Venice lagoon, tested with a battery of bioassays using early life stages of the sea urchin Paracentrotus lividus and the

oyster Crassostrea gigas. A comparison of ammonia or sulfide concentration in the test matrix, matrix toxicity, and the sensitivity limit of

bioassays for ammonia or sulfide were used in evaluating toxicity data. Results highlighted that sperm cell and embryo toxicity of

elutriates were not affected by sulfides. Neither was any direct relationship shown between elutriate toxicity and ammonia concentration.

Most elutriates had ammonia concentrations below the sensitivity limit of acute test methods, while the more sensitive subchronic

toxicity tests were affected by ammonia interference in some samples.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In a monitoring program, a first question could be,
‘‘Which toxicity test is applicable to this environment?’’
followed by, ‘‘How reliable will the data be?’’ Evaluation of
the applicability of toxicity bioassays to an environment
involves different steps, with progressive iterative evalua-
tions of methods and recalibration of procedures that
could slightly modify operative protocols. A central phase
of this validation process is evaluation of the test
applicability to the environmental matrices and of the
test’s discriminatory power, focusing on identification of
possible chemical or physical interference. Some important
variables in test matrices (elutriates and, particularly, pore
waters), called ‘‘confounding factors,’’ occur naturally and
interfere with the biological effects of micropollutants,
frequently giving rise to a ‘‘false positive’’ (Giesy and
Hoke, 1990; Matthiessen et al., 1998; Morin and Morse,
e front matter r 2006 Elsevier Inc. All rights reserved.
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1999; Postma et al., 2002; Thursby et al., 1997) and
labelling a sample as toxic that is not so in reality.
Recognized confounding factors include sediment tex-

ture (De Witt et al., 1988) and matrix parameters such as
temperature, salinity, and dissolved oxygen, ammonia, and
sulfide concentrations (Lapota et al., 2000; Postma et al.,
2002). Furthermore, the method for extracting and diluting
test matrices may influence sample hypoxic condition and
natural toxicant concentrations and, consequently, the
final toxicity (Beiras, 2002).
In recent years, we have been studying the applicability

to a transitional environment of bioassays using the early
life stages of the sea urchin (Paracentrotus lividus) and
oyster (Crassostrea gigas), with the Venice lagoon as a case
study (Arizzi Novelli et al., 2003a; Volpi Ghirardini et al.,
2003).
In these toxicity bioassays, the most important con-

founding factors are the presence of ammonia and sulfide;
during the test, temperature and salinity are kept within
the optimal range for organisms and dissolved oxygen
has values over 80% of saturation. Many authors have

www.elsevier.com/locate/ecoenv
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reported recently that the toxicity of elutriates and pore
waters from marine and coastal environments was influ-
enced by ammonia when routine tests were used (Ankley
et al., 1991; Carr et al., 1996a, b; Postma et al., 2002;
Whiteman et al., 1996). No normal ranges of ammonia and
sulfide in elutriates and pore waters are specified in the
literature. For surface waters, the US EPA proposed a limit
of 2 mg/L for sulfide and 35 mg/L for ammonia as quality
criteria (Wang and Chapman, 1999).

Moreover, the sensitivity of the test methods used in
monitoring towards these substances is often not available.
With sea urchin bioassays, for example, ammonia toxicity
data are available for Arbacia punctulata (Carr et al.,
1996a; Hooten and Carr, 1998) and Strongylocentrotus

purpuratus (Bay et al., 1993; Greenstein et al., 1996), and
sulfide data are available for S. purpuratus (Knezovich
et al., 1996), but no information has been found for a test
with the species P. lividus. For this reason our research
group recently studied the sensitivity of sperm cell and
embryo toxicity test with P. lividus toward ammonia and
sulfide (Arizzi Novelli et al., 2003b; Losso et al., 2004a, b).

In transitional environments, such as the Venice lagoon,
naturally rich in organic matter and often characterized by
anoxic conditions in areas with low water turnover,
concentrations of ammonia and sulfide can be defined ad
hoc, according to the considerations recently proposed for
estuaries (Chapman and Wang 2001).

In polluted environments, a high concentration of
ammonia in sediments can be due mostly to human
activities directly introducing ammonia into waters or
increasing organic matter in sediments. In this case,
ammonia is considered a pollutant and not a confounding
factor. To the best of our knowledge, no studies on
‘‘background’’ concentrations of ammonia and sulfide in
coastal and/or marine environments are available that
make it possible to discriminate between anthropogenic
and natural ammonia and/or sulfide.

What then can be done with environmental samples at
high concentrations of ammonia and/or sulfide? Interna-
tional protocols recommend that concentrations of these
substances in tested matrices not exceed the sensitivity
limits of bioassays (American Society for Testing and
Materials (ASTM), 1998). This means that most lagoon
elutriates or pore waters cannot be tested if even a part of
the ammonia concentration might be derived from human
sources. We also have to consider that test matrices are
diluted in several solutions in order to obtain EC50
(Effective Concentration 50) values, so this also means
dilution of the ammonia and/or sulfide concentration. For
this reason, the best solution may be to test the samples at
high concentrations of ammonia and/or sulfide and then
discuss the obtained toxicity data, taking into account all
available information.

This work aims at the following:
�
 Continuing to evaluate the applicability of the test with
sea urchins and oysters to the elutriates of the Venice
lagoon; the discriminatory power of the test with P.

lividus has already been evaluated (Losso et al., 2004b;
Volpi Ghirardini et al., 2003).

�
 Acquiring new data on elutriate toxicity for the Venice

lagoon using sea urchin and bivalves.

�
 Evaluating if toxicity data are affected by confounding

factors, comparing ammonia and sulfide concentrations
in the test matrix, test matrix toxicity, and the sensitivity
limit of bioassays for ammonia and sulfide.

2. Materials and methods

2.1. Sperm cell and embryo toxicity tests with P. lividus

Adults of P. lividus were collected from a rocky breakwater in the

northern Adriatic Sea, near the barrier island of Pellestrina (4511805000N;

1211902400E), on the seaward side of the Lagoon of Venice, Italy. Sea

urchins were kept for up to one month in flowing seawater from the

sampling site, maintained on macroalgae and molluscs, at a temperature

of 1871 1C and salinity of 3571%, with a natural photoperiod. Adult

collection and culture procedures have previously been reported in detail

(Volpi Ghirardini and Arizzi Novelli, 2001).

The sperm cell toxicity test was performed using the following

procedure (Volpi Ghirardini and Arizzi Novelli, 2001). Sea urchins were

induced to spawn by injecting 1ml of 0.5–1M KCl solution. Pools were

prepared of male and female gametes (minimum three males and three

females). A volume of 0.1ml of adjusted suspension of 4� 107 sperm was

added to test solutions. After 60min of exposure, 1ml of standardized egg

suspension (at 18 1C) was added to test vessels, and a period of 20min was

allowed to pass. Samples for counting were preserved in 1ml of

concentrated buffered formalin, and the fertilization percentage in each

treatment was determined by counting 200 eggs.

The embryo toxicity, performed using the procedure reported in detail

(Arizzi Novelli et al., 2002), consists of the same steps up to sperm and egg

density determination; the gametes were then put together at a sperm:egg

ratio of 10:1. A period of 20min was allowed for fertilization. A volume of

1ml of fertilized egg suspension was added to 10-ml aliquots of test

solution and incubated in a dark room at 18 1C for 72 h. At the end of the

experiment, samples for counting were preserved in 1ml of concentrated

buffered formalin, and the percentage of plutei with normal development

in each treatment was determined by observing 100 larvae.

Sterile capped polystyrene six-well microplates (Iwaki brand, Asahi

Techno Glass Corporation, Tokyo, Japan) were used as test chambers for

both toxicity tests. Dilution water (for test solutions and gametes) was

artificial sea water reconstituted according to ASTM (1998) at a salinity of

34 ppt.

Acceptability of test results was fixed at (a) fertilization rate and

percentage of normal plutei X70% in control tests; (b) EC50 using the

reference toxicant (copper solutions prepared from copper nitrate

standard solution for atomic absorption spectroscopy) falling within

previously defined acceptability ranges for both tests (Arizzi Novelli et al.,

2002; Volpi Ghirardini and Arizzi Novelli, 2001).

2.2. Embryo toxicity test with C. gigas

Conditioned adults of C. gigas were purchased from the Guernsey Sea

Farm Limited hatchery (Guernsey, United Kingdom). The embryo

toxicity test was performed according to the method proposed by His et

al. (1997), based on the standard protocol of the U.S. Environmental

Protection Agency (1995). Adults were induced to spawn by thermal

stimulation (temperature cycles at 18 and 28 1C). Gametes of good quality

derived from the best males and females were selected and filtered at 32mm
(sperm) and 100mm (eggs) to remove impurities. Eggs (1000ml) were

fertilized by injecting 10ml of sperm; fecundation was verified by
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microscopy. Egg density was determined by counting four subsamples of

known volume. Fertilized eggs, added to test solutions in order to obtain a

density of 60 eggs/ml, were incubated for 24 h at 24 1C. At the end of the

test, samples were fixed with buffered formalin and 100 larvae were

counted, distinguishing between normal larvae (D-shaped) and abnorm-

alities (malformed larvae and prelarval stages). Acceptability of test results

was based on negative control for a percentage of normal D-shaped larvae

X80% (His et al., 1999). Sterile capped polystyrene 24-well microplates

(Iwaki brand, Asahi Techno Glass Corporation, Tokyo, Japan) were used

as test chambers for the toxicity test. Dilution water (for test solutions and

gametes) was artificial sea water reconstituted according to ASTM (1998)

at a salinity of 34 ppt.

2.3. Preparing, testing, and analyzing elutriates

Elutriates were prepared from sediments from 12 sites in the Venice

Lagoon with different types and levels of contamination. Sediment

sampling and storage are reported in detail in Volpi Ghirardini et al.

(2005). All sites were investigated at least twice (from 1998 to 2003) in late

winter and late summer; samples were identified by letters for the sampling

stations, followed by season (w ¼ winter; s ¼ summer) and year. Some

samples had already been investigated with P. lividus (Losso et al., 2004b).

Elutriates were prepared according to the method reported in Volpi

Ghirardini et al. (2003). Briefly, the elutriation steps were as follows:

addition of artificial seawater (Ocean Fish, Prodac International, Cittadella,

PD, Italy) to sediment samples at a sample dilution of 1:4 w0/v

(w0 ¼ sediment dry weight; v ¼ dilution water volume); stirring of the

sediment–water mixture for 24 h at 230 rpm at 4 1C using a Jar test (Model

ISCO, Vittadini, Milan, Italy); settling of the mixture for 60min at 4 1C;

centrifuging of the supernatant at 7700 g at 4 1C for 15min using a

refrigerated ultracentrifuge (Model L7-35, Beckmann, Milan, Italy); storing

the supernatant, without filtering, in 100-ml PE containers, and then

freezing it at �18 1C for later toxicological analyses. for total ammonia and

sulfide analyses, 100ml of each elutriate sample was filtered through

Whatman GF/F 0.7-mm filters.

Elutriate toxicity was investigated using the above-quoted toxicity tests.

Three experimental replicates were performed for each elutriate percen-

tage (6%, 12%, 25%, 50%, 75%, 100%) and for the negative control test.

Sulfide and total ammonia concentrations in elutriates were measured

with a spectrophotometer (Model DR/2010, HACH, Loveland, CO) using

the methylene blue method (USEPA SM 4500-S2 D) for sulfides and the

salicylate method (Reardon et al., 1966) for total ammonia. Elutriate pH

was measured using a pH meter (perpHecT LogR meter, Model 330,

Orion, Beverly, MA).

2.4. Toxicological data analysis

Data are expressed as EC50 values based on the percentages of

‘‘nonfertilized’’ eggs (sperm cell toxicity test) and ‘‘abnormal larvae’’

(embryo toxicity test). EC50 values with 95% confidence limits were

calculated by Trimmed Spearman-Karber (Hamilton et al., 1978). The

responses for each treatment (% of fertilized eggs and % of abnormalities)

were corrected for effects in control tests by applying Abbott’s formula

(Finney, 1971). The EC50 values for elutriates are reported as percentages

of elutriates in artificial water.

3. Results and discussion

3.1. QA/QC for toxicity tests

Tests with P. lividus showed good repeatability, evaluated
using copper as a positive control: the sperm cell toxicity
test had a mean EC507SD (standard deviation) of
5578mg/L (CV (coefficient of variation) ¼ 15%, n ¼ 25),
which was within the EC50 acceptability range (39–71mg/L)
(Volpi Ghirardini and Arizzi Novelli, 2001); the embryo
toxicity test highlighted a mean EC507SD of 6879mg/L
(CV ¼ 13%, n ¼ 9), within the EC50 acceptability range
(51–87mg/L) (Arizzi Novelli et al., 2002).
For the embryotoxicity test with oyster the scant number

of experiments did not allow repeatability to be tested, even
if the EC507confidence limit at 95% obtained comparable
values (12.370.7 and 14.370.7 mg/L).

3.2. Elutriate samples

The concentrations of ammonia and sulfide in elutriates,
elutriate toxicity, and the toxicological parameters indicat-
ing method sensitivity towards sulfide and ammonia were
taken into account in order to evaluate the possible
contribution of sulfide and ammonia to the toxicity.
All elutriate samples showed pH values between 7.7 and

8.3, in agreement with the toxicity test standard protocols.
Concerning toxicological parameters, the following data

are available in the literature:
Total sulfide: EC5 ¼ 0.36mg/L, EC50 ¼ 1.20mg/L for

sperm cell test with P. lividus, NOEC (no observed effect
concentration) ¼ 0.10mg/L, EC50 ¼ 0.43mg/L for embry-
otoxicity test with P. lividus (Losso et al., 2004a),
NOEC ¼ 0.10mg/L for embryotoxicity test with C. gigas

(ASTM, 1998).
Total ammonia: EC5 ¼ 15.3mg/L and EC50 ¼ 25.4mg/L

at pH 8.0 for sperm cell test with P. lividus (which is less
sensitive to ammonia), NOEC ¼ 0.5mg/L, LOEC (lowest
observed effect concentration) ¼ 1mg/L and EC50 ¼
4.2mg/L at pH 8.0 for embryotoxicity test with P. lividus

(Arizzi Novelli et al., 2003b), NOEC ¼ 4.7 at pH 7.8–8.1 for
embryotoxicity test with C. gigas (ASTM, 1998).
Within this context, the EC5 and LOEC values could be

considered equivalent, since they indicated the lowest
concentration causing toxic effect.
In Fig. 1, the concentration of total sulfide for elutriate

samples (abscissa) was related to the toxicity of the
elutriates. For samples at low toxicity, the data are
expressed as percentage of effect, i.e., the percentage of
unfertilized eggs or anomalies in larval development in
undiluted elutriate (ordinate in Figs. 1a–c). For samples at
high toxicity, data are expressed in TU50 (Toxic Unit 50)
values calculated taking into account elutriate dilutions
(Figs. 1d,e). The data were also related to the concentration
of total sulfide extrapolated for the dilution causing 50%
of effect, assuming that sulfide concentration decreases
linearly at increasing elutriate dilution (Fig. 1f). In the
graphs, the NOEC or EC5 values representing method
sensitivity toward sulfide are evidenced by a black bar. For
the sperm cell toxicity test with P. lividus, most samples
showed low toxicity; only three samples of sediment from
the industrial area had high acute toxicity. In both cases,
Fig. 1 shows that sulfide cannot contribute to elutriate
toxicity in the sperm cell toxicity test, since most elutriates
had sulfide concentrations below the EC5 value. Sulfide
concentrations were above EC5 values only for samples
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Fig. 1. Concentration of total sulfide in elutriates, related to elutriate toxicity (expressed as percentage of effect in samples with low toxicity (a, b, and c)

and TU50 (d, e and f) in samples with high toxicity), tested with the sea urchin P. lividus and the oyster C. gigas. The black bar highlights sensitivity limit
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were extrapolated for the dilution of samples causing 50% of effect.

C. Losso et al. / Ecotoxicology and Environmental Safety 66 (2007) 252–257 255
DE-s01 (from estuarine site) and CEb-s98 (possible
reference site), but elutriates did not have acute toxicity.
For the embryotoxicity test with P. lividus and C. gigas

sulfide did not contribute to subchronic toxicity for
samples at either low or high toxicity. These results
regarded elutriates obtained after 24 h sediment–water
oxidation, which promotes the elimination of the major
part of sulfides. For other environment matrices, such as
pore waters collected with an in situ sampler in the Lagoon
of Venice, the influence of sulfide concentrations on
toxicity effects in real anoxic samples may be relevant
(Losso et al., 2004a).

Fig. 2 reports considerations on the possible contribu-
tion of ammonia to the toxicity. For the sperm cell toxicity
test with P. lividus, the toxicity of most samples was not
influenced by ammonia, with the exception of BR-s98, BR-
w99, and OS-w99, which had ammonia concentrations
exceeding the EC5 value, and OS-s98 and BA1-w02 (not
reported in the graph because out of order, with a total
ammonia concentration of 160mg/L and a percentage of
effect of 65%), with ammonia concentrations greatly above
the EC50 value.

For the embryotoxicity test with P. lividus, only six
samples presented ammonia concentrations below the
LOEC value for total ammonia at pH 8. The toxicity of
most samples could be weakly influenced by ammonia,
because ammonia concentrations exceeded the LOEC
value, but not the EC50 value. For a few samples, the
ammonia contribution to toxicity could be considered high,
since its concentration exceeded the EC50 value, even if
very different elutriate toxicity was found in samples with
similar total ammonia concentrations (e.g., DE-w99 and
OS-s98).
For the embryo toxicity test with C. gigas, most samples

had ammonia concentrations below the NOEC value. Only
a few samples had ammonia concentrations similar to the
NOEC value (TR-w03, SG-s00) or higher (OS-s98, DE-
w99).
No statistically significant correlation between toxicity

and ammonia concentration was found for any bioassay,
considering all toxicity data expressed as percentage of
effect (correlation coefficients were 0.60, 0.42, and 0.36 for
sperm cell and embryo test with P. lividus and embryo test
with C. gigas, respectively; n ¼ 31). The same result was
obtained by excluding outliers (percentage of effect X

90%), for which high toxicity is expected not to be
attributable just to ammonia presence (0.04, 0.41, and
0.17, respectively; n ¼ 28). This suggests that ammonia is
less available in some samples due to pH changes,
antagonistic effects with other substances, or organic
matter protective effects. There were such small changes
in pH among the elutriate samples (from 7.7 to 8.3) that
un-ionized ammonia/ammonium dissociation was scarcely
influenced. The pH changes during the execution test were
also very small both for sperm cell test (differences included
in the range �0.06, +0.11 from 0 to 60min) and embryo
test (�0.05, +0.17 from 0 to 72 h) with P. lividus

(preliminary tests, unpublished data). Possible antagonistic
effects, or organic matter protective effects, could explain
the fact that some samples (OS-w99 for sperm cell test,
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TR-w03 for embryo test with the sea urchin, and SG-s00
for embryo test with the oyster) had high ammonia
concentration and low toxicity.

Ammonia concentrations registered in elutriates were
generally high. For example, the elutriates deriving from
sediments of the estuarine site DE exhibited 5.4mg/L (DE-
s98) and 7.6mg/L (DE-w99) of total ammonia in undiluted
elutriate. These high values might be explained by large
amounts of organic matter, since several fragments of
riparian vegetation were found during sample homogeni-
zation and high volatile organic matter contents were
calculated by loss-on-ignition (9% for DE-s98 and 7% for
DE-w99). The very high ammonia concentrations in other
samples from the industrial area cannot so easily be
explained. Total ammonia concentrations of 17.8mg/L
(OS-w99), 45.4mg/L (OS-s98), 19.6mg/L (BR-s98),
22.6mg/L (BR-w99), and 160mg/L (BA1-w02) cannot be
attributed entirely to organic matter. Indeed, most elutriate
samples (70%) we prepared from Venice lagoon sediments
had total ammonia concentrations in the range 0–2.5mg/L
(n ¼ 116) (Volpi Ghirardini, unpublished data). We
assume that industrial discharges could contribute to
ammonia content in the sediment and, as a consequence,
in the elutriates. In this case ammonia cannot be
considered only as a confounding factor, but also as a
contaminant.

4. Conclusion

This study reports toxicity data on elutriates from
sediment of the Venice lagoon, tested with a battery of
bioassays using the early life stages of sea urchin and
oyster. The possible contributions of sulfide and ammonia
to toxicity are discussed, as an evaluation of false positives
is an important step in method validation and in particular
for evaluating the applicability of methods to a given
environment.
The general approach in monitoring programs, sug-

gested by the ISO or OECD standards, for example, is to
consider as nonvalid a toxicity test performed on samples
with a high concentration of ammonia and sulfide. In a
transitional environment, such as a lagoon, where large
amounts of organic matter are degraded daily, ammonia
and sulfide concentrations could reach toxic thresholds in
aqueous matrices. Comparison of the ammonia and sulfide
concentrations in the test matrix, test matrix toxicity, and
sensitivity limits (NOEC value) of a bioassay for ammonia
and sulfide could be a practical approach to performing
sensitive bioassays for interpreting toxicity data. For most
toxic samples, this means extrapolating ammonia and
sulfide concentrations for the dilutions of samples deter-
mining the EC50 value.
The results demonstrated that sperm cell and embryo

toxicity of elutriates obtained under strong oxidative
conditions from sediments of the lagoon of Venice, is not
affected by sulfides: two samples exceeded the sensitivity
limit for the sperm cell test, but no acute toxicity was
found. For ammonia, most elutriate samples tested by the
sperm cell test with P. lividus and embryotoxicity test with
C. gigas had ammonia concentrations below the sensitivity
limit of the method. The few samples (from sediments close
to the industrial area) exceeding the sensitivity limit of the
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method had such high concentrations of ammonia that a
contribution from industrial discharges must be assumed.

As regards the embryotoxicity test with P. lividus, most
samples had an ammonia concentration between the
LOEC and EC50 toxicity thresholds (sample toxicity
slightly affected by ammonia) and a few samples exceeded
the EC50 toxicity threshold (sample toxicity greatly
affected by ammonia).
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