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ARTICLE INFO ABSTRACT

Nanoscale copper phthalocyanine (n-CuPc) is a pigment widely used in paints to enhance automobile coatings
and to make colors transparent and more appealing to users. Despite the benefits, n-CuPc can potentially be
released into the environment and pose risks in occupational settings. Assessing the toxicity of released n-CuPc-
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nangparticles containing fragments is thus important for the acceptance of n-CuPc products. This paper presents the first
f:?rrtlotl;]ficity combined study addressing both the release of n-CuPc-containing fragments from commercial coatings in rea-

listic occupational situations and the hazard of the released fragments using a macrophage model.

Sanding was used to produce fragments from automobile coatings with n-CuPc as well as from a reference
coating with the same matrix composition but without n-CuPc. Size distribution and agglomeration of these
fragments in Rosewell Park Memorial Institute (RPMI) cell culture medium was studied before conducting a
battery of cytotoxicity experiments. Cell viability and reactive oxygen species (ROS) production were conducted
and particle localization within cells was analyzed.

The results show similar size and number distribution of fragments when comparing the reference and n-CuPc
fragments. The n-CuPc fragments showed higher agglomeration in RPMI than pristine n-CuPc. We found that
toxicity of the n-CuPc fragments and reference materials was similar (ECso Frag n-CuPc = 242.9 ug ml™ L ECsg
Frag Refer = 241.6 ugml~ ') and below the toxicity of pristine n-CuPc (ECso n-CuPc = 151.1 ugml~'). The
results demonstrated that embedding n-CuPc in matrix used in automobile coatings reduced the toxicity and
release when n-CuPc is used in paints. Our finding can be used to support design of n-CuPc-enabled products
used in automobile applications.

Nanoscale copper phthalocyanine (n-CuPc) has been utilized to
enhance or modify the properties of many materials and products, in-
cluding printing inks, coatings for automobile production, plastics and

1. Introduction

Phthalocyanine blue is based on the phthalocyanine chromophore,

which is synthesized from phthalonitrile or from phthalic anhydride
and urea. It was first synthesized in the 1930's, and is still a very
popular pigment since it offers high performance at a relatively low cost
(less than $20 per kilogram) (Chemical Economics Handbook, 2011;
Kittel, 1974). Its large, symmetrical structure, containing conjugated
double-bonds, makes it a stable, intensely colored compound that is the
basis for what has become the leading group of colorants in several
applications.

textiles (Chemical Economics Handbook, 2011; Hans Kittel, 1974). n-
CuPc can improve the mechanical properties and add new features to
the products, such as improved transparency, lightfastness (stability
under irradiation), heat stability, chemical and bleed resistance, im-
proved processing capabilities and durability. It is estimated that
Europe consumed 21 thousand metric tons of CuPc pigments (dry
weight basis, both as nano-forms (n-CuPc) and as non-nano-forms) in
2010, of which 25-30% were used in paints and coatings, a significant

Abbreviations: AUC, Analytical Ultracentrifuge; CNTs, carbon nanotubes; CPC, condensation particle counter; DCFHDA, carboxy-2’,7’-dichloro-dihydro-fluorescein diacetate; DMSO,
dimethyl sulfoxide; Frag n-CuPc, Fragments of nanoscale Copper Phthalocyanine; Frag Refer, Fragments references; FCS, Fetal Calf Serum; HBSS, Hanks' Balanced Salt solution; ISDD, The
In vitro Sedimentation, Diffusion and Dosimetry model; n-CuPc, pristine nanoscale copper phthalocyanine; NPCB, Carbon black nanoparticles; OPS, optical particle sizer; PBS, phosphate
buffered saline; RPMI, Rosewell Park Memorial Institute; ROS, reactive oxygen species; SEM, Scanning Electron Microscopy
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part in nanoform (Chemical Economics Handbook, 2011). The auto-
mobile industry is the largest market for organic pigments due to the
increasing customer preferences for enhanced colors.

The use of n-CuPc can potentially lead to a release of n-CuPc which
may pose environmental and occupational risks, especially to auto-
mechanics performing car maintenance and repairs. Even though the
automobile industry has risk management measures in place (local
exhaust of sanding equipment, face masks) to reduce occupational ex-
posure, the knowledge on fate and hazard of sanding fragments is re-
quired for efficient risk management. Only one study addressed release
of n-CuPc from coatings (Gohler et al., 2013), and very little is known
about the exposure and hazard of released n-CuPc from automobile
coatings in environmental and occupational settings.

This is the first study addressing the cytotoxicity of released n-CuPc
fragment in macrophages. Macrophages, as a part of the cell-mediated
immune system, exhibit phagocytic activity, during which the cell can
phagocytose pathogens or particles, forming vesicles resulting in either
biodegradation (Zhang et al., 2015; Zhao et al., 2011), antigen pre-
sentation or physical clearance via cell migration. These cells may
therefore be exposed to potentially relatively high doses of particles.
Macrophages can produce reactive oxygen species (ROS) and free ra-
dical species in response to foreign materials. These ROS are normally
neutralized by antioxidants in the body, but this process becomes in-
effective during prolonged or excessive inflammation or during disease
when antioxidants become depleted leading to oxidative stress. Oxi-
dative stress at low levels can activate defense mechanisms such as the
up-regulation of antioxidant defenses, but at higher (non-lethal) levels
oxidative stress can stimulate the production of pro-inflammatory
mediators leading to inflammation which can exacerbate or cause dis-
ease. Even higher levels of oxidative stress are associated with geno-
toxicity and cell death (Lin and Beal, 2006; Lobo et al., 2010; Paiva and
Bozza, 2014; Bhattacharyya et al., 2014).

We measured the release of n-CuPc-containing fragments from au-
tomobile coatings through a sanding approach, which is representative
of repair processes. We investigated how the physicochemical proper-
ties of released fragments from a n-CuPc containing automobile coating
changed in biological (cell culture) media, and identified the hazard of
the released n-CuPc based on the use of an in vitro macrophage model
(J774 A1) (Yen et al., 2009; Clift et al., 2008, 2010, 2011). Fragments
containing n-CuPc from automobile coatings (Frag n-CuPc), generated
through a sanding approach, were compared with reference fragments
without n-CuPc (Frag Refer) and pristine n-CuPc. We also investigated
ROS production by these particles and their uptake by cells. Assessment
of the potential for release and toxicity is important for the continued
use and future of n-CuPc in the specific context of its application in the
automobile industry.

2. Materials and methods

2.1. Release of n-CuPc fragments from automobile coatings as the result of
sanding

Sanding (Fig. 1A) was performed to produce fragments from auto-
mobile coatings containing 3.5% (g/g) n-CuPc and a reference coating
with the same matrix composition (polymer), but without n-CuPc
(Fig. 1C). Release experiments were performed inside an aerosol
chamber (0.15 m®) equipped with a drill (Bosch, GBS 21-2 RCT Pro-
fessional) (Fig. 1A, SI Fig. 1). The sanding paper, with a grit size of 400
and a diameter of 115 mm (Starcke GmbH & C0.KG), was attached to
the drill head. Sanding was performed using a contact force of 17 N
with a speed of 900 rpm over 10 s. The plates with n-CuPc coating and
reference plates were fixed (Fig. 1B). For each plate, three areas of
different area sizes (19, 21, and 30 cm?) were sanded. The sanded areas
were changed through rotating the holder by an angle of 90 degrees
(Fig. 1B). The releases of n-CuPc fragments were limited in the im-
plemented sanding process.
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An appropriate experimental quality control was included. Even
though drilling can generate aerosols, its impact was found to be small
given that only the drilling head was inside the chamber in our ex-
perimental design while the motor was outside. The air inlet was HEPA
filtered. Before and after each sanding event, the chamber was flushed
using a pump to reduce the background particle concentration. Sanding
fragments collected from the chamber were examined using optical
microscopy. We observed that the sanding was not homogeneous across
the entire sanded area, which occasionally resulted in the generation of
steel fragments. The steel fragments were removed by magnet separa-
tion, sonication, and ultracentrifugation (15000 RPM, 1h, Beckman
Optima XL-80 k. A swing-out rotor SW60 Titan) (SI Fig. 2). The sepa-
rated fragments were analyzed by SEM and light microscopy (SI
Fig. 3&4).

The number of fragments released as an aerosol during sanding was
recorded wusing a condensation particle counter (CPC, TSI
3775, > 2.5nm) and an optical particle sizer (OPS, TSI 3330,
0.3-10 um) for both coatings. For the calculation of a total fragment
number released during one sanding event the fragment numbers de-
termined by CPC and OPS during both sanding and chamber evacuation
afterwards were comprised. An arithmetic mean of these twelve
(sanded 4 plates, each 3 times) sanding events was calculated for each
material. The size of released fragments was analyzed by OPS
(0.3-10 um) and microscopy (powder from released fragments). In
addition, the fragments were collected from the chamber bottom after
sanding and analyzed by Scanning Electron Microscopy (SEM). The
quantity analysis of sanding fragments was conducted by comparable
analysis between the calculated weight of coatings and sanding frag-
ment weight of coatings (SI 3).

2.2. Characterization of pristine n-CuPc and sanding fragments in media

The physicochemical properties of both the pristine n-CuPc and
sanding fragments released from the automobile coatings were char-
acterized in Rosewell Park Memorial Institute (RPMI-1640) medium
(Sigma-Aldrich, Germany). The nominal mass concentration was
100 mg/1 in RPMI medium. The agglomeration/aggregation of pristine
n-CuPc and the sanding fragments in RPMI was identified using an
Analytical Ultracentrifuge (AUC) after 24 h incubation (37 °C).

The potential released ionic copper in RPMI medium at 0 h and after
24 h incubation (37 °C) was separated through stepwise filtration: 5 ym
filter (Sartorius Minisart 17594), 0.45 um filter (Millipore Millex-HV),
and 0.02pum filter (Whatman Anotop 25 Plus) and analyzed by
Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Agilent
7500a).

2.3. Macrophages model for n-CuPc toxicity

2.3.1. Cell culture

The mouse macrophage J774 A1 cells were maintained in a 75 cm?
flask with RPMI-1640 cell culture medium in a humidified atmosphere
of 37 °C, 5% CO,. The RPMI medium contained phenol red, L-glutamine
(0G) (5ml at 2mM) (Sigma-Aldrich, UK), penicillin (5ml at
100 Uml™ l)/streptomycin (P/S) (5mlat 0.1 gml™ D) (Sigma, UK) and
10% heat-inactivated Fetal Calf Serum (FCS) (Gibco®, UK) (hereafter
known as complete medium). J774 Al cells were removed from the
culture flask via gentle scraping and then re-suspended in complete
medium prior to centrifugation at 2000 RPM for 2 min. Cell viability
was determined using Trypan blue (0.4% solution diluted in phosphate
buffered saline (PBS)) exclusion. Cells were adjusted to give a suspen-
sion of 5 x 10° cells/ml in complete medium and used for all sub-
sequent investigations.

2.3.2. n-CuPc and fragment particles dispersion protocol
The dry n-CuPc, Frag n-CuPc, and Frag Refer powders were wetted
with dimethyl sulfoxide (DMSO, Sigma, D-8415) prior to sonication. A
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Fig. 1. The sanding approach was used to produce fragments from automobile coatings. A: The sanding set-up including an aerosol chamber, a drilling machine, a gold filter for SEM
analysis, and an optical particles sizer (OPS) and condensation particle counter (CPC) analysis. B: Plates mounted positions and sanding areas. The sanded areas were changed through
rotating angle of 90° of holder from a to b (left rotation) and from a to ¢ (right rotation). C: The automobile coatings used in the study: n-CuPc containing coating and a reference coating

with same matrix composition, but without n-CuPc.

Table 1
Characterization of pristine n-CuPc and fragment n-CuPc in RPMI media.

Media Materials Size in Test time  Size in medium Ionic Cu
aerosol (DLS: average, release
(median AUC: median, nm) (ICP-MS,
from OPS, mg/1)
pm)

RPMI  Pristine n- / Oh / < 0.05
CuPc 24h 333 (AUC-UV) 0.03
Fragment 1.57 Oh / < 0.05
n-CuPc 24h d50/nm: 6141 0.08

(volume
distribution)
d50/nm: 1015
(number
distribution)

(AUC-turbidity)

mass of 2 mg of particles was weighed out each time and 40 pl DMSO
was added and the powder mixed by hand shaking (1 min). A volume of
2 ml of complete medium was then added and sonicated for 16 min to
make a stock solution. CuSO4 was added to deionized water to make the
stock Cu®?* ion solution A and B (A: 137.5mgml”!; B:
1.925 mg ml~ ). Cu ion A is equivalent to the copper in n-CuPc (11%).
It was used as a potential maximum release of copper ions. Solution B is
equivalent to the copper ion concentration in Frag n-CuPc (3.5% n-
CuPc in automobile coatings, 11% copper in n-CuPc). Cu ion B is more
representative of the actual measured release of copper ions in the
exposure system used here (Table 1).

2.3.3. WST-1 cell viability assay

The J774 Al cells were seeded in 96-well plates (5 x 10* cells per
well in 100 pl of the cell culture medium) and incubated for 24 h at
37 °C and 5% CO,. The cells were then exposed to either n-CuPc, Frag
n-CuPc, Frag Refer, CuSO,4 representing the ion concentration in n-CuPc
(Cu ion A), the Cu ion concentration in Frag n-CuPc (Cu ion B), or
controls for 24 h. Stock solutions of n-CuPc, Frag n-CuPc, and Frag
Refer were diluted to concentrations of 0, 1, 50, 100, 150, 175, 200,
250 pg ml~ ! using complete medium. The stock solution of Cu ion A
was diluted to concentrations of 0, 0.012, 5.5, 11, 16.5, 19.25, 22,
27.5 ug ml~ *. Stock solution of Cu ion B were diluted to expected ex-
posure concentrations of 0, 0.0004, 0.19, 0.39, 0.58, 0.67, 0.77,
0.96 ug ml~ . Cells were exposed to particles and Cu ions for a period
of 24 h. After the incubation period, the medium was discarded from
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the wells and 90 pl of fresh culture medium added followed by 10 pul
WST-1 per well (Roche, Germany). Plates were then incubated for 1 h at
37 °C, 5% CO,. The supernatant was transferred to a fresh plate and the
absorbance measured by spectrophotometry at 490 nm using a micro-
plate reader (MRX Revelation, U.S.A.). Each experiment was repeated
three times.

2.3.4. Reactive oxygen species

Intracellular reactive oxygen species production was measured
using the carboxy-2’,7’-dichloro-dihydro-fluorescein diacetate (DCFH-
DA) assay (Roche, Germany). The J774 A1 cells were seeded in 96-well
plates (5 x 10* cells per well in 100 pl of the cell culture medium) and
incubated for 24 h at 37 °C and 5% CO,_ The cells were rinsed once with
Hanks' Balanced Salt solution (HBSS) (Sigma, UK) and exposed to n-
CuPc, Frag n-CuPc, Frag Refer, Cu ion A, Cu ion B, or controls for 24 h.
The exposure concentrations of n-CuPc, Frag n-CuPc, and Frag Refer
were 0, 50, 100, 200 ug ml~ *. The concentrations of Cu ion A were 0,
5.5, 11, 22 ug ml~ *. The exposure concentration of Cu ion B were 0,
0.49, 0.39, 0.77 ug ml~ 1. Carbon black nanoparticles (NPCB) (14 nm)
(Printex® 90, Evonik Industries AG, Essen, Germany), previously found
to induce ROS (Jacobsen et al., 2008), were used as positive control, at
concentrations of 16, 32, 64 ugml~*. We previously used a DCFH
method which involved pre-loading of cells with this dye prior to par-
ticle treatments. This method only allows a short-term particle response
and relies upon rapid generation of ROS production. We found that no
particles induced DCFH oxidation with this method, while the oxidant
controls did induce DCFH oxidation (SI Fig. 5). We, therefore, in-
vestigated the effect of longer particle treatments on intracellular ROS
generation, where it is essential that the DCFH is added post-treatment.
After 24 h of particle exposures, supernatants were removed and cells
were washed once with HBSS. A concentration of 10 pM DCFHDA was
added to each well of a 96-well plate and the fluorescence monitored in
a spectrophotometer (Excitation 485nm, emission 530 nm) (Spec-
traMax M5 Microplate Reader, Molecular Device, U.S.A.) every 15 min
and stopped at 2 h. Each experiment was repeated 3 times, and results
were illustrated as the mean + SD change in fluorescence over time
(fluorescence at 2 h minus fluorescence of 15 min).

2.3.5. Intracellular particles localization

To study intracellular particle localization, J774 Al were cultured
in a 24-well plate with 10 mm glass sterile coverslips at a density of
5 x 10° cells/ml, and further exposed to 50 pg ml~* n-CuPc, Frag n-
CuPc, and Frag Refer for 24 h in an environment of 37 °C, 5% CO». The
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images of n-CuPc, Frag n-CuPc and Frag Refer in J774 Al were cap-
tured using a digital camera (EOS 60D, Canon, UK) and light micro-
scopy (Axiovert 40C, Zeiss, Germany). The cells were stained using Diff-
Quik (ThermoFisher Scientific, UK) and then mounted on microscope
slides using DPX mounting medium (Sigma, UK). The images of n-CuPc,
Frag n-CuPc and Frag Refer in J774 Al cells were analyzed by Zen lite
2012 (AX 10, Scope Al, Zeiss, Germany).

2.3.6. Statistical analyses

A minimum of three replicates were performed for each method
used. A one-way analysis of variance (one-way ANOVA) with Dunnetts's
post-hoc analysis was used to compare the differences between control
and treatments. A two-way analysis of variance (two-way ANOVA) with
Tukey's post-hoc analysis was used to compare the significant differ-
ences between treatments' group (SPSS 16.0, U.S.A.). p-Values < 0.05
were regarded as statistically significant. Data were displayed as mean
(+ SD) and were analyzed using Origin 8 software (OriginLab
Corporation, MA. U.S.A).

3. Results and discussion
3.1. The role of matrix in release of n-CuPc from automobile coatings

Release of n-CuPc from automobile coatings has the potential to be
controlled by encapsulation in a matrix which is of key importance
when considering the risks associated with the use of these consumer
products. If the embedded n-CuPc particles are not released during the
product lifecycle, then the exposure and risk can be considered as re-
latively low. In our study, we measured the release of n-CuPc-con-
taining fragments from automobile coatings through a sanding ap-
proach, which is representative of repair processes, although many
other factors (e.g. the matrix, aging, weathering, the type of release
process) can also influence nanoparticle release.

Our study shows that fragments released from coatings upon
sanding are strongly influenced by the matrix rather than by the pre-
sence of n-CuPc. For instance, SEM images of fragment particles showed
no morphological differences between reference and nanoparticles
containing coatings either in the aerosol or in the dust collected from
the chamber bottom (Fig. 2). Both the OPS and CPC results showed no
significant difference between the number of fragments released from
reference and n-CuPc coatings, although the median for the reference
coatings was a bit lower (2.24 x 10° = 3.78 x 10°/cm® versus
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2.93 x 10° + 3.95 x 10°/cm®) (Fig. 3A, By, A, & B,). The size range
was also similar (number-based median of 2.1 pm and mode 2.2 pm for
the reference coating and 1.6 ym and mode 1 um for the n-CuPc con-
taining coating) (Fig. 3A3 & B3). Given the polydispersed and multi-
modal particle size distribution, these differences are difficult to in-
terpret. The similar size and the shape showed the same modes for the
two materials with and without the n-CuPC. This confirms earlier ob-
servations on paints, which are close analogues to coatings except for
the higher filler content in paints. The difference of the contribution of
each mode are well within the range of differences typically observed
on paints (Koponen et al., 2011).

Our results are consistent with several other studies which in-
vestigated abrasion of materials with and without nanofiller additive.
For example, Gohler et al. (2010) found no significant difference in iron
oxide particles released from white pigmented architectural coatings
(on fiber cement), an identical material containing zinc oxide nano-
particles, and a control coating with no nanoparticle filler during me-
chanical sanding (Gohler et al., 2010). Vorbau et al. (2009) studied
abrasion of zinc oxide nanoparticles in polyurethane, UV-curable clear
coat, and white-pigmented architectural surface coatings matrix and
found that the different matrices exerted a far greater influence on the
total mass loss during abrasion than the presence or absence of zinc
oxide nanoparticles. Koponen et al. (2009, 2011) demonstrated that
adding nanoparticles to the studied products only vaguely affected the
geometric mean diameters of the particle modes in the sanding dust
when compared to their reference products based on their study on the
particle size distributions (5.6 nm-19.8 um) and the total number of
dust particles generated during sanding of nanoparticles-doped paints,
lacquers, and fillers as compared to their conventional counterparts.
Gomez et al. (2014) also showed that there were no significant differ-
ences in the particle size distributions when comparing sanding dust
from epoxy-based polymers with and without carbon nanotubes, and
paints with different amounts of nano-sized titanium dioxide.

These studies indicate that the surface chemistry of sanding frag-
ments is dominated by the chemical nature of the matrix, not by the
embedded nanoparticles. Additionally, the abrasion process may also
directly impact on the concentration and size of released particles. For
instance, Wohlleben et al. (2011, 2013) showed that simulated long
term wear using a Taber abraser resulted in fewer released particles
from carbon nanotube (CNTs)-based composites than more aggressive
sanding processes applied to identical materials. Furthermore, a com-
bined mechanical and chemical stresses applied to simple and multi-

Fig. 2. SEM images of airborne sanding fragments (A & B) and released fragments in the chamber after steel separation (a &b). A;, A, & a;, a,: fragments from reference automobile

coatings; By, B & by, by: fragments from n-CuPc automobile coatings.
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Fig. 3. Number of fragments released from reference coating (A;: CPC analysis, A,: OPS analysis, As: the size distribution by OPS analysis) and n-CuPc coating (B;: CPC analysis; B,: OPS
analysis; Bs: the size distribution by OPS analysis). #: the total number of fragments released from coating.

filler nanocomposites also can significantly impact the release of na-
noparticles during in the real use phase of consumer products con-
taining nanoparticles. For example, Wohlleben et al. (2016) found the
importance of parameters controlling release phenomena overall de-
creases in the order: aging scenario—-matrix properties—nanomaterial
properties.

3.2. Characterization of pristine n-CuPc and sanding fragments in media

Even though the reference and n-CuPc fragments were found to
have similar physical properties (i.e., size distribution and other char-
acteristics), it is important to study their behavior in hazard models
relevant to potential exposure routes. Since Inhalation is the most re-
levant exposure route in the automobile (and repair) industry, macro-
phages representative of lung clearance and pro-inflammatory re-
sponses were investigated due to their phagocytic activity, resulting in a
potentially relatively high exposure to this cell type. The physical
chemical properties of sanding fragments as well as pristine n-CuPc in
macrophages cell culture were therefore examined.

After 24 h incubation of pristine n-CuPc and sanding fragments in
RPMLI, the results of size distribution by AUC-UV and AUC-turbidity are
shown in Table 1 and SI Fig. 6 (Wohlleben, 2012; Wohlleben et al.,
2011, 2013; Walter et al., 2014). The size distribution analyses of
pristine n-CuPc and Frag n-CuPc in RPMI showed that the dispersion of
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pristine n-CuPc contained smaller particles than the Frag n-CuPc.
However, this finding corresponds to agglomerates of a few to hundreds
of pristine n-CuPc fragment particles in RPMI, whereas the fragment
particles were nearly individualized with a low level of agglomeration,
because their size in medium corresponded well to their size directly
after aerosol generation. For example, the AUC analysis showed that the
size of frag n-CuPc in RPMI media (1.02 um) is similar to their size
directly after aerosol generation (1.57 um) if both are compared in the
same metrics (number), using the well-established metrics conversion
of AUC (Babick et al., 2016). Interestingly, the serum tends to reduce
agglomeration of the pristine n-CuPc, but increase agglomeration of the
fragments. The phenomenon may be due to the polymer exhibiting
interaction with RPMI chemical components.

The analysis of ionic Cu release showed that both pristine n-CuPc
and fragment n-CuPc can release ionic Cu into RPMI media (0.03 mg/1
and 0.08 mg/1 respectively) after 24 h incubation in 37 °C (Table 1).
However, the percent of released ionic Cu from both pristine n-CuPc
and fragment n-CuPc was very low (0.27% and 0.21%, respectively)
which demonstrates that particles played role in the toxicity of n-CuPc
fragment particles to macrophages. Even though the study showed a
very limited release of ionic Cu, several other mechanisms of n-CuPc
automobile coating composite degradation, such as UV exposure, must
be comprehensively evaluated under environmentally relevant condi-
tions such as high light intensity, temperature cycles and humidity
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which may contribute to ionic Cu release from the coatings (Wohlleben
et al., 2011, 2013).

3.3. Toxicity associated with the released fragment n-CuPc in macrophages
model

To assess the potential toxicity of released fragment n-CuPc from
automobile coatings through the sanding process, cell viability, ROS
production, and uptake images were examined after 24 h exposure of
these particles to macrophages. The directly determined distribution of
sedimentation coefficients in the specific cell culture medium give a
speed of settling onto the cells. This approach, previously applied to all
OECD sponsorship materials (Sauer et al., 2015) requires advanced
analysis by AUC, but then replaces more involved models such as ISDD
or the de Loid approach (Hinderliter et al., 2010; DeLoid et al., 2014).
As the specific particles are all above 100 nm, diffusion is a negligible
factor against sedimentation. By integrating the distribution without
any modeling we find that already after 1 h, 96% of the mass has settled
onto the cells, and within 6 h also the smallest particles have settled
onto the cells, so that the nominal dose is identical to the delivered dose
at least from 6 h to 24 h.

3.3.1. Cell viability

Cell viability testing results showed that a significant reduction in
cell viability was only observed in the high exposure concentration
(150, 175, 200, 250 ug ml~ 1 of n-CuPc, Frag n-CuPc, and Frag Refer to
J774 Al (p < 0.05) (Fig. 4A). The toxicity of n-CuPc to J774 Al was

A
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significantly greater than the toxicity of Frag n-CuPc to J774 Al
(p < 0.05). The cell viability of cells treated with Frag Refer and n-
CuPc to J774 Al showed a marginal significant difference (p = 0.061,
Two-way ANOVA, Tukey test) (Fig. 4A). There was no significant dif-
ference in the toxicity induced by Frag n-CuPc and Frag Refer at 24 h.
The ECsq of n-CuPc, Frag n-CuPc, and Frag Refer were 151.1, 242.9,
and 246.6 ug ml~ ', respectively (Fig. 4C).

The high ECsy value produced by the Frag n-CuPc suggests that
when the n-CuPc was embedded in a polymer its toxicity was reduced.
The lack of difference in toxicity between Frag n-CuPc and Frag Refer
can be explained by the fact that the matrix dominated the toxicity of
released fragments, preventing the toxicity of the embedded n-CuPc
(Wohlleben and Neubauer, 2016).

Our results are consistent with other studies which investigated in
vitro or in vivo toxicity of sanding dust from paint containing nano-
particles (NanoTiO, and nano silica) (Wohlleben et al., 2011; Saber
et al., 2012a, b; Kaiser et al., 2013) or from CNTs containing polymer
composites (Hirth et al., 2013; Wohlleben et al., 2013; Ging et al., 2014;
Schlagenhauf et al., 2015; Saber et al., 2016; Civardi et al., 2016). For
example, Ging et al. (2014) demonstrated that the survival of Droso-
phila was reduced at each dose tested with free amine functionalized
CNTs, while there was no toxicity when these CNTs were embedded in
epoxy. Wohlleben et al. (2013) showed that there were no cytotoxic
effects of Thermoplastic polyurethane (TPU) with or without CNTs on
lung tissue in vitro. Saber et al. (2012a, b), 2016) found that there were
no additive effects of adding CNTs to epoxies or adding NanoTiO, to
paint for any of the pulmonary endpoints in mice (pulmonary

Fig. 4. (A) WST-1 assay of cell viability of n-CuPc, Frag n-CuPc,
and Frag Refer to J774 Al after 24 h exposure. The y axis re-

120 - presents the percent of cell viability compared to control. The x
I DVSO axis represents the concentrations of particles or copper ion or
100 [ == nQJPc—Cu DMSO. The value represents the mean + standard deviation of
@ b 1T [ T - = Eg nR ﬁ fc three replicates. (B) Cell viability of J774 Al cells treated with n-
o i I x * B Cuion A CuPc, Frag n-CuPc, and Frag Refer for 24 h. (C) The EC50 values
b 80 i *] [ CuionB were determined using the software Origin 8. Data are shown as
— P ‘ plots of the EC50 of n-CuPc, Frag n-CuPc, and Frag Refer to J774
2 @ Al for 24 h. The value represents the mean * standard devia-
_E tion of three replicates.
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inflammation and DNA damage and hepatic histopathology). However,
pure NanoTiO, caused greater inflammation than NanoTiO, embedded
in the paint matrix.

Additionally, some released and toxicity study from other nano-
particles were also conducted. For instance, Kaiser et al. (2013) found
that no differences in cytotoxicity were observed when CaCo-2 and
Jurkat cells were exposed to free nanoparticles, the paint particles
without nanoparticles, and the nanoparticle-containing paint particles.
Civardi et al. (2016) also demonstrated that no additional release of
nanoparticles from the abrasion of wood surfaces pressure-treated with
micronized copper azole (MCA) wood and no specific nano-toxicity for
lung epithelial cells and macrophages from these abrasion fragments.
All of these studies indicated that nanoparticles embedded in a polymer
had reduced toxicity and these materials were safe for use in industry
and consumer products.

The Cu ion A induced a significantly toxic effect to J774 Al cells
(p < 0.05) at the concentration of 5.46 pg ml~ ! treatment, which is
equivalent to the Cu content in n-CuPc at a dose of 50 ugml~*
(Fig. 4A), at which dose the n-CuPC was not toxic. There is no sig-
nificant toxicity of Cu ion B to J774 Al (Fig. 4A), so that even if all Cu
leached from Frag n-CuPc, it would not have had an effect. Our results
indicate that when dose is expressed as Cu®* instead of total mass, the
toxicity of the Frag n-CuPc was very low compared to Cu®* from
CuS0,. This suggested the Cu®* in the fragments was not bio-available
and the toxicity of Cu was suppressed by the containment in particles.

3.3.2. Reactive oxygen species (ROS)

Reactive oxygen species constitute a major defense mechanism of
the host cells against microbes such as intercellular parasites (Fonseca-
Silva et al., 2013), viruses (Imai et al., 2008) and other potential toxins,
such as nanoparticles (Oberdorster et al., 2007; Brown et al., 2007;
Kermanizadeh et al., 2012). The released n-CuPc fragments may induce
ROS production in the lungs if these particles were inhaled by workers
in automobile industry. Therefore, we compared the capacity of n-CuPc,
Frag n-CuPc and Frag Refer to induce ROS production in J774 A1l cells
(Fig. 5). The results showed that n-CuPc treatment of J774 Al cells
induced significant ROS production in a dose dependent manner at 24 h
(p < 0.05). However, Frag n-CuPc did not induce significant ROS
production in J774 Al cells exposed to the concentrations of 50, 100,
and 200 ug ml~ ! at 24 h. A similar result was also shown for the Frag
Refer (Fig. 5).

The results are consistent with other studies (Kaiser et al., 2013;
Saber et al., 2012b). For instance, Kaiser et al. (2013) found that no
release of ROS was observed when CaCo-2 and Jurkat cells were ex-
posed to nanoparticles-containing paint particles (243 uygml~?) and
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the same paint particles without nanoparticles (243 pg ml~?') for 4 h.
Saber et al. (2012b) demonstrated that the sanding dusts from paints
and lacquers with and without nanoparticles did not generate oxidative
stress after 24 h intratracheal instillation of a single dose of 54 pg in
mice. Even though these ROS experiments were conducted in different
target organisms and cells, the similar ROS production results indicated
that nanoparticles embedded in a polymer can reduce ROS production.

Cu ion A showed significant ROS production in J774 Al cells after
24 h exposure (p < 0.05). The low concentrations of Cu in Cu ion B
were insufficient to induce ROS production (Fig. 5). The results de-
monstrated that the high potential Cu ion release during other me-
chanisms of n-CuPc automobile coating composite degradation, such as
UV exposure, high light intensity, temperature cycles and humidity may
have effects on human health because of ROS production.

3.3.3. Uptake images

To further identify the uptake of Frag n-CuPc by J774 A1 cells, the
interaction of the particles with J774 Al was primarily studied by op-
tical microscopy. The J774 Al exposed to n-CuPc, Frag n-CuPc, and
Frag Refer did not exhibit morphological changes compared to the
control cells (Fig. 6). n-CuPc was observed more often in projection area
of J774A1 cells than Frag n-CuPc and Frag Refer. Micrometre sized
agglomerates of Frag n-CuPc and Frag Refer were observed to interact
with J774 Al cells as indicated by the dashed line arrow
(Flg 6A3 & A4).

The light micrographs and confocal micrographs of live J774 Al
cells exposed to n-CuPc for 24 h suggest that the n-CuPc could be taken
up (SI Fig.7A, & B,). However, the images are not conclusive as they are
two dimensional and the particles could be sitting on the cell surface.
For this reason fixed J774 Al cells, which are unable to actively take up
particles were exposed to the n-CuPc. For the fixed cells, subsequent
exposure resulted in a homogeneous distribution of particles around the
cells with no or few particles or agglomerates appearing on or in cells
(SI Fig.7A3 & B3). We performed this test to confirm that the conclusions
made on the live-cell images were not just our subjective interpretation
of uptake. By confirming that the appearance of fixed cells was different
from live cells. The difference in appearance of fixed cells from live cells
supports our hypothesis that the original images indicate uptake.

4. Summary

The high ECsq value and the relative lack of ROS production by the
Frag n-CuPc suggests that when the n-CuPc is embedded in a polymer
its toxicity is suppressed. The lack of difference in toxicity between Frag
n-CuPc and Frag Refer can be explained by the fact that the matrix

Fig. 5. ROS generation by n-CuPc, Frag n-CuPc, Frag Refer, NCBP,
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NPCB
n-CuPc
Frag n-CuPc
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Cuion A, and Cu ion B in J774 A1 after 24 h exposure. ROS levels in
J774 Al cells were determined using H2DCF-DA. The asterisks *
p < 0.05, comparing the untreated (medium) with treated (n-CuPc,
Frag n-CuPc, Frag Refer, NCBP, Cu ion A, and Cu ion B) cells. **
p < 0.05, comparing the significant differences between treated
cells. The value represents the mean + standard deviation of three
replicates.

Frag Refer
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Control

n-CuPc

Frag
n-CuPc

dominated the toxicity of released fragments, preventing the toxicity of
the embedded n-CuPc. One hypothesis to explain the relatively low
toxicity of the Frag n-CuPc could be that the bioavailability of n-CuPc is
reduced. The micrometre agglomerates of Frag n-CuPc and Frag Refer
(Fig. 6A3 & A4) may contribute to the lower uptake of fragments, re-
sulting in a lower dose in the cells and therefore a low toxicity of
fragments to J774 cells.

To the best of our knowledge, this is the first report concerning the
cytotoxicity of released n-CuPc from automobile coatings to macro-
phages. Even though our findings are in general consistent with the
finding of other studies on the toxicity of fragments from nano-enabled
products, we are first to study the cross-linked, isocyanate-hardened
matrix that is typical for coatings and is quite different chemistry than
the soft polymer binders used in paints (Saber et al., 2012a, b), epoxy or
thermoplastics (Saber et al. 2016; Wohlleben et al., 2011). We are the
first to study copper-containing nanomaterial fillers, which a priori
could result in quite different response than CNT fillers or TiO2 fillers in
the (few) previous studies of fragment toxicity. Further, we combined
assessment of both the release of nanoparticles in realistic conditions
and the evaluation of hazard of the released fragments, specifically by
using a macrophage model. In a preliminary risk screening, we eval-
uated the human risk to workers through the whole life cycle of the
product. The study is thus very important to the automobile industry
since it assesses the potential risk to the workers employed in this
sector.
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Fig. 6. Light micrographs of J774 Al cells. Red arrows in-
dicate the interaction between the particles and J774 Al
cells after exposure to 50 g ml~! n-CuPc, Frag n-CuPc,
and Frag Refer at 24 h. (A) Cells were not stained. The
dotted arrows in Az and A4 showed aggregation of fragment
particles (40 x). (B) Cells were stained with Diff-quik
(100 x).
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