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Abstract—Finding connected components is a fundamental task in applications dealing with graph analytics, such as social network
analysis, web graph mining and image processing. The exponentially growing size of today’s graphs has required the definition of new
computational models and algorithms for their efficient processing on highly distributed architectures. In this paper we present
CRACKER, an efficient iterative MapReduce-like algorithm to detect connected components in large graphs. The strategy of CRACKER

is to transform the input graph in a set of trees, one for each connected component in the graph. Nodes are iteratively removed from
the graph and added to the trees, reducing the amount of computation at each iteration. We prove the correctness of the algorithm,
evaluate its computational cost and provide an extensive experimental evaluation considering a wide variety of synthetic and real-world
graphs. The experimental results show that CRACKER consistently outperforms state-of-the-art approaches both in terms of total
computation time and volume of messages exchanged.
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1 INTRODUCTION

The graph formalism is very effective when it comes to
model the relationships existing among different entities.
Now more than ever, graphs are a useful tool to abstract
the representation of a world becoming more and more
interconnected: humans, smart devices, phones, computers
and the information they share need to be always active
and reachable leading to the establishment of an authentic
web of connections. Today’s graphs can be huge. Consider,
for instance, the Web graph (Common Crawl provides 3.5
billion pages with 128 billion hyperlinks[?]), the Linked
Open Data datasets (the LOD2 project indexes for 5.7 bil-
lion triples/edges [?]) or the Facebook and Twitter social
networks (respectively 1.35 billion and 284 million monthly
active users).

The size of these graphs makes it infeasible to rely
on classic solutions for their processing, i.e., solutions that
assume to perform the computation in a sequential way or
on a shared-memory parallel machine. In fact, the amount
of storage and computation required to process graphs
of such size is far beyond the capabilities provided by a
single, even high-performance, machine. In addition, graph
data is often distributed by nature, as it is collected and
stored on distributed platforms. Alternatively, distributed
computing platform can be programmed by exploiting ef-
ficient but low-level techniques (e.g., send/receive message
passing, unstructured shared memory mechanisms). Such
approaches, traditionally adopted to process large datasets
on clusters, lead to several issues. Low-level solutions are
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complex, error-prone, hard to maintain and their tailored
nature hinder their portability.

To address these issues, across the years have been
proposed several models, programming paradigms, ap-
proaches and technologies [?], [?], [?], [?], [?] that hide most
of the complexity of distributed programming by providing
pre-determined patterns or skeletons that developers com-
bine to implement their applications. What differentiates
these solutions from other high-level parallel programming
models is that orchestration and synchronization of the par-
allel activities is not just simpler to approach but implicitly
defined by the skeletons (or by patterns). In fact, developers
do not have to specify the synchronizations between the
application’s sequential parts. When the communication/-
data access patterns are known in advance, cost models
can be applied to schedule skeletons programs to achieve
an increased efficiency in the exploitation of computational
resources.

Among the existing structured parallel programming
paradigms, the MapReduce, which, in its current form has
been proposed by Dean and Gemawat [?], has been one
of the most widely adopted skeletons. According to this
model, programmers are requested to provide problem-
specific code segments for two functions, Map and Reduce.
The Map function is applied to the input and emits a list
of intermediate key-value pairs, while the Reduce function
aggregates the values according to the keys. This program-
ming paradigm is currently adopted for approaching a large
set of data-intensive problems (e.g., large scale indexing,
large scale graph computations, processing of satellite im-
agery, large-scale machine learning, etc.) that are usually
processed exploiting clusters of (inexpensive) commodity
hardware.

In this paper we focus on the problem of finding con-
nected components (CC) in large graphs using a MapReduce
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approach. This problem is of fundamental importance in
graph theory and can be applied to a wide range of com-
puter science fields. For example, finding CC is the building
block in many research topics, such as to generate group
of features in image clustering [?], study the analysis of
structure and evolution of on-line social networks [?], derive
community structure in social networks [?], group together
similar spam messages to detect spam campaigns [?], esti-
mate the population from mobile calls [?]. CCs are used in
the process of validation of graph algorithms [?], [?].

We propose CRACKER, a highly-efficient distributed it-
erative algorithm for the identification of connected com-
ponents in large graphs. CRACKER works by iteratively
growing a tree for each connected component belonging
to the graph. The nodes added to the trees are no longer
involved in the computation in the subsequent iterations.
By means of trimming the number of nodes involved dur-
ing each iteration, CRACKER significantly reduces the total
computation time as well as the volume of information
transferred via network.

CRACKER has been implemented on the Apache Spark
framework [?], which is currently gaining momentum as
it enables fast memory-based computations. It supports
the development of applications structured according to
the MapReduce paradigm but also allows programmers to
interact with its execution support at a lower level [?].

In order to perform a fair evaluation of CRACKER, the
most relevant state-of-the-art algorithms have been im-
plemented on the same framework. The evaluation has
been conducted exploiting several synthetic and real-word
datasets. The results we achieved show that CRACKER out-
performs competitor solutions in a wide range of setups.

1.1 Contribution
We already proposed a base version of CRACKER in [?]. We
have extended our contributions as the following:
• we provide a complete theoretical analysis of CRACK-

ER for undirected graph in terms of (i) correctness, (ii)
computational cost and (iii) number of messages.

• we extend the base algorithm with three optimisations.
We provide experimental evidence that these optimisa-
tions greatly improve its performance;

• we give a detailed description on the implementation
of the CRACKER algorithm on the Apache Spark frame-
work;

• we expand the experimental results, by (i) testing the
optimizations introduced, (ii) testing the CRACKER al-
gorithm on larger graph, and (iii) adding two further
competitors.

In order to make our results reproducible we made
publicly available the source code of CRACKER1 (as well as
the code of all the competitors used in the comparison) and
the graph datasets used in the experimental evaluation2.

2 RELATED WORK

Finding connected components is a well-known and deeply
studied problem in graph analytics. So far, many different

1. https://github.com/hpclab/cracker
2. http://www.di.unipi.it/∼lulli/project/cracker.htm

solutions have been proposed. When the graph can be kept
in the main memory of a single machine, a visit of the
graph can find connected components in linear time [?].
Many distributed approaches have been proposed to tackle
the very same problem in large graphs. Earlier solutions
considered the PRAM model [?], [?]. However, often the im-
plementation of these solutions is complex, error-prone and
not efficiently matching the programming models provided
by the current distributed frameworks [?].

Many proposals dedicated to the problem of finding
connected components have been thought for today’s dis-
tributed frameworks, in particular for MapReduce plat-
forms. In this section we analyse and compare the proposals
that are most related with CRACKER.

To structure our comparison, we frame a selection of
existing solutions belonging to the conceptual framework of
vertex-centric approaches. According to such model, each
vertex of the graph is seen as a computational unit able to
communicate with its graph neighbours. The computation
is defined for a generic vertex, and it is repeated by all
the vertices in the graph. In CC discovery algorithms, a
vertex usually propagates and maintains information about
the connected component it belongs to and the computation
is iterated until convergence. Yan et al. [?] introduce the
notion of balanced practical Pregel algorithm to characterize
some nice-to-have properties for CC algorithms making use
of this model of computation. For instance, Feng et al. [?]
presents a CC algorithm targeted for Pregel framework with
performance similar to HASH-TO-MIN.

In Table 1 we provide a characterization of some of the
most relevant state-of-the-art approaches, presenting them
on the basis of their qualitative behaviour, i.e. detection
strategy, communication pattern and vertex pruning, and of
the theoretical bounds for the number of iterations and of
messages per iteration. Regarding the detection strategy, we
distinguish between labelling and clustering approaches. The
former associates, to each vertex, the id of the CC it belongs
to, which is usually given by the smallest id of the vertices
belonging to the CC. The latter assumes that one vertex for
each CC knows the identifiers of all the other vertices of the
same CC. As a consequence, labelling requires to process less
amount of information; however the CCs can be efficiently
reconstructed by a post-processing step.

Different communication patterns specify how vertices
exchange information one to each others. A static pattern
happens when each vertex considers the same set of edges
at every iteration, usually its neighbors in the input graph.
This pattern is straightforward to implement, but is char-
acterized by slow convergence. To address this issue, other
approaches employ a dynamic pattern, in which the set of
edges evolves over time. This approach is usually more
efficient as it can add new connections and remove stale
ones, with the aim of reducing the diameter of the CC and,
in turn, speeding up convergence.

The last feature we consider is vertex pruning, namely
the ability of excluding vertices from computation. State-
of-the-art algorithms keep iterating the same vertex-centric
computation on all vertices of the graph until convergence.
In this way, a large number of vertices remains involved
in the computation even if they do not provide useful
information toward convergence. For instance, a small CC
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TABLE 1: Characterization of state-of-the-art algorithms. d is diameter, n is the number of nodes, m is the number of edges

communication
pattern

detection
strategy

vertex
pruning

number
of iterations

number of messages
per iteration

PEGASUS [?] static labelling no O(d)3 O(m+ n)3

HASH-TO-MIN [?] dynamic clustering no O(log(d))4 2(m+ n)
CCMR [?] dynamic labelling no N/A N/A
ZONES [?] dynamic labelling no O(d)3 O(m+ n)3

CCF [?] dynamic labelling limited N/A N/A
ALT-OPT [?] dynamic labelling no O(logn)5 O(m)

SGC [?] dynamic labelling limited O(logn)6 O(m+ n)
CRACKER dynamic labelling yes O(logn) O( nm

log n )

could be excluded from the computation when it reaches
convergence, without affecting the discovery of other con-
nected components.

In 2009, Cohen [?] proposed an iterative MapReduce
solution (which we refer to as ZONES) that groups connected
vertices around the vertex with the smallest identifier. Ini-
tially, the algorithm constructs one zone for each vertex.
During each iteration, each edge is tested to understand
if it connects vertices from different zones. If this is the
case, the lower order zone absorbs the higher order one.
When there are no zones to be merged, each zone is known
to be a connected component. The main drawback of this
approach is that all edges are checked during every iteration
(no vertex pruning), resulting in long convergence time.

Seidl et al. [?] proposed an improved version of ZONES
called CCMR. The idea surrounding CCMR is to add shortcut
edges, such that fewer iterations are needed to spread in-
formation across the graph. The CCMR algorithm modifies
the input graph during each iteration, until each connected
component is transformed in a star-shaped sub-graph where
all vertices are connected with the one having the small-
est identifier. Thanks to these improvements, CCMR yields
lower running times with respects to ZONES.

Deelman et al. proposed an algorithm for the detection
of connected components within the graph mining system
PEGASUS [?]. They employ a static communication pattern.
During each iteration, each node sends the smallest node
identifier it knows to all its neighbours. In turn, each
node updates its knowledge with the received identifiers.
The algorithm labels all nodes with the seed identifier in
O(d) MapReduce steps, with d the diameter of the largest
connected component. Similarly, Rastogi et al. [?] proposed
HASH-TO-MIN, a vertex-centric algorithm parametrized by
an hashing and a merging function determining the in-
formation travelling across the graph. The HASH-TO-MIN
algorithm iterates as PEGASUS by propagating the smallest
node identifier seen so far, but in addition it also com-
municates the whole set of known nodes so as to create
new connections among nodes being at more than one hop
distance.

Kardes et al. [?] proposed a MapReduce algorithm in two
phases named CCF. The first phase is similar to the HASH-
TO-MIN approach but they introduce some improvements
that reduce the computation cost in spite of more MapRe-
duce steps. The second phase of CCF is an optimization that
reduces the amount of duplicated messages. CCF employs
vertex pruning limited to the seed nodes, whereas CRACKER
processes only the relevant vertices, while discarding ver-
tices that have no useful information to share.

Recently, Kiveris et al. [?] proposed ALT-OPT. The algo-

rithm selectively removes edges from the graph, until each
connected component is identified by a star-shaped graph
centred on the seed. To avoid unbalanced computations,
it splits vertices with high degree in multiple copies, in
fact speeding up the computation at the expense of more
MapReduce steps. ALT-OPT shares many traits with CRACK-
ER, being based on a dynamic communication pattern and
using labelling as the detection strategy. However, CRACK-
ER excludes nodes over time, which reduces the overall
computational cost and allows to collapse the computation
in a single machine when the number of active nodes is
sufficiently small.

Another recent solution for CC discovery, which we refer
to as SGC, has been presented by Qin et al. [?]. It exploits a
set of join operators defined by the authors for the Hadoop
framework to model an iterative MapReduce computation.
Similarly to CRACKER, their algorithm outputs a forest of
trees, each representing a connected component. Initially
each node becomes part of a tree-like graph by setting as
a parent the node in its neighbourhood with the lower
identifier, thus creating a forest of (possibly interconnected)
trees. Then, one-node (i.e. singleton) and non-isolated trees
(i.e. connected by an edge to another tree) are iteratively
merged until all trees become isolated (the hooking phase).
Subsequently, each tree is transformed into a star-shaped
graph with the root in the center, so that nodes get to know
the CC they belong (the pointer jumping phase). This last
phase has the same goal of CRACKER’s seed propagation (see
Section 3.2) but it requires to access to the 2-hop neigh-
bourhood of nodes. SGC performs only a limited amount
of vertex pruning by deactivating at each step the nodes
that do not match some criteria. Further, it requires a large
number of MapReduce step in each iteration to verify some
properties on each node and to identify if a tree can be
merged.

3 THE CRACKER ALGORITHM

Let G = (V,E) be an undirected graph where V is a set of n
vertices uniquely identified by values in Z, and E ⊆ V ×V is

3. Not available in the original paper and taken from [?].
4. Rastogi et al. [?] conjecture that HASH-TO-MIN finishes in 2(log d)

iterations on all inputs. They prove also that HASH-TO-MIN terminates
in 4(logn) iterations on any path graph.

5. Kiveris et al. show a complexity of O(log2 n) for the algorithm
called Two-Phase. Here we refer to an optimization of it called ALT-OPT
with only a claimed complexity without any theoretical proof.

6. In Qin et al. [?] the proof is omitted due to lack of space.
7. In Feng et al. [?] is presented the total communication cost, how-

ever in the first iteration if a node is connected to all the other nodes
the BFS cost O(m) message.
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Fig. 1: CRACKER: example of seed identification. Gray vertices are excluded from the computation

the corresponding set of m edges. A connected component
(CC) in G is a maximal subgraph S = (V S , ES) such
that for any two vertices u, v ∈ V S there is an undirected
path in S connecting them. We conform to the convention
to identify each CC of the graph with the smallest vertex
identifier belonging to that component. The vertex having
this identifier is the seed of the connected component.

The CRACKER algorithm (see Algorithm 1) achieves the
identification of the CCs into two phases:
• Seeds Identification: for each CC, CRACKER identifies the

seed vertices of the graph, and it iteratively builds a seed
propagation tree rooted in the seed; whenever a vertex
is added to the tree, it is excluded from computation in
the subsequent iterations (see Alg. 1 lines 5–9). When all
the vertices are excluded from the computation the Seed
Identification terminates and the Seed Propagation begins.

• Seeds Propagation: propagates the seed to all the vertices
belonging to the CC by exploiting the seed propagation
tree built in the previous phase. (see Alg. 1 line 10).

In the following we describe in detail the two phases.
The presentation is given adopting a vertex-centric com-
puting metaphor: at each iteration the vertices of the input
graph are processed independently and in parallel.

3.1 Seed Identification
The basic idea of the Seed Identification phase is to iteratively
reduce the graph size by progressively pruning vertices un-
til only one vertex for each connected component is left, i.e.,
its seed. When a vertex discovers its own CC, it is excluded

Algorithm 1: The CRACKER algorithm
Input : an undirected graph G = (V,E)
Output: a graph where every vertex is labelled with the

seed of its CC
1 u.Active = True ∀u ∈ G
2 T ← (V, ∅)
3 t← 1
4 Gt ← G
5 repeat
6 Ht ← Min_Selection(u) ∀u ∈ Gt

7 Gt+1 ← Pruning(u, T) ∀u ∈ Ht

8 t← t+ 1
9 until Gt = ∅

10 G∗ ← Seed_Propagation(T)
11 return G∗

from computation since does not impact on the other CCs in
the graph. In short, a vertex v discovers its CC by interacting
only with its (evolving) neighbourhood. At any iteration, a
vertex may discover in its neighbourhood another vertex q
with a lower identifier value. If this happens, v connects
to q. If v is not chosen by any neighbour, v is excluded
from the computation and it becomes the child of q in the
seed propagation tree that, at the end of the algorithm, will
include all the vertices of the connected component.

As shown in Algorithm 1, each vertex u ∈ G is initially
marked as active, meaning that at the beginning all vertices
participate to the computation. The seed identification is, in
turn, an iterative algorithm made of two steps: MinSelection
and Pruning. The Seed Identification phase is exemplified in
Figures 1 (Graph) and 2 (Tree) and detailed below.

3.1.1 MinSelection
This step serves to identify those vertices that are guar-
anteed to not be seed of any connected component (see
Algorithm 2). From the point of view of the entire graph,
it takes in input a undirected graph Gt at iteration t, and
builds a new directed graph Ht. The edges of Ht are created
as the following. For each vertex u ∈ Gt, the vmin is
selected as the vertex with the minimum id from the set
NNGt(u) ∪ {u} (see line 2 in Algorithm 2), where NNGt(u)
is the set of neighbors of u in Gt. The vmin is then notified to
all the neighbours of u and to u itself. This communication is
materialised as the addition of new directed edges v → vmin
for every v ∈ {NNGt(u) ∪ u} (see line 4 in Algorithm 2).
After all vertices in Gt completed the MinSelection, for each
vertex u ∈ Ht it holds the following: (i) if u is not a vmin
for any NNGt(u), it has no incoming links; (ii) u has an
outgoing link to its vmin and with the vmin of every node in
NNGt(u). According to the algorithm, a vertex is considered
a potential seed if it is a local minimum in the neighbourhood
of some vertex, and in such case, it has at least one incoming
edge in Ht. Therefore, after the MinSelection, the nodes that

Algorithm 2: Min_Selection (u)

Input : a vertex u ∈ G
1 NNGt(u) = {v : (u↔ v) ∈ Gt}
2 vmin = min(NNGt(u) ∪ {u})
3 forall v ∈ NNGt(u) ∪ {u} do
4 AddEdge ((v → vmin), H

t)
5 end



ACCEPTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS ©2016 IEEE 5

have no incoming edges are guaranteed to not be seed of
any connected component.

For instance, let us consider vertex 8 in the graph H1

in Fig. 1 produced by the first iteration of the MinSelection.
Vertex 8 has three outgoing edges: (i) 8 → 5, which has
been created by 8 itself as 5 was its vmin in the input graph
G1; (ii) 8 → 2, created by 5 connecting its vmin with 8; (iii)
8 → 3, created by 7 connecting its vmin with 8. Therefore,
the knowledge of node 8 about G is improved only by
information exchanged with its neighbours. In the same
way all the other nodes improve their knowledge about the
graph.

3.1.2 Pruning
The Pruning step (see Algorithm 3) removes from Ht, and
thereby excludes, all the vertices that cannot become seeds.
The vertices excluded during the Pruning grow a forest of
seed propagation trees T each covering a distinct CC of the
graph. From the point of view of the entire graph, it takes
in input a directed graph Ht and generates a new directed
graph Gt.

In the Pruning, each node recomputes vmin considering
NNHt(u), which is composed by all the outgoing edges.
Then, for every node v in NNHt(u) (except vmin), a new
undirected edge v with vmin is added to the graph Gt+1

(see line 5). Note that NNHt(u) is in general different
from NNGt(u), with the former normally having lower
identifiers. For example, in Figure 1 NNGt(5) = {2, 8}
and NNHt(5) = {1, 2}. These undirected edges make sure
that the nodes in Gt+1 are not disconnected in case u is
deactivated and therefore not included in the graph Gt+1.
At the end of the Pruning, the nodes identified as non
seed in the MinSelection have no edges and therefore are
excluded by the computation. According to the algorithm of
the MinSelection, this can be verified by checking whether
a node has a self-link in Ht: if it does not it cannot be the
minimum of the local neighbourhood (which includes itself)
and can be safely excluded (see line 9). The nodes marked
for exclusion are inserted in the seed propagation tree T
(see line 10). Finally, a node is finalized as a seed when it is
the only active node in its neighbourhood NNGt+1(u). It is
marked for exclusion and added to T as the root of a CC.

Now, let us consider again the example in Fig. 1. Nodes
4, 6, 7 and 8 are excluded from G2 because they have not

Algorithm 3: Pruning(u, T )
Input : a node u ∈ G and the seed propagation tree T

1 NNHt(u) = {v : (u→ v) ∈ Ht}
2 vmin = min(NNHt(u))
3 if |NNHt(u)| > 1 then
4 forall v ∈ NNHt(u) \ vmin do
5 AddEdge ((v ↔ vmin), G

t+1)
6 end
7 end
8 if u /∈ NNHt(u) then
9 u.Active = False

10 AddEdge ((vmin → u), T ))
11 end
12 if IsSeed (u) then
13 u.Active = False
14 end
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Fig. 2: CRACKER seed propagation tree

been chosen as vmin of any node at the previous iteration.
Graphically, excluded vertices can be easily spotted as they
do not have any ingoing edge. Being excluded, these nodes
are connected to their vmin in the seed propagation tree
T as shown in Fig. 2. Specifically, in the propagation tree,
the vertex 3 has 6 and 7 as children (being their vmin in
H1). Similarly, vertex 2 has vertex 8 as child, and vertex
1 has vertex 4. Note, G2 preserves the connectivity of the
remaining vertices, and this holds in general for every Gt.

3.2 Seed propagation

Please recall that a seed propagation tree for each compo-
nent of the graph is incrementally built during the Pruning.
When a vertex v is excluded from the computation, a di-
rected edge vmin → v is added to the tree structure T (see
Line 10 in Algorithm 3).

The Seed Propagation phase starts when there are no
more active nodes after the execution of the Pruning. At this
there exists in T for each CC a seed propagation tree rooted
in its seed node. Figure 2 shows the tree at each iteration
resulting from the example presented in Figure 1. Such tree
is then used to propagate the seed identifier to all the nodes
in the tree. In details, the propagation starts from the root of
each tree. The roots send their identifier to their children in
one MapReduce iteration, this identifier will be the identifier
of the CC. In every iteration, each node that receives the
identifier propagates it to its children. The execution stops
when the identifiers reach the leaves of the tree.

3.3 Cracker correctness

We denote with NNd
Gt(u) the set of vertices at distance at

most d from u in Gt. In the following, we first highlight
a few properties which can be derived from the CRACKER
algorithm.

Property 1 (Active Vertices). An active vertex u ∈ Gt will stay
active in Gt+1 iff it is a local minimum for any of its neighbors
or for itself.

Property 2 (New edges). Given a node u ∈ Gt, let u1
min

and u2
min be the smallest nodes in NN1

Gt(u) and NN2
Gt(u),

respectively. The graph Gt+1 will have an edge u1
min ↔ u2

min,
and, if u is still active, an edge u↔ u2

min.

Property 3 (Edges of Neighbors). Given two neighboring
nodes u, v ∈ Gt, an edge v1min ↔ u2

min is created in Gt+1.

The first property holds because a local minimum node
is never deactivated. The second property holds because the
node u creates links between its neighbors in Ht (possibly
including itself) to the new minimum in NN2

Gt(u). The third
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property holds because u’s neighbors in Ht include the local
minimum of v.

We can now prove the following.

Theorem 1 (Path Preservation after Pruning). If a vertex
u ∈ Gt becomes inactive, other vertices in the same connected
component will still be connected in Gt+1, if active.

Proof. We equivalently prove that if a node u ∈ Gt is
removed, its neighbors that remain active are still connected
in Gt+1. According to Property 2, every such neighbor v
of u becomes connected to v2min and indirectly to v1min.
Moreover, according to Property 3, v1min has an edge to
u2
min. Therefore, if active, every neighbor of u is connected

to u2
min through a path in Gt+1.

Note that in case of multiple node removals, their local
minima are never removed by CRACKER, which guarantees
that at least one neighbor for each removed node is kept
active at the next iteration. Indeed, the nodes u1

min and
u2
min, for every u ∈ Gt, form the new connectivity backbone

of graph Gt+1.

Theorem 2 (Seed Propagation Tree). Given a connected com-
ponent, the seed propagation tree T built by CRACKER is a
spanning tree of the connected component.

Proof. New edges from inactive to active vertices are gen-
erated in the propagation tree T after each iteration. This
process has three important properties. First, according to
Theorem 1, the remaining active vertices do not alter the
connectivity of the original CC. Second, at least one vertex
is deactivated and added to T after each iteration, i.e., the
vertex with the largest id, until the seed vertex is left. Third,
newly added edges of T always link an inactive vertex to an
active one, thus avoiding loops.

The first condition implies that only one tree T is gen-
erated as the connected component is never partitioned.
The second condition implies that T is actually a tree,
while the third condition implies that every vertex in the
CC is eventually added to T which is rooted at the seed
vertex.

Theorem 3 (Correctness). The CRACKER algorithm correctly
detects all the connected components in the given input graph.

Proof. According to Theorem 2, a propagation tree is built
for each CC in the input graph. Clearly CRACKER does not
add edges in the propagation trees between two vertices not
being in the same connected component, as they cannot be
neighbours at any iteration. Therefore, the propagation trees
built by CRACKER uniquely identify the CCs in the input
graph.

3.4 Cracker computational cost
In this section we discuss the computational complexity of
CRACKER both in terms of number of iterations and number
of messages. We use Figure 3 to exemplify the notations and
properties exploited, with reference to the same graph used
in Figure 1.

Any given connected graph G can be organized into lev-
els L0, . . . , Li, . . . , Ll−1, such that level L0 contains nodes u
having u1

min = u, while level Li contains nodes v such as
their local minimum v1min is in level Li−1. If we consider
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L4

from G1 (source graph)
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Fig. 3: Illustration of algorithm CRK on the same graph in
Figure 1. Grey nodes are deactivated, and generated new
cross-edges. Only the first three iterations are reported.

only edges of the kind v ↔ v1min, each node in L0 is
the root of a tree, where root-to-leaf paths traverse nodes
with increasing ids. Figure 3 shows the two increasing trees
present in the exemplifying graph.

Property 4 (Increasing tree cost). The CRACKER algorithm
takes O(log l) iterations to process an increasing tree of height l.

It can be trivially seen that, according to Prop. 2, after
iteration t = 1 each node in level Li is linked to a node
Li−2, i.e., its smallest neighbor at 2 hops distance, to a node
in Li−4 after iteration t = 2, and to a node in Li−2t after
iteration t, so that after log(l) iterations every node becomes
aware of the root in L0, being the node with the smallest
identifier in the tree. Moreover, when a node becomes a
leaf of the tree it is deactivated according to Property 1.
Therefore, after log(l) iterations, all the nodes but u0 are
deactivated and the algorithm completes.

The above property can be easily generalized if we also
consider the edges of the graph not covered by the increasing
trees. Indeed, such edges potentially links two nodes at
different levels Li and Lj , and they will generate edges
between levels Li/2 and Lj/2 (or lower) thus speeding up
the convergence to the root node.

In general, any given connected graph can be organized
in a set of interlinked increasing trees, with additional edges,
named cross-edges, across those trees. Figure 3 illustrates the
two cross-edges: (4, 3) and (8, 7). Based on the notion of
increasing trees, we show that at every step of the CRACKER
algorithm, these trees are reduced in height and merged until
only the seed node is left.

Theorem 4 (Number of Seeds identification iterations).
Given a connected graph G having n nodes, the number of
iterations taken by the seed identification phase is O(log n).

Proof. Let Th be the set of increasing trees in G having depth
≤ 2h and not included in Th−1. We show that CRACKER
reduces the height of such trees after each iteration and
merges them until only the seed node is left. Specifically, we
base this proof on a simplified variant of CRACKER, named
CRK, which alternates two phases: (i) one CRACKER iteration
processes only the increasing trees in T0; (ii) one CRACKER
iteration processes each increasing tree in the graph.
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CRK is thus similar to CRACKER with some limitations.
During phase i, only nodes in T0 trees may find their best
local minumum through the cross edges, and during phase
ii, cross-edges are not exploited to find the new best local
minimum, but only to guarantee connectivity when nodes
are deactivated. Such limitations make CRK computationally
more expensive than CRACKER. However, we prove, that
CRK satisfies the Theorem 4.

Phase i. Let’s consider the increasing trees in T0, i.e.,
composed of a single node u. By construction, u has a
neighbor v reachable through cross-edges, with v1min = z,
z < u and z < v. After one iteration node u is linked to z
thanks to Prop. 2, possibly increasing by one the height of
the increasing tree containing z. In Fig. 3, in iteration 2, the
node 3 has node 1 as neighbor which has local minimum
node 0, and therefore node 3 is linked to node 0. All the
increasing tree in T0 are merged with other trees analogously.
Note that if T0 is empty then phase i does not take place.

Phase ii. We consider the increasing trees of G in isolation,
i.e., without exploiting cross-edges to find a new best local
minimum. In this setting, the height of each tree is halved
at each iteration according to Prop. 4. In addition, leaf
nodes are deactivated as they are not the local minimum
of any other node (see Prop. 1). In case of deactivation, CRK
allows to consider cross-edges for the purpose of preserving
connectivity according to Th. 1: a leaf node u with a cross-
edge to v creates a new cross-edge between u2

min (in u’s tree)
and v1min (in v’s tree). In the example in in Fig. 3, during
the deactivation of node 4, the cross-edge (4, 3) generates a
new cross edge (3, 1), as 42min = 1 and 31min = 3. Similarly,
during the deactivation of nodes 8 and 7, the cross-edge
(7, 8) generates the two cross edges (5, 3) and (2, 3). After
phase ii, each tree has halved its height, and therefore trees
in Th become trees in Th−1, and in particular trees in T1

become trees in T0 as their leaf nodes are deactivated.
Note, the tallest increasing tree has height at most n, and

therefore it requires at most dlog2 ne iterations of the two
CRK phases to be shrunk into a single node (also according
to Prop. 4). Moreover, nodes in T0 may increase the height
of the tallest tree at each iteration. The total number of
added nodes is at most n. Therefore, the algorithm requires
less than dlog2 ne additional iterations of the two phases to
process all of such nodes.

We conclude that the number of phases required by CRK,
and therefore of CRACKER iterations, is 2 · dlog2 ne + 2 ·
dlog2 ne, i.e., O(log n).

Theorem 5 (Height of seed propagation tree). The height of
the seed propagation tree is at most h with h = O(log n).

Proof. Recall that each directed edge (u, v) added to the
propagation tree links a node v being deactivated to a
node u which is staying active in the next iteration of the
CRACKER algorithm (see Th.2). This implies that the height
of the propagation tree is at most equal to the number of
iterations taken by the seeds identification phase. Thus, from
Theorem 4, it holds that h = O(log n).

Theorem 6 (Number of CRACKER iterations). Given a con-
nected graph G having n nodes, the number of iterations taken by
CRACKER algorithm is O(log n).

Proof. The proof comes directly from the proofs of Theo-
rem 4 and 5. Since the two phases of CRACKER are executed
one after the other and both of them have a cost of, in
terms of iterations of O(log n), the total cost of the CRACKER
algorithm is O(log n).

Theorem 7 (Number of deactivated vertices). Given a con-
nected graph G, at least 2t−1 vertices have been deactivated after
iteration t.

Proof. Similarly as for Theorem 4, we provide a proof based
on the notion of increasing trees. Note, the smallest number
of deactivations is achieved when only one increasing tree is
present in G, otherwise multiple leaf nodes are deactivated
on multiple trees. Recall that after t iterations every node
initially at level Li is linked to a node initially in level Li−2t .
This implies that in an increasing tree of height h, nodes
initially in levels from h − 2t (excluded) to h cannot be a
local minimum after t iterations, i.e., they are not linked to
nodes in higher levels. As each level in the initial graph
contains at least one node, we conclude that at least 2t − 1
vertices have been deactivated after t iterations.

Theorem 8 (Number of messages per iteration). Let n be the
number of nodes and m the number of edges in the given graph.
The number of CRACKER messages is O( nmlogn ).

Proof. As in typical CC discovery algorithms, the creation of
edges in each graph Gt and Ht is implemented with node-
to-node messages. Let’s consider the first iteration. During
the MinSelection step, each node first sends a message
to each of its neighbors in G0 and to itself to select the
minimum among them and this requires 2 messages for each
edge plus n messages, thus 2m + n. Then, in the Pruning
step each node generates undirected edges for G1 starting
from H0. Each node follows the pattern of generating an
undirected edge between its minimum in H0 and each of its
neighbors. This generates 2m undirected edges in G1 and
requires 2 · 2m messages. The first iteration has thus a total
cost of 6m+n messages and generates a new graph G1 with
2m edges. By iterating the same argument, we obtain that
the number of edges at iteration t is bounded by 2tm.

Given that the number of iterations is log n, we have
that the average number of messages per iteration is

1
logn

∑logn
t=1 (2tm) ≤ 2·2log nm

logn = O( nmlogn ).
Finally, the Seed Propagation phase requires n − 1 mes-

sages to propagate the seed identifier, as the seed propa-
gation tree contains n − 1 edges, i.e. O(n). Thus, the seed
propagation has no impact on the message complexity.

Note, the actual number of messages is much smaller as
by removing nodes at each iteration also edges are removed.
To corroborate the above claim, in the experiments we eval-
uated the number of nodes and edges for a generic graph
(Fig. 9a and 9b). Results show that the number of nodes
and edges decreases exponentially, dramatically reducing
the number of messages exchanged per iteration. Moreover,
CRACKER always sends a number of message lower than
HASH-TO-MIN, for all the tested graphs, as described in
Table 3.
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Fig. 4: Seed identification with the EP and OS optimizations.

3.5 Optimisations to CRACKER

Most of the algorithms we considered in our study, CRACK-
ER included, exhibit a running time that is highly dependent
on the degree of nodes belonging to the graph. In addition,
most of them, during their computation, enrich the graph
with artificial edges, usually linking the seed with the other
nodes belonging to the CC. As a consequence, the degree of
some nodes is considerably increased, sensibly affecting the
computational cost of the algorithms. To address this issue,
we introduce in CRACKER three optimisations, described in
the following.

3.5.1 Edge pruning
Edge Pruning (EP) operates during the MinSelection by
reducing the number of redundant edges created, and there-
fore speeding up the computation. The idea is that when a
node is already the minimum of its neighbourhood, it does
not need to notify this information to its neighbours as this
information is redundant. In EP, if a vertex u ∈ Gt is a
potential seed of its neighbourhood, then it does not add
any edge in Ht, as instead would happen in the ForAll
operation at line 3 in Algorithm 2.

More in detail, when a node u is the local minimum in
NN(u), i.e., u = umin there are two exclusive cases:
• z ∈ NN(u) considers u as the zmin. In such case z

creates the directed edge (z, u). Note that in the original
algorithm this edge would be created twice, one time by
z and the other by u.

• z ∈ NN(u) considers another node, say w, as the zmin.
In this case z creates the directed edges (u,w) and
(z, w). In the original algorithm u would have created
the edge (z, u), which in this case is useless as w is a
better potential seed than z. Note that the correctness
of the algorithm holds, as u an w are connected both
with and without the optimization.

The second case is shown in Figure 4 in H1, in which
EP avoids the creation of the directed edge (4, 3). Instead,
in the original algorithm, vertex 3 would have created the
edge (4, 3), which is useless since vertex 4 knows a better
candidate, i.e. vertex 1.

3.5.2 Oblivious seed
The goal of the Oblivious Seed (OS) optimization is to reduce
the number of edges created from potential seeds to other
nodes of the CC. This optimization operates in the Pruning,
specifically at the AddEdge (Line 5) in Algorithm 3. In the
original version of CRACKER, a generic node u creates a
set of undirected edges from NNHt(u) to umin. With OS,

u would create only the directed edges from the NNHt(u)
to umin, in fact creating a directed graph rather than a
undirected one. The effect can be seen in Figure 4, in which
the G2 graph is a directed graph created by enabling the OS
optimization. This optimization yields two benefits:
• reduces the amount of edges created on the potential

seed of half. When CCs are large this amount is sig-
nificant and speeds up the computation. Note that this
does not impact on the correctness of the algorithm,
since nodes still have direct edges connecting them to
better candidates;

• avoids the creation of stars centred on the potential
seeds, which makes the computation faster by remov-
ing the computational bottlenecks given by potential
seeds.

However, the last benefit comes with a cost since the
potential seeds cannot connect directly to other potential
seeds. This increases the number of iterations needed to the
algorithm to reaching a convergence state. In other word,
OS realizes the tradeoff between the running time of single
iterations (due to the large running time of large stars on
potential seed) and the number of iterations. Therefore, OS
is enabled at the earlier iterations of the algorithm, when
the number of node active is still high and the stars created
on the potential seed can be huge. After few iterations,
the amount of active node decreases and OS is disabled to
favour convergence in a minor number of iterations, rather
than decreasing their completion time.

3.5.3 Finish computation sequentially
The third optimisation, Finish Computation Serially (FCS),
has been inspired from the work of Salihouglu et al. [?]
targeting Pregel-like systems. The assumption is that exist
algorithms leading to a fast convergence of most of the
nodes composing the graph (and the subsequent “deacti-
vation” from computation) but with a small fraction of the
graph that requires several additional steps of computation
to converge. The idea surrounding their optimisation is to
gather into a single machine all the nodes that still require
some processing to converge. By means of this mechanism
it is possible to avoid the execution of super-steps involving
a large set of the computational resources when the actual
processing involves only a very small fraction of the input
graph. FCS monitors the size of the active subgraph, i.e., the
fraction of the graph that still did not converge. When the
size of the subgraph goes below a given threshold K, the
subgraph is sent to a machine that performs the remaining
of the processing serially. By construction, in CRACKER the
set of active vertices is monitored in each iteration to check
for the termination (see Algorithm 1 Line 9).

3.6 Implementation
To validate and fairly evaluate CRACKER with respect to the
existing alternative approaches we implemented both our
proposed algorithm and all the other solutions using the
same methodology, technologies and running environment.
All the algorithms have been developed using the Scala
language, a Java-like programming language aimed at uni-
fying object–oriented and functional programming. All the
implementations are organised according to the MapReduce



ACCEPTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS ©2016 IEEE 9

model exploiting the Apache Spark framework [?]. All the
implementations have been realised without any specific
code-level optimisation and using the same data structures
(i.e. the Set structure provided by the Scala base class
library).

All the implementations of the tested algorithms have
been run using the same installation of Spark, that was
already up and running in the computational resources used
during the experimental evaluation. Additional details on
the running environment are presented in the next section.

The graphs used as input were represented using text
files organised as edge-list. Such files have been loaded by
Spark framework from an HDFS-based drive. The graphs
have been partitioned in a different number of slices, de-
pending on the graph size. The amount of slices is inde-
pendent from the algorithm, i.e., the amount of partitions
in which a graph has been decomposed is the same for any
algorithm used for its processing.

Finally, the logging system has been disabled to avoid
a potential overhead, both from the computational and
network bandwidth viewpoint.

4 EXPERIMENTAL EVALUATION

This section evaluates our approach in a wide range of
setups. The evaluation has been conducted using both syn-
thetic and real-world datasets. All the experiments have
been conducted on a cluster running Ubuntu Linux 12.04
consisting of 5 nodes (1 master and 4 slaves), each equipped
with 128 GBytes of RAM and with two 16-core CPUs, inter-
connected via a 1 Gbit Ethernet network.

In evaluating the performance of the different competi-
tors, we considered several metrics, including: (i) TIME, as
the total time in seconds from the loading of the input graph
until the algorithm terminates; (ii) STEPS, as the number
of MapReduce steps required; (iii) MESSAGE NUMBER, as
the total number of messages sent between the map and
reduce jobs; MESSAGE VOLUME: as the amount of vertex
identifiers sent. All the values considered in the evaluation
are the average of 10 independent runs.

4.1 Dataset Description
The following datasets have been chosen to build a com-
prehensive scenario to generalise as much as possible the
empirical evaluation of CRACKER. We made all of them
publicly available to foster a fair comparison. A summary
of datasets’ characteristics is presented in Table 2.
• Streets of Italy. This graph has been generated starting

from the data harvested from Geofabrik3, which collects
data from the Open Street Map project [?]. From the
whole collection, we extracted the data about Italy.
The dataset is characterized by a very large connected
component covering the 75% of the entire graph and a
large number of smaller CC.

• Twitter. A Twitter dataset containing follower rela-
tionships between Twitter users has been collected by
Kwak et al. [?].

• LiveJournal. This datasets is one of the most used when
comparing different algorithms of this kind on social

3. http://download.geofabrik.de/

relationship graphs. It contains social relationships be-
tween users of the LiveJournal social network.

• Pay-level domain (PLD). The graph has been extracted
from the 2012 version of the Common Crawl web cor-
pora and it is publicly available [?]. From the authors’
description, in the dataset each vertex represents a pay-
level-domain (like uni-mannheim.de). An edge exists
if at least one hyperlink was found between pages
contained in a pair pay-level-domains. We use this
dataset as an undirected graph.

• PPI-All dataset. The PPI-All dataset is a protein
network describing all the species contained in the
STRING database [?]. Vertices correspond to protein
and edges correspond to interactions between them
thus forming a protein network. Among those the
considered datasets, PPI-All is the one with the largest
number edges (∼665 millions), but with a diameter as
small as 4.

4.2 Evaluation of Optimizations

This section discusses the impact of the three optimizations
presented in Section 3: Edge Pruning (EP), Oblivious Seed
(OS), and Finish Computation Sequentially (FCS). In order to
test each optimization, both in isolation and in combination,
we compare four different versions of the algorithm: (i)
the plain CRACKER version, (ii) the CRACKER +EP version,
(iii) the CRACKER +OS version, and the CRACKER +EP +OS
version. We call SALTY-CRACKER the version of our algo-
rithm with all the optimizations described in Section 3.5.
Key findings: 1) OS allows to reduce both the maximum
vertex degree and the number of edges at the cost of extra
steps. However, each of these extra steps takes considerable
less time and they can be cut with the FCS optimization;
2) EP and OS combined give a greater reduction on the
completion time with respect to the simple sum of the
reductions obtained by the two optimizations in isolation.
3) SALTY-CRACKER is faster than CRACKER thanks to the
optimizations.

4.2.1 Edge Pruning and Oblivious Seed
In these experiments we show the effectiveness of the edge
pruning and oblivious seed optimizations. For this evaluation
we used the PLD (see Table 2) dataset due to its large CC
composed by the 99% of the entire graph, and for the large
number of high degree vertices [?].

Figure 5a shows the maximum degree in the graph, and
we used this metrics as an indicator of the balance of the
computation, as higher values usually indicates unbalanced
computations. In Figure 5b we report the cumulative com-
pletion time. Each of these metrics is sampled at each step
of the MapReduce computation, specifically CRACKER exe-
cutes two steps (MinSelection and Pruning) per algorithm
iteration.

The main idea of the EP optimization acts when a node
is already the candidate for itself in the MinSelection. In this
scenario the node does not need to notify this information to
its neighbours. i.e. it still be active in the next iteration and
will be notified by neighbours if exist a better candidate.
This optimization has few or no impact on balancing as we
can see from Figure 5a. In some cases (for instance at the 4th
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TABLE 2: Datasets description

Name |V| |E| β-index ccNumber ccMaxSize diameter AVG degree MAX degree
Italy 19,006,129 19,939,100 0.95 153,876 14,694,405 10,534 2.09 16
Twitter [?] 24,159,954 532,138,866 0.05 14,038 24,129,131 N/A 44.05 1,848,376
LiveJournal [?] 5,204,176 77,402,652 0.07 4,533 5,189,809 17 29.75 15023
PLD [?] 39,497,204 623,056,313 0.06 56,304 39,374,588 N/A 31.55 4,933,011
PPI-All [?] 4,670,194 664,471,350 <0.01 16,018 36,255 4 142.28 8,561
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Fig. 5: Evaluation of Optimizations

step) the highest degree is higher than the one measured
with plain CRACKER. However, the number of edges not
generated thanks to EP yields a beneficial, even if limited,
impact on the completion time (-6%).

The aim of the OS optimization is to avoid potential seed
to collect information that are redundant for the identifica-
tion of the CC. With respect to CRACKER +EP, the CRACKER
+OS version has a greater impact on both the metrics consid-
ered. Regarding the balancing, OS minimizes the creation of
high degree vertices at the expenses of few additional steps
in the computation. Indeed, while EP converges at the 13th
step, OS converges at the 18th. However, these extra steps
are much faster and this has great beneficial impact on the
completion time in the order of -22% with respect to the
plain version and -17% with respect to CRACKER +EP.

It is interesting to notice that the combination of the EP
and OS gives a greater reduction on the completion time
with respect to the simple sum of the reductions obtained
by the two optimizations in isolation. It brings a total im-
provement of 12% instead of the expected 6%. This confirms
that the two optimisations complement each other, in fact
allowing for an even larger reduction in the number of edges
created.

4.2.2 Finish Computation Sequentially

The main goal of the FCS optimization (Section 3.5.3) is
the reduction of MapReduce iterations. From our theoretical
demonstration the number of steps are primarily affected
by the diameter of the graph. Therefore, to test the FCS
optimization we synthetically generated a path graph with
5× 106 vertices with randomly distributed identifiers.

The number of steps are reported in Figure 5c, as a
function of the parameter K of the FCS optimization, which
we varied in the range 0-1,000,000 (when the number of
active vertices is below K we switch to serial computation).
From the figure it is evident that the FCS optimization help
reducing the number of steps. For instance, with K = 2×105
the number of steps halves with respect to the CRACKER
implementation.

4.3 Comparison with the State of the Art

We compared SALTY-CRACKER with the following competi-
tors: (i) CCF [?], as we found it to be the best competitor in
[?], (ii) ALT-OPT [?] (their fastest MapReduce implementa-
tion), (iii) SGC [?] as it is the most recent approach we know
of, (iv) HASH-TO-MIN [?] because it is the de-facto standard
for CC computation in MapReduce. We excluded from the
comparison other approaches as they have already been
proven slower in a previous work [?]. To conduct a fair com-

TABLE 3: Performances with real world datasets: MESSAGE
NUMBER and MESSAGE VOLUME are values ×106

Twitter TIME STEPS Msg Vol
SALTY-CRACKER 898 9 1589 3520
CRACKER 1650 (1.84×) 12 1603 4001
CCF 3215 (3.58×) 7 819 5500
ALT-OPT 2230 (2.48×) 15 4158 8316
HASH-TO-MIN 9222 (10.27×) 7 2920 9807
SGC 15409 (17.16×) 72 1946 5743

PLD TIME STEPS Msg Vol
SALTY-CRACKER 1105 10 2282 5218
CRACKER 1592 (1.44×) 13 2522 6302
CCF 20742 (18.77×) 7 1796 8690
ALT-OPT 8583 (16.82×) 15 4477 9378
HASH-TO-MIN > 30×
SGC > 30×
PPI-All TIME STEPS Msg Vol
SALTY-CRACKER 330 6 893 1952
CRACKER 359 (1.09×) 12 896 2136
CCF 1247 (3.78×) 6 239 3733
ALT-OPT 797 (2.42×) 15 1887 3774
HASH-TO-MIN 415 (1.26×) 6 1104 4360
SGC 1957 (5.93×) 72 359 3799

Italy TIME STEPS Msg Vol
SALTY-CRACKER 1338 30 745 1479
CRACKER 1381 (1.03×) 33 780 1734
CCF 1889 (1.41×) 18 1214 4744
ALT-OPT 2052 (1.53×) 39 1864 3727
HASH-TO-MIN 2071 (1.55×) 18 1774 6457
SGC > 30× > 114

LiveJournal TIME STEPS Msg Vol
SALTY-CRACKER 201 10 246 536
CRACKER 297 (1.48×) 12 258 639
CCF 313 (1.56×) 6 176 1056
ALT-OPT 345 (1.72×) 15 462 925
HASH-TO-MIN 620 (3.08×) 7 408 1562
SGC 1087 (5.41×) 72 436 1136
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Fig. 8: Step By Step Comparison

parison, we implemented all the algorithms within the same
Apache Spark [?] framework and with the same code-level
optimisations. All source code used for the experimentation
is publicly available. We show below that SALTY-CRACKER
is the best performing algorithm, effectively reduces both
the number of vertices and edges thanks to the proposed
pruning strategy.

4.3.1 Performance on Real World Graphs

Table 3 presents a summary of the results obtained by the
execution of SALTY-CRACKER and the competitors on all
the real datasets. In terms of TIME, SALTY-CRACKER is the
fastest approach with all the datasets. Apart from the plain
version of CRACKER, best competitors are either ALT-OPT or

CCF, except for PPI-All in which HASH-TO-MIN resulted to
be the best competitor, suggesting that it works nice with
dense graphs. In terms of MESSAGE NUMBER CCF is better
than SALTY-CRACKER in all graph datasets except Italy, but
when considering MESSAGE VOLUME, SALTY-CRACKER is
the most efficient solution in all datasets. Finally, CCF is the
best solution for STEPS with any dataset. Interestingly, we
can observe how CCF adopts a very different strategy than
SALTY-CRACKER. While the former sends large messages in
a few number of iterations, the latter sends many small
messages over a large amount of iterations. Conversely, ALT-
OPT employs a lot of communication over a large number
of iterations. However, in our experimental setup, it is clear
that the approach of SALTY-CRACKER is the one guarantee-
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Fig. 9: Graph Topology Evolution

ing the lowest execution times.

4.3.2 Sensitivity to Diameter

To measure the sensitivity to diameter of the algorithms,
we generated 5 path graphs with diameter in the order
of 106, in which identifiers are randomly distributed. In
this experiments we considered CCF and ALT-OPT, resulting
the best competitors from the performances on real world
graphs. Figure 6a depicts the results with the TIME metric
in function of the diameter. SALTY-CRACKER outperforms
the others, being 3.5 times faster than the best competi-
tor (CCF) with the largest diameter. In addition, SALTY-
CRACKER shows good scalability, as the running time grows
slower than competitor when increasing diameter. Figure 6b
presents the results for the STEPS metric. The results show
that the number of steps is stable in all the approaches,
with the ALT-OPT requiring more steps than CCF and SALTY-
CRACKER, which obtains the best results thanks to the FCS
optimization. In terms of MESSAGE VOLUME (Figure 6c),
SALTY-CRACKER requires 3 times less messages than the
competitors.

4.3.3 Sensitivity to Vertices Number

In order to investigate the scalability of SALTY-CRACKER
with respect to our competitors we synthetically generated
6 datasets with an increasing number of vertices (from
221 to 226), using the Erdos-Renyi random graphs model
bundled with the Snap library [?]. Each graph consists of
100 connected components approximately of the same size.

Figure 7a reports the results for the TIME metric. With
a smaller number of vertices, until 223, SALTY-CRACKER
performs similarly to ALT-OPT. However, as the graph size
increases, the performance of SALTY-CRACKER gets better
than ALT-OPT. The CCF algorithm is always at least 5 times
slower than SALTY-CRACKER. In Figure 7b we show the re-
sults for the STEPS metric. CCF and ALT-OPT are very stable,
while SALTY-CRACKER slightly increases in the number of
steps. However, SALTY-CRACKER stays much below the the-
oretical bound of O(dlog2 de) given in the Theorem 4. The
results of the MESSAGE VOLUME are presented in Figure
7c. SALTY-CRACKER is always the algorithm requiring less
communication cost with respect to the competitors thanks
to its pruning mechanism. For instance, for the dataset
having 225 vertices, SALTY-CRACKER requires a MESSAGE

VOLUME of approximately 2×109, instead ALT-OPT requires
4× 109 and CCF 6× 109.

4.3.4 Step by Step Evaluation
This evaluation was conducted by measuring the cumula-
tive of TIME, MESSAGE NUMBER, and MESSAGE VOLUME
metrics. Figure 8 reports the results of the most representa-
tive dataset, i.e. the LiveJournal. The other datasets exhib-
ited similar results. The analysis of the results unravelled
several interesting properties of the algorithms.

The cost per steps (in terms of all the metrics considered)
is high in the starting steps for all the algorithms. However,
thanks to the pruning mechanism and the optimizations,
the performances of SALTY-CRACKER increase in the steps
subsequent to the initial ones, while the competitors per-
formances decrease or remain constant. For example, the
time per step between the 3rd and 6th steps is almost zero
resulting in a fast regain of computational time with respect
to the closest competitor ALT-OPT.

An interesting thing to notice is how SALTY-CRACKER
and ALT-OPT groups the TIME into bunches of three it-
erations. This is due to the lazy computation mechanism
of Spark, which triggers the computations only when an
explicit output is required (i.e. to check the termination). By
comparison, the CCF algorithm requires an explicit output
at every iteration, so its running time is spread over all the
steps.

Regarding SALTY-CRACKER, the transition from the seed
identification to the seed propagation phase is clearly visible
due to a peak in the computation time at the 6th step in
Figure 8c. The reason of the peak is because the propagation
tree is stored in a separate RDD, whose lineage is resolved
by the Spark framework only at the start of the propagation
phase, with the consequent increment in the computational
time. To remove this peak, we experimented with fur-
ther optimization (e.g., starting the seed propagation phase
while the seed identification was still active) but all of them
resulted in longer total running time.

4.3.5 Graph Topology Evolution
As we described in Section 3, one of the innovative features
of SALTY-CRACKER is the pruning of vertices. A positive side
effect of reducing vertices is the reduction in the number of
edges. Figure 9 provides empirical results about the benefits
of the pruning considering the LiveJournal computation.
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Figure 9a shows that the pruning mechanism of SALTY-
CRACKER is very effective in reducing the number of active
vertices. For example, after only one Pruning (at step 3), the
number of active vertices is 1/3 of the original input graph.
Rather, in the competitors the number of active vertices
is practically the same during all the computation. Figure
9b shows that the number of edges decreases in the initial
steps of the computation for both SALTY-CRACKER and ALT-
OPT. Also, thanks to the node pruning, SALTY-CRACKER
overperforms ALT-OPT in the number of edges, although
ALT-OPT has been designed to reduce edges.

Figure 9c shows that, for SALTY-CRACKER and ALT-OPT,
the maximum degree decreases during the computation,
and it is small in relation with the size of the graph. By
comparison, the maximum degree of CCF increases during
the computation.

4.4 Scalability

Finally, we tested the scalability of CRACKER, as well as
comparing its performance with CCF, by varying the num-
ber of cores in the range [4-128]. Figure 10 depicts the
results we achieved with the PLD and Twitter datasets.
Similar patterns have been observed with the other datasets.
In all the tests CRACKER always provides a better level
of scalability than its competitors. We obtained an almost
linear scalability using 8 cores, a still good level scalability
with 16 cores, then the value tends to stabilise, providing
only a small advantage going from 64 to 128 cores.

These results can be motivated with several consider-
ations about the testing environment. Spark allocates the
cores according to a round robin policy: when using 4 cores
Spark exploits one core from each of the 4 machines. As a
consequence, by using only 4 cores (of the 128 available) we
exploit the total amount of memory available in the cluster.
Considering that each machines has two CPUs, we reach
the maximum available CPU-memory bandwidth, and thus
linear scalability, when using 8 cores (one core per CPU).
Since finding connected component with Spark is essentially
a memory-bound problem, adding more cores and keeping
fixed the amount of memory scales only marginally.

5 CONCLUSION

In this paper we described CRACKER, an algorithm for
finding connected components in large graphs targeting
distributed computing platforms. The CRACKER algorithm

is organised in two distinct phases. The first one consists in
an iterative process that is, in turn, structured in two alter-
nating steps. The first step is devoted to the identification of
the vertex having the smallest identifier that will be used as
the CCs identifier whereas the other step perform the graph
simplification through vertices pruning. The second phase
of CRACKER is aimed at labelling each node with the id of
the CC whom it belongs to.

In this work we give a detailed description of these
phases. We also proved the correctness of CRACKER by
focusing on few invariants and properties that characterise
the algorithm. We implemented two versions of CRACKER,
a first basic version and an optimised one. In addition, we
also implemented some of the most interesting state-of-the-
art approaches that we compared against our solution. We
evaluated the performance provided by CRACKER by means
of a comprehensive set of experiments. All the algorithms
have been implemented according to the MapReduce model
using the Apache Spark framework.

The experiments have been conducted on a wide spec-
trum of synthetic and real-world data. In all the experiments
CRACKER proved to be a very effective and fast solution for
finding CCs in large graphs. In terms of time, CRACKER out-
performs its competitors in every dataset used. In addition,
CRACKER obtained the least volume of messages among all
its competitors.

As a future work we plan to conduct an in depth
analysis focused on the factors (e.g., diameter, denseness,
etc.) impacting both on the simplification mechanism and
on the completion time. Moreover, as we mentioned in the
experimental section, to conduct our evaluation we run our
experiments on a cluster made of 5 machines. We plan to test
the performance of CRACKER against the other approaches
when using hundreds of machines.
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