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a b s t r a c t

Among machining processes, grinding has been used to achieve high dimensional tolerances and surface
quality on workpieces. Yet, high levels of energy expenditure per volume of removed material and the
need for cutting fluids make grinding one of the most environmentally impactful machining processes.
Furthermore, changes in parameters such as grain and bond specifications of the grinding wheel, cutting
speed, and specific material removal rate can lead to different productive and environmental results.
Thus, the analysis of grinding processes should not be aggregated and leveraged into a single and broad
output parameter. Instead, comprehensive study should be performed, in which the most relevant
process parameters, inputs and outputs are considered. This paper presents a detailed study of grinding
process, including the characterization of machine subunits and production modes, along with the use of
a combined life cycle assessment hybrid model and real-time monitoring system to evaluate the con-
sumption of energy, tooling, cutting fluid and compressed air. A detailed cradle-to-gate life cycle
assessment study using eleven different impact categories and a productive performance assessment
were performed to evaluate the effects on varying specific material removal rate and wheel type. For
equal values of specific material removal rate, the change from a conventional wheel to a cubic boron
nitride represented a power requirement increase of 19e24%. Cubic boron nitride wheel achieved
remarkably better results on the wheel wear and part roughness indicators for all tested conditions. The
environmental performance assessment showed a strict relation between the process environmental
impacts and the consumption of electric energy and cutting fluid. To conclude, despite the higher power
requirements, the combination of cubic boron nitride wheel with high values of specific material removal
rate optimizes both the productive and the environmental results.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Grinding is traditionally designated as a final machining pro-
cess, providing superior surface properties to the ground part, such
as smoother surfaces and tighter dimensional tolerances (Malkin
and Guo, 2008; Winter et al., 2015). These improved surface
eti).
properties can positively affect the part lifespan and function effi-
ciency (e.g., by friction reduction of the ground part), thereby
reducing the negative potential environmental impacts during its
usage (Aurich et al., 2013; Kirsch et al., 2014; Linke and Overcash,
2012).

Aspects such as grain and bond specifications of the grinding
wheel, dressing conditions and type of cutting fluid can lead to
different levels of environmental and productive performances,
and poses a real challenge to the sustainable manufacturing of
products. Aurich et al. (2013) noticed that the variation of process
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parameters in different grinding machines could lead to very
different overall energy consumptions, even when the same ma-
terial (DIN 42CrMo4V/hardness 60 HRc) is machined. Based upon
this premise, grinding processes cannot be aggregated and lever-
aged into a single and broad output parameter. Instead, it is
necessary to promote a comprehensive study in which the most
relevant inputs and outputs are considered. To this end, Life Cycle
Assessment (LCA) technique appears as an option to evaluate the
potential environmental impacts of manufacturing process.

Life Cycle Assessment (LCA) is a well-established methodology
to assess environmental impacts of products and processes (ISO,
2006a, 2006b; Joint Research Centre - JRC, 2010). However, issues
involving data quality and data collection during the Life Cycle In-
ventory (LCI) stage are some of the main constraints from this
methodology.

Among the LCA's phases, LCI demands more efforts, time and
resources to be properly performed (Bourhis et al., 2013; Thorn
et al., 2011). Skone and Curran (2005) report that LCA has under-
gone consistent improvements in terms of its methodology struc-
ture and standardization, but little has been done to improve the
availability of high quality LCI databases.

Most of the available LCI databases have been developed by
governmental or private initiatives, usually based on regional or
aggregated average data (Thorn et al., 2011). It is also common to
find LCI databases adopting “black-box” datasets, regarding the
manufacturing processes (Silva et al., 2016).

Thorn et al. (2011) and Vijayaraghavan et al. (2013) argue that
high quality LCI data requires site-specific and sensor-based
monitoring systems, with a software interface which allows the
real-time measurement of the process flows and parameters. In
fact, market available systems, such as Energy Management System
(EMS) and Object linking and embedding for Process Control (OPC)
already perform dynamic monitoring in machining unit processes,
including grinding machines. However, the first one is limited only
to energy monitoring while none of them include web-based in-
terfaces (Shao et al., 2011; Torrisi and Oliveira, 2012).

In this sense, some OPC-based protocols, such as OPC-UA, OPC-
XML and CyberOPC, appear as web communication solutions. By
means of an OPC server, these protocols provide the basis for the
standardization of the data collected from the unit process and
allow its remote access and transfer by internet (Torrisi and
Oliveira, 2012).

Vijayaraghavan et al. (2008) also presented a solution named
MTConnect. This solution is a web-based open-source protocol,
which defines a common language for communication and data
sharing among manufacturing processes and their associated
embedded devices, using market-based languages such as XML and
HTML.

This protocol is extensible and does not compete with other
existing protocols or applications, but it strives to complement
them and move toward a plug-and-play environment to enhance
data acquisition capability and to reduce costs of integration.

Moreover, gathering data in XML format allows the creation of
LCI datasets based on other available standards, such as ecoSpold
and International reference Life Cycle Data system (ILCD) formats,
and facilitates the integration of manufacturing datasets with LCA
software tools (Filleti et al., 2014).

The objective of this paper is to develop a combined LCA hybrid
model and real-time manufacturing process monitoring to perform
a detailed cradle-to-gate life cycle assessment study and a pro-
ductive performance assessment study. The model is based on the
Unit Process Life Cycle Inventory (UPLCI) methodology (Kellens
et al., 2012a, 2012b) and on the MTConnect communication
protocol.

The key aspects for environmental and productive assessment of
grinding processes are presented in Section 2. Section 3 presents
the experimental procedure used on the study. The results
regarding the process consumption, productive performance and
environmental performance are presented in Section 4. Finally,
conclusions and outlooks of this study are discussed in Section 5.

2. Key aspects for environmental and productive assessment
of grinding process

Sustainable aspects of grinding have attracted increasingly
attention from both industry and academia (Linke and Overcash,
2012). High specific energy rates (Aurich et al., 2013; Winter
et al., 2015) and use of environmentally harmful cutting fluids
(Chetan et al., 2015; Clarens et al., 2008; Hadad, 2015) are some
examples.

Nevertheless, just the analysis and improvement of its envi-
ronmental performance may not guarantee an enhancement of the
process sustainability. Aurich et al. (2013) pointed out that abrasive
manufacturing processes such as grinding are tightly linked to the
surface quality and integrity of the machined part. Thus, a sus-
tainable analysis of this type of process must consider both the
environmental and productive performance indicators.

Aurich et al. (2013) evaluated 13 different grinding setups in
terms of specific energy consumption and surface arithmetic
average roughness (Ra). The setups were obtained by varying the
type of grinding process, wheel abrasives, wheel grit sizes, cutting
fluids, cutting speed and Q0

w. For all setups, DIN 42CrMo4V
(hardness 60 HRc) workpieces were used.

The results showed that variations in Q0
w and wheel grain grit

parameters considerable interfere on the results of specific energy
consumption and surface arithmetic average roughness (Ra). In
addition, the composition of the cutting fluids has a strong influ-
ence on the workpiece surface finishing, tool wear and the envi-
ronmental impact results (Aurich et al., 2013; Clarens et al., 2008).
Thus, the use of average and aggregated LCI data to evaluate
grinding environmental and productive performances should be
avoided. High quality and stratified data is required to proper assess
the trade-offs resulting from productive and environmental per-
formances of manufacturing processes.

Linke and Overcash (2012) developed an UPLCI-based frame-
work to address productive, environmental and social factors of
grinding, considering the process inputs (e.g., electric energy, cut-
ting fluid, tooling), outputs (e.g., debris, dirty cutting fluid) and
parameters (e.g., Q0

w). This study, however, remained at a theo-
retical level.

Li et al. (2012) addressed the eco-efficiency of grinding process
using an empirical model, which characterize the interrelationship
among process parameters (e.g., Q0

w), energy and tooling con-
sumption, environmental impacts (i.e., carbon footprint) and
quality performance. Winter et al. (2014) enhanced this analysis by
adding the economic costs and the global warming potential im-
pacts related to the use of cutting fluids in the evaluation. In a study
regarding the LCA of cBN grinding wheels, Winter et al. (2015)
expanded the environmental analysis and made use of an aggre-
gated indicator, Eco-Indicator099, to address other impact cate-
gories other than carbon footprint. Still, these approaches may be
expanded and address a broader range of impact categories and in a
non-aggregated way.

3. Experimental procedure

The case studywas conducted in an external cylindrical grinding
CNC machine (model Numerika G 800-HS, from Zema Zselics Ltd.)
fed-in by a 220 V three-phase power supply and a 7-bar com-
pressed air supply, sited at the Laboratory for Advanced Processes
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and Sustainability (LAPRAS), University of S~ao Paulo (USP), Brazil.
Both productive and environmental analyses were performed

by testing two types of grinding wheel e a conventional Al2O3
wheel (55A46-1-K8VC1 specification, vitrified bond and external
diameter ds ¼ 475 mm) and a cBN wheel (8B126 K150 VT2 speci-
fication, vitrified bond and ds ¼ 400 mm). For each wheel, three
different plunge grinding conditions were defined, leading to a
total of six experiments. Two replications were performed for each
condition.

For all experiments, workpiece rotation (nw) and grinding width
(bw) were fixed in 200 rpm and 15 mm, respectively. The applica-
tion of cutting fluid at the grinding zone was adjusted for
50,000 cm3/min for all tests. Cutting speeds (vs) of 80 and 45 m/s
were selected, respectively, for the cBN and Al2O3 wheels. A spark-
out time of 10 s was used for all grinding conditions.

The specific material removal rates were defined based on the
regular working range from each wheel and on previous tests.
Table 1 presents the summary of all the tested conditions:

Previous tests showed that Q0
w ¼ 2.5 mm3/mm$s was not

suitable for Al2O3 wheel as it quickly wore out under low volumes
of material removal. In the opposite direction, previous tests indi-
cated that Q0

w ¼ 0.167 mm3/mm$s was an underload condition for
the cBN wheel, so it was not addressed for this wheel.

Table 2 shows the dressing conditions for each wheel. Due its
superabrasive nature, the cBN wheel was dressed using an electric
rotary dressing system with an electro-plated diamond dressing
disc. The conventional Al2O3 wheel, on the other hand, was dressed
using a regular and static Fliesen dressing tool.

A characterization of the grinding unit process was performed
by means of a LCI study. Among the different LCI approaches used
for the evaluation of manufacturing process, e.g., exergy analysis
(Gutowski et al., 2006), theoretical and statistical formulas (Abele
et al., 2005) and process simulation (Bourhis et al., 2013), the
Unit Process Life Cycle Inventory (UPLCI) methodology (Kellens
et al., 2012a, b) was selected for this study.

The UPLCI presents a well-defined structure, which allows the
collection of stratified data per subunit level (e.g., hydraulic sub-
unit, cooling subunit) and production modes (e.g., start-up mode,
stand-by mode, OFF mode) of machines, creating detailed unit
process inventories.
Table 1
Tested grinding conditions.

Test code Q0
w

[mm3/mm$s]
vs
[m/s]

ds

[mm]
nw

[rpm]
bw
[mm]

cBN_Q0
w0.83 0.83 80 400 200 15

cBN_Q0
w1.67 1.67 80 400 200 15

cBN_Q0
w2.5 2.50 80 400 200 15

Al2O3_Q0
w0.167 0.167 45 475 200 15

Al2O3_Q0
w0.83 0.83 45 475 200 15

Al2O3_Q0
w1.67 1.67 45 475 200 15

Table 2
Dressing conditions.

Wheel
Type

vs
[m/s]

Depth of
cut [mm]

Traverse rate
[mm/min]

Lead
[mm/rot]

cBN 80 2 501 0.13

Al2O3 45 20 451 0.25

a Disc speed and speed ratio are dressing specifications related to the electric rotary d
b Overlap ratio is a dressing parameter related to the static Fliesen dressing tool.
3.1. Functional unit and system boundary

The functional unit was defined as 3000 mm3 material removal
from a cylindrical workpiece by grinding and with no intermediary
wheel dressing. Theworkpiece is madewith nickel-chrome Inconel
751 alloy, has 150 mm of length, 28.30 mm of external diameter
(dw) and was previously machined in a turning operation.

Additionally, the surface of the groundworkpiece shall present a
Ra value lower than 1 mm as a productive performance parameter.
This Ra threshold is in accordance with finishing performance ex-
pected from grinding process (Diniz et al., 2013).

The reference flow used in this study was 3000 mm3 material
removal per grinding test (i.e., a complete machining of one
workpiece). The UPLCI methodology suggests the use of 1s of
processing time as reference flow (Kellens et al., 2012a), however,
this may not be the best choice in this case. According to Silva et al.
(2015), the use of volume of material removed as reference flow
enables a better evaluation of how the variation of grinding pa-
rameters can impact the environmental performance indicators in
an LCA study of manufacturing processes, in comparison to the use
of 1s of processing time.

The definition of the system boundary has followed the di-
rectives from the UPLCI methodology and considered the inputs
and outputs flows associated solelywith the unit process operation,
as reported by Fig. 1. In addition, the inventory data related to the
product itself (i.e., the workpiece) and its upstream and down-
stream life cycle phases were not included into this study.

3.2. Machine subunits

Based on the system boundary definition (Fig. 1) and after a
detailed study of the grinding machine operation, nine different
subunits were identified (Fig. 2):

� Primary subunit (Prim): this subunit oversees supporting op-
erations such as illumination, monitoring, machine controlling
and interface. It consists of the machine illumination system, PC,
CNC, measurement instruments and sensors;

� Hydraulic subunit (Hydr): this subunit is in charge to supply
the pressurized oil demand for the rotating bearings, the hy-
drostatic rails and the tailstock. It consists of vane pump,
reservoir, servo-driven valves and filter;

� Cooling subunit (Cool): this subunit is responsible for the
temperature control of both hydraulic and cutting fluids. It
consists of a cold-water compartment (8000 kcal/h capacity)
and three heat exchangers, two for the hydraulic system and one
for the cutting fluid pumping subunit. The activation of the
cooling subunit is intermittent and based on the reference value
for the output temperature of the cold water;

� Cutting fluid pumping subunit (CFluid): this subunit is
responsible for the pumping and further application of cutting
fluid during the grinding operation. It consists of a high-flow
vacuum pump, a filtering element and an application nozzle;
Number of
passes [-]

Disc speeda

[m/s]
Speed
ratioa [-]

Overlap
ratiob [-]

5 32 0.4 e

10 e e 4

ressing system.



Fig. 1. System boundary of the grinding unit process.

Fig. 2. Zema Numerika G 800-HS grinding machine and its subunits.
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� Exhaustion subunit (Exhaus): in charge of filtering the mist
generated during grinding, it consists of electric motor, fan and
filtering elements;

� X and Z slides subunit (Slides): this subunit oversees both X
and Z slides drives and it consists of servomotor, encoder and
recirculating ball screws;

� Grinding wheel activation subunit (GA): responsible for the
wheelhead activation, it consists of the wheelhead itself, a
variable-speed drive and a 37-kW electric motor;

� Workhead activation subunit (WHead): responsible for the
workpiece rotational movement and it consists of workhead,
servomotor and positioning encoder;
� Rotary dressing tool subunit (DTool): this subunit oversees the
electric rotary dressing system used to dress the cBN wheel. It
consists of an electric motor and a diamonded disk.

3.3. Production modes

The production modes represent the working states of the
machine and embrace both machining and non-machining modes
(e.g., standby and off modes). After identifying the main grinding
subunits and defining the set of experiments, eleven different
production modes were characterized, five non-machining modes
and six machining modes (Table 3):



Table 3
Relation among the machine production modes and subunits.

ProductionMode Subunit

Prim Hydr Cool CFluid Exhaus Slides GA WHead DTool

Off - - - - - - - - -
Start-up/Shutdown C - - - - - - - -
Standby C C 1 C B B B B -
Al2O3 dressing wheel C C 1 C C C C B -
cBN dressing wheel C C 1 C C C C B C

cBN_Q0
w0.83 C C 1 C C C C C -

cBN_Q0
w1.67 C C 1 C C C C C -

cBN_Q0
w2.5 C C 1 C C C C C -

Al2O3_Q0
w0.167 C C 1 C C C C C -

Al2O3_Q0
w0.83 C C 1 C C C C C -

Al2O3_Q0
w1.67 C C 1 C C C C C -

C Subunit activated.
B Subunit energized but not activated.
1 Subunit energized with intermittent activation;
- Subunit not energized and not activated (off).
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� Off: non-machining mode in which the machine is off (and so
are all the subunits);

� Start-up/Shutdown: this non-machining mode refers to a sit-
uation in which just the primary subunit is activated and all the
other ones are off;

� Standby: non-machiningmode inwhich themachine is ready to
operate a grinding (machining) or a dressing mode;

� Al2O3 wheel dressing: this non-machining mode is accessed
when a dressing operation with Al2O3 wheel takes place;

� cBN wheel dressing: this non-machining mode is accessed
when a dressing operation with cBN wheel takes place;

� Machining modes: the six machining modes represent the
designed experiments previously shown in Table 1.
3.4. Unit process life cycle inventory data

3.4.1. Consumption of electric energy and compressed air
The inventory data quantification for both electric energy and

compressed air inputs were performed using a web-based acqui-
sition system developed by Filleti et al. (2014), based on the
MTConnect machine tools communication protocol (Fig. 3):

� In Loco Measurement: A calibrated solid-state power trans-
ducer (Model UPD 600, from Ciber do Brasil) is used to acquire
the machine energy consumption. A RS-485/USB converter
translates the output data from the power transducer. The
compressed air input is acquired by a calibrated turbine-type air
flowmeter (model VTG, from Incontrol) installed at the com-
pressed air supply line. The analogic 4e20mA flowmeter output
is converted to a 1e5 V output by a 250 U resistive load and then
wired to an analog input card NI9205 connected to a cDAQ-9174
chassis, both from National Instruments. The outputs from both
Fig. 3. MTConnect based acquisition system s
transducer and cDAQ-9174 chassis are received by the Adapter
via USB;

� Adapter: It performs the translation of the information provided
by the measurement system into flow data and makes them
available for the Agent via TCP/IP protocol;

� Agent: This software organizes the acquired data in XML format
andmakes them available for the Client application. The version
used in this study was the MTConnect Cþþ Agent Version
1.2.0.18;

� Client: This application has been installed at the LAPRAS main
server and periodically collects the data provided by the Agent
to build the machine tool LCI database.
3.4.2. Grinding wheel consumption and grinding wheel debris
emission

The quantification of the grinding wheel consumption was
performed by the profile analysis from the wheel wear. After each
grinding operation, the wheel profile was “printed” on a SAE1010
steel plate, by grinding the plate with a very gentle plunge infeed
and abundant cutting fluid flow rate to minimize additional wheel
wear. The printed profile was further analyzed by a profilometer
(model Form Talysurf 50, from Taylor Hobson). The worn and the
preserved grinding regions were measured and compared to esti-
mate the radial reduction by wheel wear and, subsequently, the
volumetric wheel wear (Vs). This volume was used to quantify both
the grinding wheel consumption (GW) and grinding wheel debris
emissions (GWD).

From the information provided by Aurich et al. (2013) and Kirsch
et al. (2014) studies, it was also possible to estimate the embodied
energy on the construction of the two investigated wheels
(Table 4).

The embodied energy per abrasive layer for the cBN wheel was
cheme. Adapted from Filleti et al. (2014).



Table 4
Embodied energy per volume of abrasive layer for the cBN and Al2O3 wheels.

Wheel Material Manufacturing Total
[J/mm3]

Grain
[J/mm3]

Bond
[J/mm3]

Mixing & Sieving
[J/mm3]

Pressing
[J/mm3]

Drying
[J/mm3]

Firing
[J/mm3]

Final Machining
[J/mm3]

cBNa 400 � 20 � 200, vitrified bond,
5 mm layer thickness,
low carbon steel body

209.52 48.35 926.72 1184.60

Al2O3
b 500 � 32 � 203.2,

vitrified bond
21.04 3.51 0.01 0.30 0.10 19.11 0.16 44.23

a Source: Aurich et al. (2013).
b Source: Kirsch et al. (2014).

Table 5
DCF, mist and CF flows of all machining modes.

Machining
Mode

Dirty cutting
fluid emission
[g]

Mist
emission
[g]

Cutting fluid
consumption
[g]

cBN_Q0
w0.83 68.83 3.74 72.57

cBN_Q0
w1.67 34.21 1.86 36.07

cBN_Q0
w2.5 22.85 1.24 24.09

Al2O3_Q0
w0.167 342.10 18.59 360.69

Al2O3_Q0
w0.83 68.83 3.74 72.57

Al2O3_Q0
w1.67 34.21 1.86 36.07
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1184.60 J/mm3, while for the Al2O3 one was much lower, 44.23 J/
mm3 (Table 4). Yet, the higher value of embodied energy from the
cBN wheel can be compensated by its resilience against wear, as it
will be shown in Section 4.2. In fact, the trade-offs during the se-
lection process between these two grinding wheels can be only
verified by a detailed investigation, such as an LCI study.

3.4.3. Cutting fluid consumption, mist and dirty cutting fluid
emissions

The cutting fluid used was a solution constituted by 10 parts of
water and 1 part of synthetic fluid (Archem Química Ltd, 2012),
resulting in a mixture of water (94.32% by mass), monoethanol-
amine primary amine (1.20% by mass), polixetonium chloride
algaecide, polyalkylene glycol, dicarboxylic amide and boric amide.
The resulting specific mass of the mixture was 1.008 g/cm3.

The cutting fluid consumption (CF) was calculated as the sum of
dirty cutting fluid (DCF) andmist emission flows. Both DCF andmist
emission were estimated according to the ratios used by Kalla et al.
(2009) for CNC rotating machining tool. For DCF emissions, they
assume a ratio of 0.28 cm3/s, or 0.29 g/s, as the effective loss of
cutting fluid due to degradation. Regarding mist emission, Kalla
et al. (2009) assume a ratio of 0.1053 g/min of aerosol loss for a
cutting fluid application of 5700 g/min, or 0.0018% of aerosol loss
during fluid application. In the present case, the application of
cutting fluid at the grinding zone was adjusted in 50,000 cm3/min
(see Section 3) for all machining conditions, resulting in a mist loss
ratio of 0.92 cm3/min, or 0.0155 g/s.

From these ratios, it was possible to calculate the DCF, mist and
CF values for all machining modes (Table 5):

3.4.4. Remaining flows
For the remaining flows, it was assumed:

� All the compressed air consumed by the unit process was
transformed into air emission to the environment, using the
Ideal Gas Law, the specific gas constant for dry air
Rd ¼ 287.06 J K�1 kg�1 (IUPAC, 2009) and the room temperature
during the experiments, 295 K (about 21.9 �C);

� All machining modes were addressed with the same value for
workpiece swarf generation: 3000 mm3, or 24.66 g (Special
Metals, 2008), of Inconel 751;

� The heat flow was included to respect the theoretical energy
balance of the unit process. However, according to Kellens
et al.(2012a), the heat emission to the environment should be
documented just in view of allowing future allocation, for
example, as a potential heating source for production halls. This
is not the case here, so the heat flow was not accounted for this
study.
3.5. Productive performance analysis

The productive performance analysis was carried out following
two different criteria parameters: G-ratio and arithmetic average
roughness Ra from the groundworkpieces. The G-ratio is associated
with the grinding wheel lifespan (i.e., wheel wear) and produc-
tivity, and is defined as (Equation (1)):

G ¼ Vw

Vs
(1)

where:

� G ¼ G-ratio [-].
� Vw ¼ Volume of removed material from the workpiece [mm3].
� Vs ¼ Volume of wheel wear [mm3].

The Ra represents a finishing and quality surface parameter of
the ground workpiece and, as defined in Section 3.1., shall be lower
than 1 mm for all studied machining modes. The roughness mea-
surement was performed using a Taylor Hobson roughness tester,
model Surtronic 25, configured with a Gauss filter and cutoff
criteria of 0.8 mm. For each grinding step of the workpiece, three
measurements were performed, perpendicular to the grinding
marks and equally spaced at 120�.
3.6. Environmental performance analysis

The environmental performance analysis was carried out in line
with the attributional model for LCA studies. The Life Cycle Impact
Assessment phase adopted the Environmental Design of Industrial
Products 97 (EDIP 97) method for evaluating the life cycle impacts
of grinding (Wenzel et al., 1997).

According to the Joint Research Centre - JCR (2010) and Iritani
et al. (2015), the EDIP 97 is a midpoint method based on global



R.A.P. Filleti et al. / Journal of Cleaner Production 161 (2017) 510e523516
models and indicators, differently from other more updatedmodels
such as IMPACT 2002þ, EDIP 2003, and ReCiPe 2008, which are
more regionalized for European conditions.

Eleven different impact categories were selected for the study:
global warming potential (GWP), ozone layer depletion potential
(OLD), acidification potential (AP), photochemical oxidation po-
tential (POP), nutrient enrichment potential (NEP), chronic water
ecotoxicity potential (EPWC), acute water ecotoxicity potential
(EPWA), chronic soil ecotoxicity potential (EPS), human toxicity
potential via soil (HTS), human toxicity potential via water (HTW),
human toxicity potential via air (HTA).

The environmental performance of the grinding unit process
was modeled using the GaBi 6.5 software and the LCI data was
obtained by complying to the specifications provided in Section 3.4.
In addition, secondary data was also used to complement the sys-
tem boundary with background LCI data, as described below.

The electric energy consumption used the Brazilian electricity
grid mix dataset, provided by PE International (2011), in order to
include the impacts of electric energy generation and transmission
to the final user. This dataset was also utilized to model the envi-
ronmental impacts associated with the compressed air production
and the embodied energy related to Vs.

The cutting fluid consumption used the EU tapwater dataset (PE
International, 2013a) and the monoethanolamine dataset (from
GaBi Extension database XIII: ecoinvent integrated - PE
International, 2013b) to include the impacts associated with the
tap water supply chain and the surfactant production.

The remaining embodied components from the grinding wheel
and the cutting fluid consumptions were not considered in this
study due the lack of available datasets.
4. Results and discussion

4.1. Subunits and production modes mapping

The mapping of the subunits was performed by the activation of
one or more subunits at the same time, in order to identify and
isolate their requirements of power and compressed air flow.
Table 6 presents the average results for each subunit:

With regards to Table 6, it can be inferred that auxiliary subunits
such as the hydraulic, cooling (activated), cutting fluid pumping
and the exhaustion demanded higher power requirements than the
grinding wheel activation subunit performing free spinning. On the
other hand, the X and Z slides subunit and the workhead activation
subunit showed no significant power requirement when activated.

Fig. 4 illustrates this situation by means of a power profile:
From Table 6 and Fig. 4, it is possible to identify which subunits

were the major power demanding, assisting the identification of
energy improvement hotspots for the manufacturing process and
Table 6
Average power and compressed air flow requirement from each subunit.

Subunit Po

Primary subunit (Prim) 0.5
Hydraulic subunit (Hydr) 4.2
Cooling subunit (Cool) e Energized 0.4
Cooling subunit (Cool) e Activateda 3.2
Cutting fluid pumping subunit (CFluid) 4.1
X and Z slides subunit (Slides) e

Exhaustion subunit (Exhaus) 2.2
Workhead activation subunit (WHead) e

Grinding wheel activation subunit (GA)b 1.5
Rotating dressing tool subunit (DTool) 0.1

a Extra consumption from the cooling subunit caused by its intermitte
b Configuration with the Al2O3 wheel, vs ¼ 45 m/s and no machining o
for the grinding machine itself.
Fig. 4 also present some major instant power spikes. They occur

after the activation of exhaustion subunit (at moment 418 s) and
grinding wheel activation subunit (at moment 452 s) and are
triggered by the starting current from their respective electric
motors. Additionally, between the moment 37 s (activation of hy-
draulic subunit, cutting fluid pumping subunit and energization of
cooling subunit) and moment 117 s (intermittent activation of
cooling subunit), there is a minor power spike followed by a power
decrease trend. This behavior is mostly induced by the stabilization
of the hydraulic fluid pressure after the activation of hydraulic
subunit.

With regard to the compressed air supply, it is required just for
the hydraulic and rotary dressing tool subunits activation. During
its mapping, the consumption rate from the hydraulic subunit
varied from 406 cm3/s to 561 cm3/s, in accordance with its min-
max control system. The activation of the rotary dressing tool
subunit represented an additional requirement of 106.17 cm3/s
(Table 6).

The power and the compressed air flow requirements regarding
the production modes are shown in Table 7:

Regarding the power requirements, the modes with higher Q0
w

have demanded more power to operate, as expected. For an equal
value of Q0

w and different grinding wheels, the machining modes
using cBN showed power requirements 24% to 32% higher than
using the Al2O3, due the higher cutting speed (vs) used for the cBN
wheel. Similarly, the cBN wheel dressing mode also presented a
higher power demand compared to the Al2O3 one (about 14%
higher). Lastly, due to the extra requirement from the rotary dres-
sing tool subunit, the cBN wheel dressing mode demanded more
compressed air flow than the other modes. Excluding the modes
with no compressed air requirements (Start-up/Shutdown and Off
modes), the average compressed air demand from the remaining
production modes was within the range of the air min-max control
system from the hydraulic subunit (from 406 cm3/s to 561 cm3/s).
4.2. Consumption of resources

After the conclusion of the electric energy and compressed air
mapping, it was possible to estimate the consumption of each input
flow for all machining modes (Table 8):

From Table 8, Al2O3_Q0
w0.167 and cBN_Q0

w2.5 modes presented
the highest and the lowest electric energy consumptions, respec-
tively. These values seem to contradict the results from Table 7,
which showed the highest power value for cBN_Q0

w2.5 and the
lowest one for Al2O3_Q0

w0.167.
The main point for this apparent contradiction is the machining

time. Even though the power requirement for cBN_Q0
w2.5 is 54%

higher than for Al2O3_Q0
w0.167, the Q0

w value for the cBN test
wer [kW] Compressed Air Flow [cm3/s]

4 e

0 479.00
8 e

7 e

8 e

e

1 e

e

0 e

6 106.17

nt activation.
peration (free spinning).



Fig. 4. Power profile for each subunit.

Table 7
Average power and compressed air requirements of each production mode.

Production mode Power [kW] Compressed Air Flow [cm3/s]

Off 0.00 0.00
Start-up/Shutdown 0.54 0.00
Standby 9.40 479.00
Al2O3 wheel dressing 16.45 422.36
cBN wheel dressing 18.79 585.18
cBN_Q0

w0.83 21.69 452.04
cBN_Q0

w1.67 22.11 453.00
cBN_Q0

w2.5 23.23 450.33
Al2O3_Q0

w0.167 15.07 467.30
Al2O3_Q0

w0.83 16.48 476.50
Al2O3_Q0

w1.67 17.88 493.05
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condition is 15 times higher, which means a machining time 15
times lower for the same amount of removed material (i.e.,
3000 mm3). The effect from this lesser machining time over-
whelmingly surpasses the higher power requirement for
cBN_Q0

w2.5 and reduces its electric energy consumption by about
10 times in comparison with the consumption of Al2O3_Q0

w0.167.
For grinding conditions with different wheels and equal values of
Q0

w (equal machining times), both electric energy consumption and
power requirements were, respectively, 24 and 32% higher for the
cBN wheel, due to the higher value of vs.

Machining time also regulated the consumption of compressed
air and cutting fluid, as the machining modes with highest Q0

w
(lowest machining times) presented the lowest consumptions for
compressed air and cutting fluid.
Table 8
Consumption of resources for each machining mode.

Machining Mode Electric Energy [kJ] Compressed Air [kg] Whee

cBN_Q0
w0.83 5682.92 0.98 32.68

cBN_Q0
w1.67 2904.73 0.49 36.10

cBN_Q0
w2.5 2037.08 0.33 41.00

Al2O3_Q0
w0.167 20,039.62 5.13 867.3

Al2O3_Q0
w0.83 4274.50 1.02 1252.

Al2O3_Q0
w1.67 2333.04 0.53 1784.
Finally, for each machining mode, the embodied energy from
wheel wear was calculated multiplying the embodied energy per
volume of abrasive layer (see Table 4) by the respective wheel wear
volumes (Table 8). It is worth mentioning here that the final
embodied energy values represented about 1e3% of the electric
energy consumption and did not substantially affect the environ-
mental performance, as it will be shown in Section 4.4.
4.3. Productive performance results

Fig. 5 presents the G-ratio results for the studied grinding
modes. Since the volume of removed material from the workpiece
(Vw) was 3000 mm3 for all the machining modes, the G-ratio re-
sults were only influenced by the volume of wheel wear (Vs) of each
mode. For both wheels, a higher value of Q0

w will result in greater
wheel wear and lower G-ratio, due to an increased toughness of the
grinding operation.

Regarding the different abrasive type, the modes using cBN
wheel showed the best G-ratio results, about 35e45 times higher
than the ones using Al2O3 wheel with same Q0

w value. This better
performance from cBN was influenced by some key factors. The
first factor was structural, the cBN wheel has greater bond and
grains hardness if compared with the Al2O3 one. cBN higher
hardness makes it more suitable for difficult-to-machine nickel-
base alloys, such as Inconel 751 (Choudhury and El-Baradie, 1998).
Secondly, the higher vs used for the cBN wheel contributed to
decrease the forces coming on the grit, which reduces wheel wear
(Juneja et al., 2003).
l Wear [mm3] Wheel Wear Embodied Energy [kJ] Cutting Fluid [g]

38.72 72.57
42.76 36.07
48.57 24.09

0 38.36 360.69
23 55.39 72.57
81 78.94 36.07



Fig. 5. G-ratio results varying the wheel type and the Q0
w.
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The better productive performance of the cBN wheel could be
also observed by the average roughness Ra results. Fig. 6 details the
Ra results for all the tested conditions, measured after 1000 mm3,
2000 mm3 and 3000 mm3 of removed material. cBN wheel pre-
sented the best Ra results and higher stability over the time. The
tested cBN wheel has an initial advantage over the Al2O3 one, as it
consists of fine grains FEPA-B126, with average size of 142 mm,
which provides better finishing results compared with the Al2O3
wheel (composed by medium-size US Grit-46 grains, with average
size of 508 mm). Still, both wheels were dressed before each
grinding operation in order to achieve roughness Ra values lower
than 1 mm. For the first 1000 mm3 and 2000 mm3 of material
removal, the Ra results were below the 1 mm threshold for all
grinding conditions.

Al2O3_Q0
w0.167 was the only Al2O3 mode which obtained Ra

results satisfactorily below the limit of 1 mm after removing
3000 mm3 of material. Al2O3_Q0

w1.67 exceeded this threshold and
Al2O3_Q0

w0.83 was just 2% below it.
In conclusion, the machining modes using cBN wheel presented

the best results for all productive performance indicators, with Ra
results much lower than the 1 mm threshold and G-ratio results
exceeding by substantially more than one order of magnitude the
Fig. 6. Roughness Ra results fo
results from the modes using Al2O3 wheel.

4.4. Environmental performance results

Table 9 and Fig. 7 present, respectively, the results of the abso-
lute and the normalized environmental impacts for all machining
modes.

Among the selected impact categories, HTA, GWP and HTS
showed the higher normalized results. For all machining modes,
mist generation represented the totality of HTA impact results,
while GWP and HTS results were most affected by electric energy
consumption, which accounted from 95.75% to 98.72% of GWP re-
sults and from 95.37% to 98.26% of HTS results (Fig. 8).

Electric energy consumption was also the most impactful flow
for the remaining categories: OLD (from 95.70% to 98.66%), AP
(from 95.59 to 98.51%), POP (from 95.48% to 98.37%), NEP (from
95.19% to 98.02%), EPWC (82.93%e86.98%), EPWA (79.63%e84.11%),
EPS (from 95.66% to 98.62%) and HTW (93.20%e96.15%), depending
on the chosen machining mode (Fig. 8).

Dirty cutting fluid emission had a significant participation in
EPWC (from 10.62% to 15.68%) and EPWA (from 13.33% to 19.37%)
results. The other flows together (i.e., grinding wheel debris
emissions and compressed air consumption) contributed little with
the impact results, from 0% to 4.22% of the total impact, depending
on the category and machining mode.

Table 10 summarizes the most important flows for each impact
category:

4.5. Discussion

Based on the results, it was possible to verify that higher values
of Q0

w leads to lower impact results in all environmental impact
categories. As previously discussed in Section 4.2, the increase of
Q0

w represents the decrease of machining time and, consequently,
the decrease of both electric energy and cutting fluid consumption.
When both wheels are compared with the same Q0

w, there is a
slight advantage for the Al2O3 wheel due to the lower energy
requirement to turn the wheel with 45 m/s instead of the 80 m/s
adopted by the cBN wheel.

Electric energy consumption was the most impactful flow for
r each machining mode.



Table 9
Environmental impact results from all machining modes, in absolute values.

ImpactCategory Machining Mode

cBN Al₂O₃

Q0
w0.83 Q0

w1.67 Q0
w2.5 Q0

w0.167 Q0
w0.83 Q0

w1.67

GWP [g CO₂-Eq.] 1230 634 450 4315 930 518
OLD [g R₁₁-Eq.] 2.53E-05 1.30E-05 9.27E-06 8.90E-05 1.92E-05 1.07E-05
AP [g SO₂-Eq.] 2.46 1.27 0.90 8.66 1.87 1.04
POP [g Ethene-Eq.] 0.05 0.02 0.02 0.17 0.04 0.02
NEP [g NO₃-Eq.] 0.89 0.46 0.33 3.13 0.67 0.38
EPWC [m3 water] 3.39 1.75 1.23 12.49 2.67 1.46
EPWA [m3 water] 0.31 0.16 0.11 1.17 0.25 0.14
EPS [m3 soil] 0.28 0.15 0.10 1.00 0.22 0.12
HTS [m3 soil] 1.01E-02 5.21E-03 3.70E-03 3.55E-02 7.66E-03 4.26E-03
HTW [m3 water] 0.21 0.11 0.08 0.75 0.16 0.09
HTA [m3 air] 1.18Eþ09 5.88Eþ08 3.93Eþ08 5.88Eþ09 1.18Eþ09 5.88Eþ08

Fig. 7. Environmental impact results normalized per person equivalent (EU 1994).
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most of the studied environmental impact categories (Table 10).
Efficiency improvements on high power demanding subunits, such
as the hydraulic, cutting fluid pumping and exhaustion, may
considerably reduce the environmental impacts from grinding. In
some cases, they account from 45% to 70% of the total electric en-
ergy consumption depending on the grinding conditions.

The environmental impacts from electric energy consumption
are also tightly related to the energy sources and grid system.
Electricity mixes based on high-carbon intensive energy sources
(e.g., coal and oil) present very distinct environmental results from
the ones based on low-carbon intensive energy sources (e.g., hy-
dropower, nuclear, solar and wind). Thus, the change from the low-
carbon intensive electricity mix used in this study, the Brazilian
electricity grid mix dataset (PE International, 2011), to a more
carbon-intensive one would represent a great variation in the
impact results, especially for GWP, AP, NEP and POP (European
Environment Agency, 1998).

Regarding the consumption of cutting fluid, ways of reducing its
mist and dirty cutting fluid (DCF) emissions should be pursued to
decrease its environmental impacts. In this sense, techniques such



Fig. 8. Potential impacts from each machining mode, separated by relevant flow.
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as minimal quantity lubrication (MQL) and dry machining could
represent great improvement opportunities (Aurich et al., 2013;
Hadad, 2015; Oliveira et al., 2015). Additionally, the use of
vegetable-based cutting fluid would also contribute to decrease
cutting fluid environmental impacts, as they are produced from
renewable sources, possess high biodegradability and are less toxic
(Kuram et al., 2013; Lawal et al., 2014; Somashekaraiah et al., 2016).

The present study faced some data limitations, especially the
lack of data about cutting fluid components. As an example of how
these limitationsmay interfere the environmental analysis, a lack of
LCI data from monoethanolamine (which embodies 1.20% of the
cutting fluid mass) would represent a drastic reduction (over
83.38%) on all impacts related to the DCF emissions (Fig. 9).

Therefore, the availability and inclusion of the missing LCI data
from the other cutting fluid components could represent a signif-
icant change on most of the impact categories.

With regard to the productive performance, cBN wheel pre-
sented the best results for both G-ratio and Ra parameters. As



Table 10
Environmental hotspots for each impact category.

Impact category Abbreviation Most impactful flows (Hotspots)

Global warming potential GWP Electric energy consumption
Ozone layer depletion potential OLD Electric energy consumption
Acidification potential AP Electric energy consumption
Photochemical oxidation potential POP Electric energy consumption
Nutrient enrichment potential NEP Electric energy consumption
Chronic water ecotoxicity potential EPWC Electric energy consumption & Dirty cutting fluid emission
Acute water ecotoxicity potential EPWA Electric energy consumption & Dirty cutting fluid emission
Chronic soil ecotoxicity potential EPS Electric energy consumption
Human toxicity potential via soil HTS Electric energy consumption
Human toxicity potential via water HTW Electric energy consumption
Human toxicity potential via air HTA Mist emission

Fig. 9. Potential impacts from DCF emission, separated by component.
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previously discussed in Section 4.3, this dominance of cBN wheel is
mainly due its structure characteristics. Compared with Al2O3
wheel, cBN wheel has greater bond and grains hardness, which
avoid wheel wear and provide higher G-ratio results. Additionally,
cBN wheel consists of finer grains (grain average size 142 mm)
compared to Al2O3 wheel (grain average size 508 mm), which pro-
vides better Ra results.

For both wheels, higher values of Q0
w represented higher wheel

wear and, consequently, a lower G-ratios. Increasing Q0
w also affects

Ra results for Al2O3 wheel, but has no significant effect for cBN
wheel.

In conclusion, higher values of Q0
w represented better environ-

mental results and worse G-ratio results for all tested wheels. They
also represented worse Ra results for Al2O3 wheel. For equal values
of Q0

w, cBNwheel presented better G-ratio and Ra results andworse
environmental results compared with Al2O3 wheel. However,
Al2O3_Q0

w1.67 and Al2O3_Q0
w0.83 exceeded or became too close to

the Ra ¼ 1 mm threshold. Thus, the combination of cBN wheel with
high values of Q0

w proved to be the best option to improve both the
productive and the environmental results.
5. Conclusions and outlooks

The present paper contributes with the assessment of grinding
sustainability thru a detailed study of the machine subunits and
production modes, along with the development of a combined LCA
hybrid model and real-time monitoring system to evaluate the
consumption of energy, tooling, cutting fluid and compressed air.
Besides, a detailed life cycle impact assessment study using eleven
different impact categories was performed, in parallel with a pro-
ductive performance assessment study, to evaluate the variation of
wheel type and Q0

w.
The application of the UPLCI methodology played a lead role on

the characterization of the grinding unit process and served as a
basic framework for this study. MTConnect protocol provided the
directives for managing the data from the web-based acquisition
system, contributing for the organization and availability of the LCI
stratified data from the grinding unit process.

Based on the results, auxiliary subunits such as hydraulic,
cooling (activated), cutting fluid pumping and the exhaustion
demanded significant power requirements (from 45% to 70%) of the
total cradle-to-gate electric energy consumption. Thus, energy ef-
ficiency suggestions would enhance considerably the grinding
process environmental performance.

For all machining modes, cBN wheel presented the best pro-
ductive performance results e G-ratio and roughness Ra indicators.
About the machining modes using Al2O3 wheel, only
Al2O3_Q0

w0.167 has reasonably matched the productive perfor-
mance criteria Ra < 1 mm. Still, compared with the other machining
modes, Al2O3_Q0

w0.167 had the worst results in all environmental
impact categories, due its substantial higher consumption of elec-
tric energy and cutting fluid.

Electric energy consumption is themajor hotspot for most of the
studied environmental impact categories. Hence, the selection of
higher values of Q0

w plays an important role in a life cycle
perspective. Although the power demand increases with higher
values of Q0

w, the corresponding reduction in machining time
overwhelmingly surpasses the extra power requirement effect,
resulting in less overall electric energy consumption.

Cutting fluid consumption is also a relevant environmental
hotspot. Aside from the reduced cutting fluid consumption by
means of the selection of higher values of Q0

w, the use of vegetable-
based cutting fluids and techniques such asMQL and drymachining
represent promising opportunities to reduce the environmental
impacts associated to this flow.

Finally, the selection of high values of Q0
w with cBN wheel

presented the best combination to improve both the productive
and the environmental results. Nevertheless, the present work face
challenges to gather accurate LCI data for the cutting fluid con-
sumption and the composition of grinding wheel and cutting fluid.
The availability of this type of data would considerable enhance the
level of detail and precision of the environmental analysis, allowing
the achievement of a more accurate analysis in the future.
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Appendix A. List of abbreviations

Al2O3 Conventional vitrified corundum
Al2O3_Q0

w0.167 Tested condition using a Al2O3 wheel and
Q0

w ¼ 0.167 mm3/mm$s
Al2O3_Q0

w0.83 Tested condition using a Al2O3 wheel and
Q0

w ¼ 0.83 mm3/mm$s
Al2O3_Q0

w1.67 Tested condition using a Al2O3 wheel and
Q0

w ¼ 1.67 mm3/mm$s
AP [kg SO₂-Equiv.] Acidification potential
CA [kg] Compressed air input
CF [g] Cutting fluid input
CFluid Cutting fluid pumping subunit
Cool Cooling subunit
DCF [g] Dirty cutting fluid emission
DTool Rotary dressing tool subunit
EDIP 97 Environmental Design of Industrial Products 97
ELECT [kJ] Electric energy input
EPS [m3 soil] Chronic soil ecotoxicity potential
EPWA [m3 water] Acute water ecotoxicity potential
EPWC [m3 water] Chronic water ecotoxicity potential
Exhaus Exhaustion subunit
G [-] G-ratio
GA Grinding wheel activation subunit
GW [mm3] Grinding wheel input
GWD [mm3] Grinding wheel debris emission
GWP [kg CO2-Equiv.] Global warming potential
HTA [m3 air] Human toxicity potential via air
HTS [m3 soil] Human toxicity potential via soil
HTW [m3 water] Human toxicity potential via water
Hydr Hydraulic subunit
LCA Life Cycle Assessment
LCI Life Cycle Inventory
MIST [g] Mist emission
NEP [kg NO3-Equiv.] Nutrient enrichment potential
OLD [kg R11-Equiv.] Ozone layer depletion potential
POP [kg Ethene-Equiv.] Photochemical oxidation potential
Prim Primary subunit
Q0

w [mm3/mm$s] Specific material removal rate
Ra [mm] Arithmetic average roughness
Rd [J$Kˉ1$kgˉ1] Specific gas constant for dry air
Slides X and Z slides subunit
UPLCI Unit Process Life Cycle Inventory
Vw [mm3] Volume of removed material from the workpiece
Vs [mm3] Volume of wheel wear
WHead Workhead activation subunit
bw [mm] Grinding width
cBN Cubic boron nitride
cBN_Q0

w0.83 Tested condition using a cBN wheel and
Q0

w ¼ 0.83 mm3/mm$s
cBN_Q0

w1.67 Tested condition using a cBN wheel and
Q0

w ¼ 1.67 mm3/mm$s
cBN_Q0

w2.5 Tested condition using a cBN wheel and
Q0

w ¼ 2.5 mm3/mm$s
ds [mm] Wheel external diameter
dw [mm] Workpiece external diameter
nw [rpm] Workpiece rotation
vs [m/s] Cutting speed
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jclepro.2017.05.158.
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