The Fitting length of finite soluble groups II

Fixed-point-free automorphisms
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Abstract. Let G be a finite soluble group, and let h(G) be the Fitting length
of G. If ¢ is a fized-point-free automorphism of G, that is Ca(p) = {1}, we
denote by W () the composition length of (p). A long-standing conjecture is
that h(G) < W(p), and it is known that this bound is always true if the order
of G is coprime to the order of p. In this paper we find some bounds to h(QG)
in function of W(p) without assuming that (|G|, |p|) = 1. In particular we
prove the validity of the “universal” bound h(G) < TW (p)2. This improves the
exponential bound known earlier from a special case of a theorem of Dade.
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81. Introduction

In this paper we apply some results obtained in [2] to the study of finite
soluble groups with a fixed-point-free automorphism. We only deal with finite
soluble groups and so for us group will always mean “finite soluble group”. If
G is a group and ¢ € Aut(G), then ¢ is called fixed-point-free if the centralizer

Caolp) ={9€G|g* =g}

is the trivial subgroup of G. We shall denote by h(G) the Fitting length of G,
by 7(G) (resp. 7(yp)) the set of prime divisors of |G| (of [{¢)|) and by w(G)
(resp. w(¢p)) the cardinality of 7(G) (of w(¢p)). Also, we shall write W (i) for the
composition length of (p) (that is the number of prime divisors of |{¢)| counted
with their multiplicities). Sometimes we will write 7, h, w and W instead of
©(G), h(G), w(p) and W (p) respectively, when there is no possible ambiguity.

If the order of ¢ is coprime to |G|, it was then proved, through a long series
of papers (see, in particular, [10], [12] and [13]), that

WG) < W(p).

Moreover if A is a solvable group of automorphisms of G and (|4], |G|) = 1,
then
MG) <2W(A) + h(Ca(A)),



by a result of Turull ([18]). So, if C¢(A) = 1 (that is A is fixed-point-free), then
h(G) < 2W(A) and in many cases h(G) < W(A) (Turull, [17] and [19]).

Here we turn our attention to the so called noncoprime case, in which the
hypothesis (|G|, |¢]) = 1 is omitted. If w(yp) = 1, then |p| = p"'#) (p a prime
number) and an easy argument shows that G is a p’-group. Hence we suppose
w(y) > 2 and this hypothesis will be often implicitly assumed. In this case, from
Theorem 8.4 of [4], we can deduce the exponential bound h(G) < 5(2% — 1).
Our main result is.

THEOREM 1.1 Let G be a group and let @ be a fixed-point-free automorphism
of G. If w(p) > 2, then
h(G) < (Tw —9)W.

The inequality proved in Theorem 1.1 is particularly satisfactory if w(yp) = 2,
as it provides the bound

h(G) < 5W

when the order of ¢ is divisible by only two primes.
Since w(p) < W(p), Theorem 1.1 easily implies the following

COROLLARY 1.2. Let G be a group and let ¢ be a fized-point-free automor-
phism of G, then h(G) < TW?.

Furthermore, in some cases, the previous inequality may be improved, as,
for example, in the following two propositions.

PROPOSITION 1.3. Let G be a group and let ¢ be a fized-point-free automor-
phism of G. If || = p*q with p and q distinct primes, then h(G) < 3W + 1.

PROPOSITION 1.4. Let G be a group and let ¢ be a fixed-point-free automor-
phism of G. If the order of ¢ is square-free and W (p) > 3, then

hG) < %(3W2 —TW).

REMARK 1.5. If the order of ¢ € Aut(G) is square-free and W (y) < 3, then
the best possible bound
hMG) <W

was proven. If W = 1, then ¢ has prime order and it is well known that G is
nilpotent. If W = 2, then |¢| = pq (p, g primes, p # ¢) and in this case h(G) < 2
by [3]. If W = 3, then [p| = pgr (p,q,r primes, p # q # 7 # p) and h(G) < 3
follows from [5].

We want to recall that a result of Ercan and Giiloglu (Theorem A of [6])
asserts that if G has odd order, A is abelian of squarefree exponent coprime to
6 and Ci(A) =1, then h(G) < W(A).

Using the above-mentioned result of Turull, we can generalize our Theorem
1.1 to



THEOREM 1.6. Let G be a group and let ¢ be an automorphism of G.
Suppose that (|Ca(@)], [{)]) =1, w(v) > 2 and h(Ca(p)) = ho, then

h(G) < (8w — 10)W + g(w — 1) why.

We wish to emphasize that we have not wanted to optimize our bounds, but
only indicate a new method to obtain general results.

REMARK 1.7. Let G be a group, let A a fixed-point-free nilpotent group of
automorphisms of G and let W = W(A). In his seminal paper [4] (Theorem
8.4), Dade proved that

hMG) <5(2% —1),

hence there is always a function I' such that h(G) < T'(W). Moreover Dade (in
Conjecture 2.9 of [4]) suggests that I can be chosen so that I'(W) = O(W) as
W — oo.

Our Theorem 1.1 (and Corollary 1.2) shows that, in the particular case where
A is cyclic, T'(W) is at most quadratic in W (compare this result with the main
theorem of [16]). Furthermore we have the linear bound

€ Aut(G) is
hG) ﬁxe(pd—point—(fre)e and <5
W((¥)) w({p)) =2

sup

thanks to the observation made after Theorem 1.1 (see Proposition 3.1).

REMARK 1.8. We point out that if A is a fixed-point-free group of automor-
phisms of the group G at least one of the two hypotheses (1) A is nilpotent (2)
(IG|,|A]) = 1 is needed to bound h(G) by a function of W(A). Indeed in [1] it
is proved that if A is any finite non nilpotent group and H is any finite group,
then there exists a finite group G on which A acts fixed-point-freely, such that
H is a homomorphic image of G. Further, if H is soluble, so is G.

§2. Notation and preliminary results

In this paper we use the same notations employed in [2]. In particular if G
is a group, with {G,},er we denote a Sylow system of G, namely a set of Sylow
subgroups of G, one for any p € w, such that G,G4, = G,G), for every p,q € 7.
If o is a subset of 7, by o-Hall subgroup of G we mean G, = Hpea G, and by
Gy we denote a 7 \ {p}-Hall subgroup of G.

The symbols 7, w, W have already been defined. If ¢ is a set of primes, we
denote by /,(G) (or by £,) the o-length of G and by £,(G) = £{,,(G) (or by
£,) the p-length of G ([14], 9.1.4).

A substantial tool for the proofs in this paper is the following result.



THEOREM 2.1. (Theorem 1.1 of [2]) Let G be a group and let o, 7, v be
three subsets of w(G) such that cUT =7Uv =vUoc =7. Then

B(G) < h(Go) + h(Gr) + h(G) — 2.
In particular, if p,q € ™ and p # q, then
hG) < W(Gp) + h(Gy) + h(G{p,q}) —2.

Theorem 2.1 is consequence of Theorem 2.3, a more general and technical
result, for which the following definition is needed.

DEFINITION 2.2. Let G be a group and let ¢ > 3 be an integer. The set
R = {917Q2>"'19t | Oi gﬂ-}

is called a t-cover if p; U p; = w for every 4,5 € {1,2,...,t}, i # j. The weight
of a t-cover R is the number

THEOREM 2.3. (Proposition 3.1 of [2]) Let G be a group and let R be a
t-cover of m(G) of weight ©, then

We now turn our attention to the structure of groups that admit particular
types of automorphisms.

THEOREM 2.4. Let ¢ be a fized-point-free automorphism of the group G,
then ¢ leaves invariant a unique p-Sylow subgroup P of G for each p € 7(G).
Furthermore, P contains every -invariant p-subgroup of G.

PROOF. See Theorem 10.1.2 of [9]. m|

From Theorem 2.4 we can easily deduce that if G is soluble, then G admits
a (unique) p-invariant Sylow system. We remark that, using the classification
of finite simple groups, Rowley ([15]) proved that any group admitting a fixed-
point-free automorphism is soluble.

THEOREM 2.5. Let G be a group with a fixed-point-free automorphism of
order p%, p a prime. Then h(G) < a.

PROOF. This result is proved in [12] and [10] in the case where p is odd and
in [13] if p = 2. m]



LEMMA 2.6. Let G be a group and let ¢ be a fized-point-free automorphism
of G of order p*k, where p is a prime number and k € N with (p, k) = 1. If P
is a -invariant p-subgroup of G, then Cp(pP”) = 1.

PROOF. Suppose, arguing by contradiction, that Cp(@?”) # 1. Then ¢
induces on Py = CP(QOPQ) an automorphism of order dividing p® and we have

CPO(SD) # 1. O

A result proved by Espuelas is essential in order to obtain our results.

THEOREM 2.7. (Theorem 2.1 of [8]) Let G be a group admitting an auto-
morphism ¢ of order p* acting fixed-point-freely on every p-invariant p'-section
of G, where p is an odd prime. Then £,(G) < a+1 and h(G) < 2a+ 1. These
bounds are best possible.

Theorem 2.7 is a sharp generalization of the following result, proved by
Hartley and Rae, valid also in the case p = 2.

THEOREM 2.8. (Theorem 2 of [11]) Let G be a group admitting an automor-
phism @ of order p® acting fized-point-freely on every @-invariant p’-section of
G. Then £,(G) < 2a.

The following fundamental result is due to Turull (see §1).

THEOREM 2.9. (Corollary 3.2 of [18]) Let G be a group and let A be a soluble
subgroup of Aut(G) with (|G|,|A|) =1. Then

h(G) < 2W (A) + h(Ca(A)).

We conclude this section with some more technical results.

LEMMA 2.10. Let G be a {p,q}-group with p and q distinct primes. Let ¢
be a fized-point-free automorphism of G of order p®q®, then

h(G) < 2W.
Moreover if p and q are odd, then
h(G) < W +1.

PROOF. By Theorem 2.4, in G there is a ¢-invariant Sylow p-subgroup P
and a @-invariant Sylow g-subgroup @ which are y-invariant; we have G = PQ
because 7(G) = {p, ¢}. Since p # ¢ we can suppose, without loss of generality,
that ¢ is odd. By Theorem 2.7 we deduce

MG) <28+1<2 max{a, B} +1 < 2W.
If also p is odd, then h(G) < 2a+ 1, so
MG) <min{2a+ 1,28+ 1} <a+B+1=W +1,



and the result follows. O

It is well known that a group with a fixed-point-free automorphism of order
2 is abelian. From this fact we can derive

LEMMA 2.11. Let q be an odd prime and let G be a {2, q}-group. If G admits
a fized-point-free automorphism ¢ of order 2q%, then h(G) < 3.

PROOF. By Theorem 2.4, we can choose a g-invariant Sylow g-subgroup
of G. By Lemma 2.6, »?" is a fixed-point-free automorphism of order 2 of Q,
and hence @ is abelian. From 9.3.7 of [14] we deduce ¢,(G) < 1, and hence we
can conclude that h(G) < 3. O

The following lemma is needed in the proof of Theorem 1.6.

LEMMA 2.12. Let G be a group, ¢ an automorphism of G and suppose that
(ICa(@)l; [(p)]) = 1. Then

(a) if N is a normal p-invariant subgroup of G, then (|Cq/n ()|, [(©)]) = 1;

(b) for every p € w(G) there is a p-invariant Sylow p-subgroup of G.

PrROOF. We prove (a) arguing by induction on |G|+ |N|. If N = 1, then
(a) is trivially verified, in particular the induction basis is proved and we can
suppose N = 1.

Let L # 1 be a normal minimal g-invariant subgroup of G contained in
N. If L < N, then, by induction hypothesis (|Cq/r(¢)l,{¢)) = 1. Since
|G/L| + |N/L| < |G| + | N|, the induction hypothesis yields the conclusion.

Hence N is a (non trivial) minimal normal ¢-invariant subgroup of G, in
particular N is an elementary abelian p-group for some p € 7(G).

Suppose, arguing by contradiction, that (|Cq/n ()|, [()]) # 1. Hence there
is a prime ¢ € w({p)) and an element y € G such that y € N, y? € N and
yy~? € N. If N(y) < G then, applying the induction hypothesis to N(y) we
obtain a contradiction, so G = N(y). Furthermore Cg(y) is a p-group, since
7(G) = {p,q} and ¢ € 7({¢)). We now distinguish two cases.

e Cn(p) # 1. Let © € Cg(N), since N is abelian and yy~ ¥ € N, we have
yy~ ¥ = (yy~¥)* = y*(y")"? and [z,y] = (y~ )"y = (y*) ¥y¥ = [z,y]¥. This
shows that y normalizes Cn(¢) and, since G = N(y) and N is abelian, we can
conclude that Cn(p) < G. From the hypothesis that Cny(¢) # 1 and from
the minimality of N we obtain N = Cn(y). Since yy~¥ € N we can write
yy=¥ = o1 for some x € Cn(p); if n is the order of ¢, then, as y? = xy,
applying n times ¢ we obtain y = y¥" = z"y, that is " = 1. Since z € Cg(yp)
and (|Ca(p)|,n) = 1 we have x = 1 and y € Cg(p). Then G = Cg(p) and
q € 7(G) N7 ({yp)), a contradiction.

e Cn(p) = 1. By Lemma 10.1.1 of [9], N = {#712¥ | 2 € N} and we can
write yy~¥ = x~ 2% for some x € N. Since zy € Cq(y), zy is a p-element and
(xy)pk =1 for some k € N. If p # ¢ then ypk € N and y? € N implies y € N,
a contradiction. If p = ¢, then G is a ¢g-group and ¢ € 7(Cq(p)) implies that



Ca(p) = 1. By Lemma 10.1.3 of [9], Cq/n(w) = 1, we have thus obtained the
contradiction yN € Cq/n(¢) = N and so we have proved (a).

In order to prove (b) we begin by observing that, if ¢ has prime power order
q* (q a prime, k € N), then (|G|, q) = 1. We argue by induction on the order of
G (the basis is trivial). If G is an elementary abelian p-group for some prime
p, and if p = ¢, then Cg(p) # 1, against the hypothesis. Let N be a normal
elementary abelian @-invariant p-subgroup of G, then p # ¢. By (a) in G/N we
have (|Cq/n(¥)];q) = 1 and, by the induction hypothesis, (|G/N|,q) = 1, so
(IGl,q) = 1.

We now prove (b) arguing by induction on |G|+ |7({¢))|- If |[7({p))| = 1,
then the order of G is coprime to |{(p)| and (b) follows by 6.2.2 of [9], in particular
the induction basis is proved.

Fixed p € n(G), our aim is to prove that there is a Sylow p-subgroup of
G which is p-invariant. If O,(G) # 1 then, by (a), we can consider G/O,(G)
and we can easily conclude by induction hypothesis. Let N be a non trivial
minimal @-invariant normal subgroup of G, then N is an elementary abelian
g-group for some ¢ € 7(G) and ¢ # p. By induction hypothesis in G/N there is
a -invariant Sylow p-subgroup and hence we can suppose G = NP, with P a
Sylow p-subgroup of G. If Cn(¢) # 1, then q & 7({¢)), and hence p € 7({p)),
since otherwise (|G|, |{®)]) = 1 and the conclusion follows by 6.2.2 of [9]. Write
|{p)| = p*m with (p,m) =1 and let ¢ = ™. Let I' = G(3)) be the semidirect
product of G by (1), then in T there is a Sylow p-subgroup II such that ¢ € II.
The subgroup G N II is normal in IT and hence Cgnr(v) # 1, in particular
Ce(v) # 1. Moreover Cg(v) # G, as otherwise ¢ would have order m, coprime
to p, hence, by induction hypothesis, C (1) contains a non trivial ¢-invariant
Sylow p-subgroup Py. Let M be a ¢-invariant p-subgroup of G of maximal
order and let P be a Sylow p-subgroup of G containing M. If M < P, then
Ng(M) > Np(M) > M. The two conditions O,(G) = 1 and M # 1 imply
Ng(M) < G and, by the induction hypothesis, Ng(M) contains a -invariant
subgroup of order greater than |M|. This forces M = P and (b) is proved. O

REMARK 2.13. Lemma 2.12 allows us to state that, if (|Ca(9)], [{¥)]) =1,
then G admits a ¢-invariant Sylow system. In particular for every o C 7(G),
in G there is a p-invariant Hall o-subgroup.

REMARK 2.14. Without the hypothesis (|Ca(¥)],|{¢)|) = 1, Lemma 5.9 is
no longer true. As a simple counterexample we can consider G ~ S3 and ¢ the
inner automorphism of order 3.

§3. Proofs

PRrROPOSITION 3.1. Let G be a group and let ¢ be a fixed-point-free automor-
phism of G of order p“q®, with distinct primes p and q. Then

hG) < 5W —2;



moreover if p and q are odd, then

h(G) < 4W — 1,

PROOF. Let J = PQ, H and K be respectively p-invariant Hall subgroups of
G with 7(J) = {p,q}, n(H) = {p} and 7(K) = {¢}’ (see Theorem 2.4 and the
remark made after it). By Lemma 2.10 we have that h(J) < 2W. If we consider
the action of ¢ on H, we see that ¢ acts as a fixed-point-free automorphism of
order ¢ on CH(gaqﬁ) and hence h(CH(gaqﬁ)) < B. Since (|H|, \apqﬁ|) =1, by
Theorem 2.9 we deduce

h(H) < 2a+ h(C'H(SOqB)) <2a+p
and similarly h(K) < a + 28. By Theorem 2.1 we obtain
hMG) <h(J)+h(H)+h(K)—2 < 5W —2.

If p and ¢ are odd, then, by Lemma 2.10, h(J) < W+ 1, and hence we conclude
that h(G) < 4W — 1. m|

PROOF OF THEOREM 1.1. We argue by induction on w. Let |¢| = [~ p§*
with a; € N and p; distinct prime numbers. If w = 2, then the conclusion
follows from Proposition 3.1.

Suppose w > 3, denote by G; a p-invariant Hall p}-subgroup of G and write
(p) = (1) X (p2) X ... X (pw) with ¢; of order p*, for i € {1,2,...,w}. Since
(IGil, {:)]) = 1, by the Turull’s Theorem 2.9 we have

WGi) < 2W(9i) + h(Ca,(9i)) = 2ai + h(Ca, (i)

The automorphism ; induced on Cg,(p;) by ¢ has order dividing |¢|/p7", so
we have W (¢;) < W(p) — a; and w(v;) < w(e) — 1. The induction hypothesis
leads us to conclude that

h(Ca, (i) < (T(w—1) = 9) (W — «;)

and h(G;) < 2a; + (T(w — 1) — 9) (W — o).
An easy computation provides
D h(Gi) <2W + (T(w = 1) = 9)(w — YW < (Tw — 9)(w — 2)W,

i=1

and applying Theorem 2.3 we obtain

@) < (EZ";MG;)) 2

< (Tw —9)W,

which concludes the proof. ]



REMARK 3.2. If, in Theorem 1.1, we suppose that |p| is odd, then, thanks
to the Proposition 3.1, we can improve the bound for the Fitting length of G to

h(G) < 2(3w — 4)W.

PROOF OF PROPOSITION 1.3. By hypothesis |p| = p®q, and hence W =
a + 1. We use the notation of the proof of Proposition 3.1. By Theorem 2.7
(if ¢ is odd) and Lemma 2.11 (if ¢ = 2) we obtain A(J) < 3. Arguing as in the
proof of Proposition 3.1, we deduce h(H) < 2a:+ 1 and h(K) < a+ 2. So

hMG) <h(J)+h(H)+ h(K)—2=3a+4=3W+1,
and the proof is complete. O

REMARK 3.3. In [7] it has been proven that if a group G has a fixed-point-
free automorphism of order p®q with (pg,6) = 1 and if the Sylow 2-subgroups
of G are abelian, then h(G) < W(p).

PrOOF OF PROPOSITION 1.4. We will proceed as in the proof of Theorem
1.1, using the same notation and adding the conditions

o] =Q9g =...= 0y = 1.

If w = W = 3 then, by [5], we know that h(G) < 3. If we suppose W > 4,
we have

hGi) <2+ h(Cq,(#i)
and, by the induction hypothesis,

M(GH) < 24 5 (BOV — 12— (W — 1)) = 2 (3W —7) (W ~ 2),

so W, h(Gy) < 1(3W —17) (W — 2)W. Now, by Theorem 2.3,

hE) < (Zfil h(Gi)> 2 BW-T)(W-2)W

_ L2
= W2 < 2(W —2) = (BWE =),

and the theorem is proved. O

The proof of Theorem 1.6 is very similar to that of Theorem 1.1; we report
it here for completeness.

PRrROOF OF THEOREM 1.6. We use induction on w.

By Lemma 2.12 and Remark 2.13 we know that, for every o C 7(G), G
admits a e-invariant Hall o-subgroup.

Suppose w = 2, |¢| = p*¢® with p # ¢ primes. Let J = PQ, H and K be
respectively o-invariant Hall subgroups of G with #(J) = {p,q¢}, n(H) = {p}’
and 7(K) = {¢}’. By Theorem 2.9 we can write

h(J) < min {2a + h(Cs(p7), 28+ h(Cy (")} < 20+ 28+ ho = 2W + ho,



h(H) < 2a+ h(Cr(¢P") < 2a+ 28 + hg = 2W + hg

and, as the roles of p and ¢ can be exchanged, h(K) < 2W + hy. By Theorem
2.1 we obtain

WG) < h(J) + h(H) + h(K) — 2 < 6W + 3hq,

so the induction basis is proved.

Suppose now w > 3 and let |¢| = [, p{'". Denote by G; a p-invariant Hall
pi-subgroup of G and write (p) = (p1) X (p2) X ... X () With ¢; of order pi*,
for i € {1,2,...,w}. Since (|G;|,|{p:}|) = 1, by the Turull’s Theorem 2.9 we
have

MGi) < 2W (i) + h(Ca, (@i)) = 2a; + h(Ca, (i)

By induction hypothesis we can write
W(Ca (1)) < (8w —18) (W — o) + 5 (w—2) (w — 1)ho

and an easy computation provides that

Z W(Ca(p0)) < (8w —18) (w— )W + 5 (w — 2) (w — )who,

hence, by Theorem 2.3 the following inequality hold

ne) < ((Sw ~18) (- )W 2+ (- 2) - 1)wh0) .

w—
Since (8w — 18)(w — 1) + 2 = (8w — 10)(w — 2), we have

3(w— 1w

h(G) < (8w — L)W + ==

ho
and the conclusion. O
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