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Abstract8

Stereo 3D reconstruction of ocean waves is gaining more and more popular-9

ity in the oceanographic community and industry. Indeed, recent advances of10

both computer vision algorithms and computer processing power now allow the11

study of the spatio-temporal wave field with unprecedented accuracy, especially12

at small scales. Even if simple in theory, multiple details are difficult to be13

mastered for a practitioner, so that the implementation of a sea-waves 3D re-14

construction pipeline is in general considered a complex task. For instance,15

camera calibration, reliable stereo feature matching and mean sea-plane esti-16

mation are all factors for which a well designed implementation can make the17

difference to obtain valuable results. For this reason, we believe that the open18

availability of a well tested software package that automates the reconstruction19

process from stereo images to a 3D point cloud would be a valuable addition for20

future researches in this area.21

We present WASS (http://www.dais.unive.it/wass), an Open-Source22

stereo processing pipeline for sea waves 3D reconstruction. Our tool completely23

automates all the steps required to estimate dense point clouds from stereo im-24

ages. Namely, it computes the extrinsic parameters of the stereo rig so that25

no delicate calibration has to be performed on the field. It implements a fast26

3D dense stereo reconstruction procedure based on the consolidated OpenCV27

library and, lastly, it includes set of filtering techniques both on the disparity28

map and the produced point cloud to remove the vast majority of erroneous29

points that can naturally arise while analyzing the optically complex nature of30

the water surface.31

In this paper, we describe the architecture of WASS and the internal algo-32

rithms involved. The pipeline workflow is shown step-by-step and demonstrated33

on real datasets acquired at sea.34
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1. Introduction37

The 3D geometry is a crucial feature of ocean waves and it is important38

in many problems, covering both the scientific research, off-shore and coastal39

engineering applications. Indeed, natural ocean waves evolve in time spanning a40

defined sea surface region where the wave field is assumed statistically homoge-41

nous. However, at short-time scale (comparable to characteristic wave periods)42

the spatial wave field shows distinctive features (e.g. the short-crestedness) that43

cannot be retrieved by traditional one-point observational systems (for example44

wave probes, buoys, etc.) Instead, a spatio-temporal observational system is45

required.46

Spatio-temporal wave measurements are typically somewhat hard to obtain47

in the open ocean, but significant progress has been made in recent years. Dif-48

ferent techniques were used for this purpose, ranging from polarimetric imagery49

(Zappa et al., 2008), X-band wave radar (Borge et al., 2013; Young et al., 1985)50

to satellite-borne synthetic aperture radar (Hasselmann et al., 1985). A direct51

observation of the 3D wave field is also provided by the stereo imaging tech-52

nique (Jahne, 1993). To give a general taxonomy of the spatial scales captured53

by each aforementioned technology, we can state that polarimetry captures short54

(wavelength range: 0.001−1m) gravity-capillary and gravity waves, stereo imag-55

ing captures short to mid size wavelengths (wavelength range: 0.2− 50m), and56

X-band radar captures mid-length to long waves (wavelength range: 10−300m).57

The pipeline described here concerns specifically the processing of stereo58

images for 3D reconstruction of ocean waves. Indeed, stereo wave imaging has59

been proving to be an accurate technique for direct observations of 3D wave60

fields at scales important for many scientific and applicative problems, with the61

only limitation being the image processing that has to be performed a efficient62

and effective way. This is nowadays achieved given the advances in the field63

of computer vision. History of stereo wave imaging traces back of about one64

century, when (Schumacher, 1939) installed a stereo-photographic system on a65

ocean going ship. Afterwards, a major attempt in stereo-photography for ocean66

waves was the Stereo Wave Observation Project in 1954 (Cote et al., 1960).67

In the eighties, advances on stereo processing include the studies of (Shemdin68

et al., 1988; Shemdin and Tran, 1992; Banner et al., 1989). However, all early69

analysis processed manually the stereo pairs, resulting in a limited amount of70

image pairs to be processed. Only more recently has automatic computer-based71

processing of stereo images been used to investigate the 3D wave geometry.72

Scholars used stereo 3D stereo reconstruction of ocean waves to explore a73

variety of relevant scientific questions. For example, in the field of extreme74

wave analysis, (Benetazzo et al., 2015) investigated the presence of rogue waves75

within space-time sample of sea surface elevations, and (Fedele et al., 2013)76

compared time and space-time statistics of high waves. (Banner et al., 1989)77

examined the shape of the wavenumber wave spectrum, while (Leckler et al.,78

2015) studied the shape of the wavenumber-frequency spectrum computed via79

direct Fourier transform of the stereo data (Benetazzo et al., 2012; Gallego et al.,80

2011). (Banner et al., 2014) verified, using laboratory data and field stereo ob-81
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servations, the slowdown of unsteady wave groups under wave crest maxima.82

(Sutherland and Melville, 2013) used stereo-processed infrared imagery to es-83

timate the dissipation rate of breaking waves. (Campbell et al., 2014) studied84

the interaction of the wave field with different ice types. (Mironov et al., 2012)85

proposed a methodology to extract short-scale statistical characteristics of the86

sea surface topography. All studies so far used stereo system mounted over fixed87

(non-moving) structures. This condition eases the stereo processing but highly88

limits the conditions under which the 3D characteristic of the wave field are in-89

vestigated. Hence, recently, studies have been conducted to verify limitations of90

stereo systems mounted over moving structures (typically a ship), the difference91

being the requirement of the motion parameters to correctly map the stereo92

data into a reference system coherent with the gravity field. The ship motion93

compensations for stereo data are obtained using external instruments (Brandt94

et al., 2010; Benetazzo et al., 2014), the horizon line (Bergamasco et al., 2016),95

or the 3D sea surface field itself (Benetazzo et al., 2016).96

Stereo matching has been one of the most active area in computer vision97

in the recent past. A deluge of different methods have been proposed over the98

years building on the same common sequence of operations, namely: matching99

cost computation, cost aggregation, disparity computation and disparity refine-100

ment. Given the intrinsic ambiguity of the problem, spatial smoothness of the101

disparity map is often considered a good prior to obtain a physically reasonable102

surface reconstruction. In particular, many different strategies were studied for103

the first two steps depending whether the disparity computation is determined104

by matching intensity values over a finite window (local methods) or by consid-105

ering the whole image to perform a global matching cost minimization (global106

methods). The first have the advantage to be faster in general but more prone107

to outliers for the local nature of the matching cost computation. Conversely,108

global methods usually result in a smoother and more accurate reconstruction109

but require far more computational resources.110

Almost all the seminal oceanographic studies (Benetazzo, 2006; Wanek and111

Wu, 2006; Brandt et al., 2010; Bechle and Wu, 2011; de Vries et al., 2011;112

Kosnik and Dulov, 2011; Benetazzo et al., 2012; Leckler et al., 2015) adopted113

local methods to compute the disparity map and hence suffer the delicate trade-114

off between the disparity window size (which influence the match localization115

accuracy) and the required surface smoothness that is particularly important116

while reconstructing a continuous injective surface like the sea. The state-of-117

the-art global method applied to waves reconstruction was proposed by (Gallego118

et al., 2008, 2011) that use a variational approach to directly estimate a con-119

tinuous smooth surface by optimizing the photometric consistency between the120

two views. Additionally, the formulation allows also to impose physical con-121

straints in the recovered points elevations. Unfortunately, such approach is so122

computationally intensive that is unlikely to be used in practice especially for123

long sequences.124

The open source pipeline proposed here is a refined implementation of the125

WASS system which has been extensively used and tested in the last five years126

(Benetazzo et al., 2012, 2014, 2015; Bergamasco et al., 2016). For stereo match-127
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ing, we make use of a semi-global approach that combines the good performances128

of local methods (in terms of CPU time) with the accuracy and robustness of129

global methods. Additionally, the proposed WASS pipeline incorporates all the130

features needed to perform the extrinsic calibration on the field which has been131

demonstrated to increase the calibration accuracy easing its installation at sea.132

This manuscript is organized as follows. In Section 2 the proposed WASS133

software is described in detail, following the general workflow that is performed134

during the processing of the stereo frames. In Section 3 we give a theoretical135

discussion of the expected reconstruction errors together with the internal and136

external factors that influence the overall reconstruction accuracy. Finally, in137

Section 4 we demonstrate our pipeline with data we acquired from an off-shore138

oceanographic platform.139

2. The WASS pipeline140

Our proposed sea-waves reconstruction tool completely automates the cre-141

ation of a sequence of dense 3D point clouds from stereo images providing three142

important functionalities.143

First, WASS can automatically recover the extrinsic parameters of the stereo144

rig (up to scale) so that no delicate calibration has to be performed on the145

field. Our past experience (Benetazzo et al., 2016) has demonstrated that if the146

intrinsic calibration is easy to obtain with all the commodities of a dedicated147

laboratory, extrinsic calibration is not. This is due to the fact that, for common148

setups covering areas ranging from 20 × 20 to 70 × 70 meters, a distance of at149

least a couple of meters is required between the two cameras. Consequently,150

it’s rather difficult to calibrate the extrinsics on the field, forcing the usage151

of a big calibration target in a possibly dangerous environment (ie. out of a152

ship deck, on an offshore platform, etc). Moreover, the auto-calibration offers153

the advantage of letting the rig geometry reconfigurable on-the-fly before each154

acquisition to accommodate different requirements. For instance, it may be155

reasonable to take the device closer to the sea when the waves are small, so156

a small but highly resolved sea surface region can be acquired. On the other157

hand, large waves demand a broader sea surface region, requiring the device to158

be repositioned farther from the surface. Finally, the “calibrate once and for159

all” strategy is not reliable since vibrations of the support and environmental160

factors, as wind, can modify the relative angle between cameras and jeopardize161

the reconstruction accuracy.162

The second feature provided by WASS is a fast 3D dense stereo reconstruc-163

tion procedure so that an accurate 3D point cloud can be computed from each164

stereo pair. We rely on the well consolidated OpenCV library (Bradski and165

Kaehler, 2008) both for the image stereo rectification and disparity map recov-166

ery as described in the following section 2.4.167

Third, a set of 2D and 3D filtering techniques both on the disparity map and168

the produced point cloud are implemented to remove almost all the erroneous169

points that can naturally arise while analyzing the optically complex nature of170
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the water surface (examples are sun-glares, large white-capped areas, fog and171

water areosol, etc).172

As with the vast majority of dense stereo reconstruction methods, we make173

the implicit assumption of the Lambertian response of the water surface. More174

specifically, to search for corresponding matching features in the two stereo175

images we expect that the optical appearance on the two cameras is mostly176

preserved in terms of pixels intensities. In general, this is true only if the sur-177

face intensity response depends only on the reciprocal position between the178

illuminant and the surface normal, as in the Lambertian model. Any other179

phenomena like specularities and refractions are function of the mixed contri-180

bution between the illuminant, the surface normal and the viewpoint. Since the181

appearance of sea water surface is essentially described by the Fresnel law, the182

Lambertian assumption is quite limiting for many aspects. Nevertheless, under183

good illuminant conditions (no direct sun, cameras almost parallel and angled184

with respect to the sea plane, etc) classical dense stereo 3D reconstruction still185

provides excellent results compared to other methods like mechanical buoys or186

radars (Benetazzo et al., 2012).187

2.1. Software architecture188

In the present version, WASS is composed by 4 highly optimized executables189

written in C++ whose parallel execution in a pipeline is orchestrated by a script190

(WASSjs) running on the node.js runtime environment (Tilkov and Vinoski,191

2010). The four executables are named respectively: wass prepare, wass match,192

wass autocalibrate and wass stereo.193

wass prepare is responsible for initializing of each couple of stereo images194

placing them into a proper “working directory” together with the necessary195

calibration and configuration data. Images are also undistorted according to196

the provided intrinsic calibration data.197

wass match and wass autocalibrate are used in case that the extrinsic auto-198

calibration is needed. The first matches corresponding features of a stereo image199

pair with a robust state-of-the-art game-theoretic framework (Albarelli et al.,200

2012). After the feature matching, the essential matrix is recovered and the201

extrinsic parameters between the two cameras are factorized (up to translation202

scale). Matched features are also filtered according to epipolar consistency.203

wass autocalibrate collects all the matches between multiple stereo frames and204

uses Sparse Bundle Adjustment (SBA) to simultaneously optimize the extrinsic205

camera parameters and the 3D points triangulated from all the matches. Final206

extrinsic parameters are saved to all the workspaces.207

wass stereo performs stereo rectification and dense stereo 3D reconstruction208

on a given stereo frame. After the reconstruction, multiple filters are applied to209

the point cloud to remove erroneous points. Finally, the mean plane is robustly210

fitted to the reconstructed data so that it can be further aligned to a common211

sea reference frame.212

Each WASS component runs as a single-threaded process performing a spe-213

cific task on a working directory. To exploit the intrinsic parallelism of the stereo214
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Figure 1: Components and workflow of the WASS reconstruction pipeline. User interacts
with the pipeline via web browser communicating with the WASSjs component. wass prepare
and wass stereo are responsible of the stereo frames undistortion and reconstruction respec-
tively. The optional wass match and wass autocalibrate can automate the extrinsic parameters
recovery of the stereo rig.

reconstruction task, the WASSjs controller manages multiple parallel instances215

of each component. As a consequence, WASS can scale well in distributed mem-216

ory machines (like virtualized environments) with the only requirement to have217

a consistent shared view of a common filesystem.218

2.2. Image preparation219

The first step performed by the pipeline is to organize the stereo images into220

an ordered sequence of working directories so that all the subsequent steps can221

be easily managed in parallel. Apart from the images, intrinsic calibration for222

each camera has to be provided by the user. The pipeline assumes a pinhole223

camera model for each camera with (optionally) non square pixels and zero224

skewness. We also support a polynomial (5-coefficients) radial distortion (Fryer225

and Brown, 1986) that may be provided or set to zero.226

The user is free to use whichever method he prefers for intrinsic calibration.227

For our work, we used both the Bouguet’s Matlab calibration toolbox, imple-228

menting the method of (Heikkila and Silven, 1997), or the method proposed in229

(Albarelli et al., 2010) that is less sensible to the manufacturing accuracy of the230
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calibration target. Once the calibration is performed, data must be saved in an231

xml format compatible with the OpenCV serialization standard (see the official232

documentation for more informations).233

2.3. Automatic stereo-rig calibration234

The auto-calibration of the stereo rig is a complex task that can be option-235

ally executed if no extrinsic calibration is provided by the user. It’s based on236

the assumption that the relative pose of the two cameras remains unchanged237

throughout the sequence so that it can be recovered up to a positive scale by238

relating multiple corresponding features that have to be reliably extracted be-239

tween the two cameras.240

Supposing to have scene composed by a set of n 3D points projecting into241

the first and second camera as points p1 . . . pn and p′1 . . . p
′
n respectively, the242

following well-known epipolar constraint holds:243

pi = K−T1 EK−12 p′i , i = 1 . . . n (1)

where E is the essential matrix and K1 and K2 are the intrinsic camera244

matrices of the two cameras. This implies that, if a set of point-point corre-245

spondences can be matched from the two stereo images, the essential matrix can246

be recovered by solving equation (1). Then, the essential matrix can be further247

decomposed via Singular Value Decomposition (SVD) to recover the rotation248

R and translation direction ~t of the two views, as described in (Hartley and249

Zisserman, 2004).250

WASS auto-calibration procedure is composed by the following steps:251

1. A subset of all the available stereo frames are selected randomly as cali-252

bration images253

2. A sparse set of Speeded Up Robust Feature (SURF) (Bay et al., 2008) is254

extracted from each image (Fig. 2 top row)255

3. For each stereo pair, features are robustly matched with the approach of256

(Albarelli et al., 2012)257

4. Erroneous matches are removed with a RANSAC-based epipolar filtering.258

(Fig. 2.c) As an outcome of this process, an initial estimate of the essential259

matrix is given for each stereo pair. The essential matrix associated to260

the pair with the highest number of feature matches is used as the initial261

coarse estimate for the next step.262

5. All the matches between all the stereo frames of the calibration subset are263

used to simultaneously recover a 3D sparse point cloud of the matched264

features together with the camera poses with respect to a common un-265

known reference frame so that the global reprojection error is minimized.266

This effectively averages all the independent essential matrices estimations267

between each stereo pair used in the matching step. We perform this op-268

timization as a Sparse Bundle Adjustment implemented as described in269

(Lourakis and Argyros, 2009)270
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(a) (b)

(c)

Figure 2: (a) Left and (b) right image captured by the stereo rig with the extracted SURF fea-
tures superimposed. (c) Matched features (after epipolar filtering) computed by wass match
(best viewed in colors).

Steps 1 to 4 are performed by the wass match executable that is run in271

parallel among all the randomly selected calibration images. Step 5 is performed272

by wass autocalibrate as soon as the results of the previous matching process is273

available for all the calibration images. When wass autocalibrate completes its274

job, the recovered rotation R and normalized translation ~t are saved on each275

workspace so that they can be used by the subsequent 3D reconstruction process.276

If the extrinsic parameters are provided by the user (either because they have277

been previously calibrated by the pipeline or with a calibration target) they can278

be automatically used to bypass the auto-calibration step described before.279

2.4. 3D reconstruction and sea-plane estimation280

The 3D reconstruction process that computes a dense point cloud from the281

stereo frames is implemented in the wass stereo executable. Again, we exploit282
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the temporal independence of the frames to execute the operation in parallel on283

all the available computation units so that the total computing time to recon-284

struct a whole sequence can be heavily reduced even on a common consumer285

workstation.286

When wass stereo is started, the two stereo frames are rectified using the287

extrinsic and intrinsic calibration data provided. At the end of this operation,288

all the corresponding epipolar lines will be perfectly aligned with the image rows289

(Fig. 3.a) so that the search of corresponding stereo pixels on the two images290

can be reduced along the same row during the dense stereo operation. The291

rectified stereo pair is also saved on each workspace for inspection purposes. In292

fact, the user can manually observe if the same corresponding visual features293

on left and right images are aligned on the same image row. If this happens,294

it gives a good feedback that both the intrinsic and extrinsic auto-calibration295

were performed with a reasonable accuracy.296

After the rectification, a dense stereo algorithm is executed to obtain the297

disparity map between the two frames (Fig. 3.b). In our software we used298

the implementation provided by the OpenCV library (Bradski and Kaehler,299

2008) that represent a de-facto standard reference implementation for many300

specialized computer vision algorithms. Specifically, we have chosen to use301

the semi-global dense stereo method described in (Hirschmüller, 2008) as it302

provides an excellent trade-off between the execution speed of a local method303

(ie. methods for which the cost aggregation step is performed locally along the304

disparity ranges) and the accuracy in low-textured areas of a global method (in305

which the disparity is recovered by means of an optimization involving all the306

image pixels). Since the obtained disparity map tends to exhibit errors at the307

boundaries of the matching regions, we perform some preliminary morphological308

filters directly on the disparity map to partially limit the outliers (Fig. 3.c).309

Specifically, we dilate the disparity map by n steps (usually 1 or 2 is sufficient)310

before eroding the results m > n times. The initial dilation closes many of311

the small holes that may happen inside the observed sea surface due to sun312

glares or other artifacts. The subsequent erosion removes the disparity values313

at the boundary of the disparity map where most of the errors are located (since314

both the dense stereo cost computation and aggregation steps cannot be reliably315

performed).316

With the cleaned disparity map, the initial unfiltered 3D point cloud is317

generated by triangulating all the corresponding pixels. In this step we filter all318

the points with a depth smaller than 1.0 (since ~t has unitary norm this essentially319

filters all the points nearest than the cameras baseline) and higher than zmax320

(ie. zmax times the camera baseline). Additionally, we filter all the points321

for which the angle between the two intersecting camera rays is lower than 20322

degrees. Note that, since the corresponding points to be triangulated are always323

lying on the respective epipolar lines (the dense stereo algorithm operates along324

the rows of the rectified images) there is no need to use a computationally-325

expensive triangulation approach that minimizes the reprojection instead of the326

algebraic error. This greatly speeds up the 3D reconstruction that usually takes327

few seconds to process our 5 Mpixel images on a common Intel i7 CPU running328
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(a)

(b) (c)

Figure 3: (a) Rectified stereo-pair used as input for the dense stereo algorithm. Note that
the corresponding visual features of the images are aligned on the same image row between
the two frames. (b) Unfiltered disparity map obtained by the dense stereo algorithm. (c)
Disparity map after the dilation and erosion filters. Note how the small holes at the bottom
of the disparity map have been closed and the boundary of the disparity area is less noisy

at 2.5Ghz.329

The obtained point cloud is in general already quite clean but a limited330

amount of spurious points can still be present. In fact, the dense stereo algo-331

rithm is designed to be general purpose so it does not make any assumptions on332

the reconstructed scene. Conversely, we can take advantage of the fact that the333

sea surface is spatially continuous and smooth everywhere. To greatly reduce334

the number of point outliers we use an additional filtering step that exploits335

the surface smoothness along the camera optical z-axis. We start by building a336

graph with the vertices being the reconstructed 3D points and edges connecting337

each vertex with its 4-neighbors considering the adjacency relation of points in-338

duced by the image lattice topology. In other words, we consider two 3D points339

connected if they have been triangulated from two adjacent pixels in the right340

image. We compute a weight associated to each edge as the absolute differ-341
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Figure 4: Effect of the graph-based filtering on the reconstructed point cloud. Left: Point cloud
before and after the filtering. Right: Connected components extracted from the constructed
graph. For the sake of visualization, a random color is assigned to each connected component
except for the green which marks the biggest one.

ence along the camera z-axis of their respective points coordinates. Then, each342

edge whose weight is greater than the 98th percentile of the weight distribution343

is pruned by the graph. The idea is to disconnect all the vertices exhibiting344

abrupt changes along the z-axis with respect to the neighbors. Finally, we filter345

out all the vertices and edges not belonging to the biggest connected component346

of the graph. Since the erroneous points are likely to exhibit abrupt changes347

with respect to the neighbours, they are efficiently removed from the principal348

observed surface. In Figure 4 we show an example of all the connected com-349

ponents extracted from the graph and the filtering result on the reconstructed350

point cloud. We can clearly observe that most of the reconstruction artifacts351

that happen at the boundary of the sea surface are effectively removed since352

they exhibit abrupt changes along the camera z-axis.353

The final operation performed by wass stereo is the estimation of the mean354

sea plane from the reconstructed point cloud. This allows a subsequent rotation355

of the 3D data so that the new Z-axis is oriented upward with respect to the356

earth surface. To limit the effect of possible point outliers that may have passed357

the previous filters, we perform an initial robust RANSAC (Fischler and Bolles,358

1981) estimation of the mean plane before the least-squares fitting. Specifically,359

for a selected number of iterations we extract 3 random points from the point360

cloud and compute a candidate plane parameters. Then, we count the number361

of reconstructed points lying closer than a fixed threshold from the candidate362

plane. At the end of the RANSAC iterations, we keep the plane parameters363

corresponding to the candidate plane having the higher number of close points364

(inliers). This initial plane estimation is then refined with a least-squares fitting365

of all the inlier points by weighting each sample with a value proportional to the366

distance of the point from the camera. As previously assessed in (Bergamasco367

et al., 2016), this approach can improve the mean sea-plane recovery for wavy368
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Figure 5: The implemented point cloud filtering approach is able to discard image portions
clearly not belonging to the reconstructed sea surface area. Left: Example of a clutter object
(a seagull in this case) in the field-of-view of the two cameras. Note how the reconstructed
points corresponding to the seagull have been properly removed. The point removal is evident
as it causes a seagull-shaped hole in the surface due to the shadowing produced by the seagull
itself with the other camera field-of-view. Right: Magnification of the area highlighted in the
red rectangle on the left. (Best viewed in colors)

seas especially if no other external aids are available (like horizon-line position369

or IMU data).370

3. Expected Errors371

Five principal uncertainties can be expected in any stereo method: the un-372

certainty in the internal parameter calibration (internal calibration error), the373

uncertainty in the external parameter calibration (external calibration error),374

the uncertainty in the determination of the corresponding pixels (matching er-375

ror), the uncertainty in the recovery of 3D coordinates (quantization error),376

the uncertainty in the determination of the transformation between the cam-377

era reference system and the water reference system with the Z-axis vertical378

and pointing upward (camera orientation error). Following standard calibra-379

tion procedures (Bouguet, 2004) we have verified that uncertainty in the in-380

ternal calibration produces is of fractional of pixels, and we can consider them381

negligible for all applications. Yet this is not always the case for the external382

calibration. In previous WASS deployments (Benetazzo, 2006; Benetazzo et al.,383

2012), external calibration parameters were estimated by exposing an ad-hoc384

calibration target to both cameras, and by relating the known 3-D geometry of385

the target with its re-projection onto the image planes. However, even if this is386

the standard de-facto way to calibrate a stereo rig in laboratory conditions, this387

approach manifests several drawbacks when applied to stereo systems with large388

baseline, typical of field applications. In the latter the pipeline incorporates the389

auto-calibration procedure described in (Benetazzo et al., 2016), which has been390

proven to be as accurate as standard procedures. To determine the orientation391

and displacement between the camera reference system and the still sea water392
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surface, we have adopted the strategy proposed by (Benetazzo, 2006) that has393

been proved to be accurate on field (Benetazzo et al., 2012; Gallego et al., 2008)394

and synthetic (Benetazzo et al., 2016) data.395

Concerning the matching and quantization errors, when designing a stereo-396

camera system one must compromise to meet mainly the conflicting require-397

ments of accurate 3D estimation and accurate image feature matching. In fact,398

as observed by (Mironov et al., 2012) the major difference between stereo wave399

imaging and the classical problem of stereo reconstruction is in the fact that the400

water surface reflectance is not Lambertian. However, (Benetazzo, 2006) shown401

that the matching error is small for highly-textured water surfaces, and (Jahne,402

1993) indicates that the matching error is small when the wave slope is much403

larger than the inclination of the stereo cameras optical axis. The geometry404

of the stereo rig must be tuned so that the interplay between the light vector,405

the point of view and the surface normal is similar for the two cameras. Thus,406

we assume that the disparity of each corresponding pixel is dominated by the407

spatial position of the 3D surface point and not by the rather complex water408

surface bi-directional reflectance distribution function (BRDF). To provide a409

good 3D reconstruction, care has to be taken to choose different parameters,410

the principal being the camera cell size and pixel numbers, the focal length, the411

baseline, the camera reciprocal orientation, and the distance from the stereo-412

camera system to the scene of interest. Under general conditions, in order to413

keep small the range error due to quantization (hence to provide high accuracy414

in the 3D reconstruction) the baseline-to-distance ratio must be large; however,415

accurate feature points matching require that this ratio be small (Benetazzo,416

2006; Jahne, 1993; Rodriguez and Aggarwal, 1990).417

Based on our experience on stereo wave imaging at the sea, the photometric418

consistency between the two views can be rather good if the following general419

principles are taken with care. First, the stereo camera optical axes should be420

placed (almost) parallel in order to reduce the angle between them. Second, the421

baseline-to-distance should be kept small, around 0.10, which is much smaller422

than historical set-up used for field experiment like in (Jahne, 1993). Third, the423

camera should be oriented so that no severe sun glitters are visible in the field of424

view. Finally, the quantization error is alleviated by using subpixel (fractional425

pixel) correspondence as performed by our pipeline. Sub-pixeling reduces errors426

depending on the weight function adopted to estimate the cross-correlation map427

(Nobach and Honkanen, 2005), and has a large impact on the accuracy of the428

smaller wavelengths (see for instance Fig.7 of (Benetazzo et al., 2012)). To429

give an idea of the reconstruction error expected with the proposed pipeline,430

in Figure 6 we show a map of the quantization error for the same WASS setup431

described in (Benetazzo et al., 2015).432

4. Example433

We use a field data example to demonstrate the capability of the open-source434

pipeline for WASS. The pipeline has already been used and its performance as-435

sessed in different studies using stereo cameras mounted on oceanographic tow-436
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Figure 6: Map of the quantization error for sea surface elevations (Z-axis) within the horizontal
field of view of the stereo cameras. WASS setup as in (Benetazzo et al., 2015)

ers (Benetazzo et al., 2015) and moving vessels (Benetazzo et al., 2016; Berga-437

masco et al., 2016; Falcieri et al., 2016). Here, the pipeline is tested on images438

acquired by a stereo wave imaging system ad-hoc installed on the oceanographic439

research platform Acqua Alta (North Adriatic Sea, Italy; see Figure 2). Image440

pairs were acquired with a 5 mega-pixel digital cameras (with 2456 columns441

by 2048 rows array of 3.45µm square active elements) and mounting 5 mm442

distortionless lenses, placed 2.5 m apart and on the roof of the platform.443

The 3D wave fields were observed during a mature sea state generated by444

a north-easterly storm with average wind speed of 11 m/s, resulting in a local445

significant wave height of about 1.3 m. The WASS sequence comprises 26971446

stereo-image pairs grabbed at 15 Hz. For internal parameter calibration of both447

cameras, we used the Bouguet’s Matlab calibration toolbox (Bouguet, 2004).448

Using the WASS pipeline, the automatic stereo rig calibration is performed449

selecting a subset containing 51 stereo frames (uniformly spaced along the image450

sequence). A total of about 20000 features are matched, and 89% of them re-451

tained after application of the RANSAC-based epipolar filtering. Then the rota-452

tion matrix R =

 0.998568 0.0297004 −0.0444994
−0.0311139 0.999022 −0.0314147
0.0435229 0.0327543 0.998515

 and the normalized453
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Figure 7: 3D point cloud result of the stereo triangulation superimposed to the left camera
image of the stereo imaging system.

translation vector ~t =
(
0.999686 0.0101738 0.0229187

)T
between the two454

views are recovered. After the calibration and rectification of images, all stereo455

pairs are processed for 3D stereo reconstruction. The dense stereo algorithm456

execution find on average 3.3 million corresponding points, which are reduced457

of about 5% with the optimization and cleaning of the disparity map, including458

the graph-based filtering (see for example Figure 7). Along the whole sequence,459

about 80× 109 3D sea-surface elevation points resulted from the stereo process.460

Then, as standard procedure, for each point cloud, elevations are transformed461

to a common earth reference frame (Benetazzo, 2006; Gallego et al., 2008). To462

this end, mean sea plane parameters are derived from each reconstructed point463

cloud, and then parameters averaged over the 26971 outputs. Finally, each re-464

constructed point cloud is scaled by a factor of 2.5 corresponding to the distance465

between the two cameras that have been empirically measured in the field. Af-466

ter this procedure, cameras resulted to be placed 12.5 m above the mean sea467

level, with an elevation angle of 50◦. Finally, to make stereo data useful for468

oceanographic applications, a patchwise planar surface is constructed by means469

of 2D Delaunay triangulation of each point cloud, resampled over a regular470

grid at uniform resolution of 0.2 m along the horizontal X- and Y-axis (in the471

world reference frame), spanning the horizontal region x ∈ [−42.5m, 42.5m] and472

y ∈ [−70.0m,−5.0m] (Fig.8).473
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Figure 8: Representation of the 3D sea surface elevation fields measured by WASS. Top-Left:
Slices on the XY-plane of the space-time volume. Top-right: Time series of sea elevations at
different spatial positions. (bottom panel) Hovmoller diagram along the transect x = 0

5. Conclusions474

We presented WASS, an open-source implementation of our sea waves 3D475

stereo reconstruction pipeline. WASS is designed to be fast and reliable when476

processing thousands of stereo frames and offers an intuitive interface that assist477

the user in all the common operations from dense stereo matching to stereo478

camera calibration. Tested and used extensively in our past works, we decided479

to release it to the whole oceanographic community in the hope that it can help480

improve the research in the study of sea waves.481

We described the details of WASS inner working and demonstrated the per-482

formance and the expected errors of a typical WASS installation on a fixed483

oceanographic platform. We remand to the official website http://www.dais.484

unive.it/wass for additional technical details on installing and running our485

software on various platforms.486
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