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Abstract

Scoring rules give rise to methods for statistical inference and are useful tools to

achieve robustness or reduce computations. Scoring rule inference is generally per-

formed through first-order approximations to the distribution of the scoring rule es-

timator or of the ratio-type statistic. In order to improve the accuracy of first-order

methods even in simple models, we propose bootstrap adjustments of signed scoring

rule root statistics for a scalar parameter of interest in presence of nuisance parameters.

The method relies on the parametric bootstrap approach that avoids onerous calcula-

tions specific of analytical adjustments. Numerical examples illustrate the accuracy of

the proposed method.

Keywords: Asymptotic expansions; Higher-order inference; Parametric Bootstrap; Re-
gression models; Robustness; Tsallis scoring rule.

1 Introduction

A proper scoring rule S(x;Q) provides a way of judging the quality of a quoted probability
distribution Q for a random variable X in the light of its outcome x and gives a measure
of how good specific probabilities are. The mathematical theory of proper scoring rules has
a wide range of applications in Statistics; a review of the general theory, with applications,
has been given recently in Dawid and Musio (2014).
Since every statistical decision problem induces a proper scoring rule, there is a very wide
variety of these; see Dawid and Musio (2014). The most famous is the logarithmic score,
which is highly connected with likelihood inference. Proper scoring rules, different from the
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logarithmic score, can be used as an alternative to the full likelihood, when the interest is in
increasing robustness or simplifying computations. Examples of particular interest include
the Tsallis score that in general gives robust procedures (see Dawid et al. (2016)) and the
Hyvärinen score that satisfies the property of homogeneity, which implies that the quoted
distribution need only to be known up to the normalisation constant (see Parry et al. (2012),
Ehm and Gneiting (2012)).
In a parametric setting, proper scoring rules induce natural unbiased estimating equations
and they form a special case of M-estimation. We can then apply the general theory for
M-estimators to proper scoring rules. Scoring rule inference is generally performed through
first-order approximations to the distribution of the scoring rule estimator or of the scoring
rule ratio statistic. However, there are various examples (see e.g. Dawid et al. (2016), Mameli
and Ventura (2015), and references therein) which illustrate the inaccuracy of these methods,
even in models with a scalar parameter, for small or moderate sample sizes.

Many attempts have been made to improve first-order approximations in the likelihood
framework; see, e.g., Brazzale et al. (2007), Brazzale and Davison (2008), Young (2009),
and references therein. There are two routes to obtain higher-order accuracy in parametric
inference: analytic methods and parametric bootstrap.

Analytical higher-order asymptotic expansions for proper scoring rules, which encompass
the classical results for likelihood quantities while allowing for the failing of the information
identity, have been recently discussed in Mameli and Ventura (2015). However, the analyt-
ical adjustments of the signed scoring rule root statistic (or its profile version) require the
evaluation of some quantities which are rather complex as the dimension of the parameter (or
of the nuisance parameter) increases, even for simple models. To avoid onerous calculations
specific of analytical procedures, we discuss bootstrap adjustments of signed scoring rule
root statistics for a scalar parameter of interest in the presence of nuisance parameters. The
method relies on parametric bootstrap procedures, paralleling results for likelihood statistics
(see, e.g., Young (2009)). The use of parametric bootstrap has been discussed by Di Ciccio
et al. (2001) for the signed roots of likelihood ratios, and has also been proposed by Aerts
and Claeskens (1999) to approximate the distribution of general pseudo-log likelihood ratios.
The proposed adjustment is also related to the formulation of pre-pivoting introduced by
Beran (1987), Beran (1988) and refined by Lee and Young (2003).

The paper unfolds as follows. Section 2 gives a background on scoring rules, from first-
order inference to higher-order analytical adjustments. The bootstrap adjustment is illus-
trated in Section 3. Section 4 discusses numerical examples in the context of regression
models in order to illustrate the accuracy of the proposed method. Concluding remarks
close the paper.

2 Background

Let X be a random variable with values in X , and let P be a family of distributions over
X . Suppose a forecaster expresses the uncertainty about X by quoting a distribution Q for
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it. A scoring rule S(x;Q) is a special kind of loss function intended to measure the quality
of the quoted distribution when an outcome x of X actually occurs. A scoring rule is said to
be proper if, for any distribution P for X, the expected score S(P,Q) := EX∼PS(X;Q) is
minimised by quoting Q = P , and strictly proper if the minimum is unique. In other words,
the forecaster must be honest. Every statistical decision problem induces a proper scoring
rule, so there is a wide variety of these. Here, we present three cases of special interest. For
further special cases see among others (Dawid (2007), Dawid and Sebastaini (1999), Gneiting
and Raftery (2007)).
Let p(·) be the density (Radon-Nikodym derivative) dP/dµ with respect to an underlying
measure µ dominating P .
The log-score or logarithmic score, proposed by Good (1952), is given by

S(x;Q) = − ln q(x), (1)

where q(·) denotes the density of Q. The log-score is the only proper scoring rule that is
local, i.e. it depends on the density function q(x) only through its value at x (see Bernardo
(1979)).
The Tsallis score (see Tsallis (1988), Basu et al. (1998)) is given by

S(x;Q) = (γ − 1)

∫
dµ(y) · q(y)γ − γq(x)γ−1 (γ > 1). (2)

The Tsallis score gives in general robust procedures; see Basu et al. (1998) and Dawid et al.
(2016).
Let X be a variable taking values in X = IRk. The Hyvärinen score (Hyvärinen (2005),
Almeida and Gidas (1993)) is defined by

S(x;Q) = ∆ ln q(x) +
1

2
|∇ ln q(x)|2 = ∆

√
q(x)√
q(x)

, (3)

where ∇ and ∆ are the gradient and the Laplacian operator on X , respectively, and |u|2 =
〈u,u〉, where 〈u,v〉 denotes the inner product between vectors u and v.
The Hyvärinen score depends on the predictive density only through its value, and the values
of its first and second derivatives at the observation x. Furthermore, the Hyvärinen score is
homogeneous, it is unchanged if q(·) is scaled by a positive constant. In particular, S(x;Q)
can be computed without knowledge of the normalising constant of the distribution Q. Parry
et al. (2012) discussed a general characterization of the local scoring rules of all orders.

2.1 First-order inference

Suppose we wish to fit a parametric statistical model Fθ = F (x; θ), indexed by a k-
dimensional parameter θ ∈ Θ ⊆ IRk (k ≥ 1), based on the random sample (x1, . . . , xn) of
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size n. Given a proper scoring rule, in the following of the paper we will implicitly identify
S(x;Fθ) with S(x; θ).

For inference on θ, we might assess the goodness-of-fit by the total empirical score S(θ) =∑n
i=1 S(xi; θ). The scoring rule estimator θ̂S is the value of θ which minimizes S(θ), i.e.

θ̂S = argminθ S(θ).
Asymptotic arguments indicate that θ̂S → θ0 as n → ∞, where θ0 is the true parameter
value. Maximum likelihood estimation, as well as composite likelihood estimation (Varin et
al. (2011)), are special cases of score estimation when S(θ) is the negative log-likelihood
(Dawid and Musio (2014)).

Scoring rule estimation forms a special case of M -estimation (see, e.g., Huber and
Ronchetti (2009)). Let sθ(x; θ) = ∂S(x; θ)/∂θ. Under suitable regularity conditions on
the scoring rule and on the statistical model, θ̂S is the solution of the scoring rule estimating
equation

sθ(θ) =
n∑

i=1

sθ(xi; θ) = 0 . (4)

It can be shown that the scoring rule estimating function sθ(θ) is an unbiased estimating
function for any proper scoring rule (see Dawid and Lauritzen (2005), Dawid and Musio
(2014), and Dawid et al. (2016)). For instance, when S(x; θ) is the logarithmic score in (1),
the total empirical score is S(θ) = −

∑n
i=1 log q(xi; θ), the scoring rule estimating equation

is the likelihood equation sθ(θ) =
∑n

i=1(∂ log q(xi; θ))/(∂θ), and the scoring rule estimator

θ̂S reduces to the maximum likelihood estimator (MLE). The scoring rule estimator θ̂S is
consistent and asymptotically normal with mean θ and variance

V (θ) = K(θ)−1J(θ)(K(θ)−1)T ,

with J(θ) = Eθ(sθ(θ)sθ(θ)
T ) and K(θ) = Eθ(∂sθ(θ)/∂θ

T ). The matrix G(θ) = V (θ)−1 is
known as the Godambe information matrix (Godambe (1960)).

The general theory of M -estimators could be also used to derive the influence function
(IF) of the estimator θ̂S, which is defined as

IF (x; θ, s) = K(θ)−1sθ(x; θ) ,

which assess the effect of an infinitesimal contamination at x on the estimator θ̂S. The
estimator θ̂S will be B-robust if and only if sθ(x; θ) is bounded in x, for each θ. Sufficient
conditions for the robustness of the Tsallis score are discussed in Dawid et al. (2016).

Asymptotic inference on the parameter vector θ, in particular concerning the construction
of asymptotic hypothesis tests and confidence regions, can be found in Dawid et al. (2016).
Here, we focus on the case in which θ is a parameter vector partitioned as θ = (ψ, λ), where ψ
is a k0-dimensional parameter of interest and λ is a (k−k0)-dimensional nuisance parameter.
In this case, in analogy with the full parameter case (see Dawid et al. (2016)), we can define
the profile scoring rule ratio statistic for ψ as

W S
p (ψ) = 2

(
S(θ̂S)− S(θ̂Sψ)

)
L→

k0∑

j=1

νjZ
2
j , (5)
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where θ̂Sψ is the constrained scoring rule estimate, ν1, . . . , νk0 are the eigenvalues of the
matrix (Kψψ)−1Gψψ, with Kψψ and Gψψ sub-matrices of the inverses of G(θ) and K(θ)
with respect to ψ, respectively. The variables Zj for j = 1, · · · , k0 are independent normal
variables. It should be noted that the asymptotic null distribution of (5) depends both on
the statistical model and on the parameter of interest, therefore adjustments of the profile
scoring rule ratio statistic have received consideration; see Dawid et al. (2016). In particular,
when ψ is scalar, an adjustment of W S

p (ψ) is given by (see Dawid et al. (2016))

W S
p (ψ)adj =

Kψψ(θ̂Sψ)

Gψψ(θ̂Sψ)
W S
p (ψ) .

In a similar fashion, a simple adjustment of the profile signed scoring rule root statistic

rSp (ψ) = sgn(ψ̂S − ψ)
√
W S
p (ψ) ,

which can be shown to be asymptotically normal distributed, is given by

rSp adj(ψ) = µp(ψ)
−1/2rSp (ψ) ,

with
µp(ψ) = [Gψψ(θ̂Sψ)

−1
Kψψ(θ̂Sψ)]

−1 . (6)

2.2 Higher-order inference

Several examples (see e.g. Dawid et al. (2016), Mameli and Ventura (2015), and references
therein) illustrate the inaccuracy of first-order methods in the scoring rule framework, even
in models with a scalar parameter, when the sample size is small or moderate. The key
to unlocking the limiting behaviour of scoring rules quantities is higher-order asymptotic
expansions (see Mameli and Ventura (2015)), generalizing results for likelihood quantities but
allowing for the failure of the information identity, i.e., to be more explicit whenK(θ) 6= J(θ).

Asymptotic expansions are useful for deriving approximate distribution functions for
appropriate pivots, such as the profile signed scoring rule root statistic. In particular, when
ψ is scalar, using the asymptotic expansions of the mean and the variance of rSp (ψ), it is
possible to define the modified profile signed scoring rule root statistic

rSMp(ψ) =
rSp (ψ)−mp(ψ)√
µp(ψ) + vp(ψ)

, (7)

where mp(ψ) is of order O(n−1/2) and vp(ψ) is of order O(n−1), and µp(ψ) is given in (6).
The analytical expressions of the mean and variance corrections are derived in Mameli and
Ventura (2015) and they involve several expected values of scoring rules derivatives. The
mean and the variance corrections in (7) can improve the accuracy of the asymptotic normal
approximation to the distribution of rSMp(ψ) (see Di Ciccio et al. (2001), Lee and Young
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(2003), Stern (2006), and Mameli and Ventura (2015)). In particular, if third- and higher-
order cumulants of rSMp(ψ) are of order O(n−3/2) or smaller, then the distribution of the
modified profile signed scoring rule root statistic rSMp(ψ) follows asymptotically a normal

distribution with error O(n−3/2). This happens in models with all higher cumulants zero
and for the logarithmic score. In general if such conditions are not fulfilled, rSMp(ψ) is
asymptotically normal distributed with error O(n−1).

3 Bootstrap methods for signed scoring rule root statis-

tics

Asymptotic formulae of the mean and variance corrections are complex expressions which
involve expectations of higher-order scoring rules derivatives, whose computation may be
cumbersome even in simple models. These expressions can be easily calculated through
Monte Carlo simulation from the model. The objective of this paper is the investigation
of a parametric bootstrap approach for computing adjustments of the scoring rules signed
root statistic. The sample null distribution of rSp (ψ) depend on the unknown parameter,
therefore it is a non-pivotal statistic. The approximation of the distributions of rSMp(ψ) can
be derived by resorting to the parametric bootstrap approach based on pre-pivoting, where,
with pre-pivoting, we mean the estimation of a relevant sampling distribution through con-
strained parametric bootstrapping. This technique can be used for reducing both the error
level of tests and the coverage error of confidence regions (Beran (1987, 1988)). This ap-
proach has the advantage of being easily implemented. Additionally, all the computations
can be performed by Monte Carlo simulation. It only requires to simulate from the assumed
model, as in the Approximate Bayesian Computation framework (Marin et al. (2012)) or in
the composite likelihood approach (Cattelan and Sartori (2016)).
Consider the parametric family Fθ where θ = (ψ, λ). Under fairly general assumptions,
Gatto and Ronchetti (1996) derived a saddlepoint approximation for the sample distribu-
tion of j(T (F̂n))− j(T (Fθ0)), where j(·) is a real valued function, T is a statistical functional
and F̂n represents the empirical distribution function.
Assuming that j(·) = 2S(·) and θ̂S = T (F̂n), we have that W S

p (ψ) = j(θ̂S) − j(θ̂Sψ). More-

over, suppose that the first four cumulants of j(θ̂S) are available and that θ̂S can be expanded
up to the second order term, then an approximation of the distribution function G ofW S

p (ψ)
is given by

G (y;ψ) = Φ(r) + φ(r)

(
1

r
− 1

q

)
+O(n−1), (8)

where q = α
(
R̃′′

n(α)
)1/2

, r = sgn(α)
(
2n(αy − R̃n(α))

)
, with α the saddlepoint defined

by R̃′

n(α) = y and R̃n(α) is an approximate cumulant generating function for the unbiased
estimating function sθ (see Gatto and Ronchetti (1996); La Vecchia (2016)). Then it is easy
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to show that an approximation of the distribution function H of rSMp(ψ) is

H (y;ψ) = Φ(r) + φ(r)

(
1

r
− 1

q

)
+O(n−1), (9)

with q = α
(
R̃′′

n(α)
)1/2

, r = sgn(α)
[
2n

(
αt(y;ψ)2 − R̃n(α)

)]
, with α the saddlepoint

defined by R̃′

n(α) = t(y;ψ)2. Moreover, t(y;ψ) = y
√
ṽp(ψ) + mp(ψ) where mp(ψ) and

ṽp(ψ) = µp(ψ) + vp(ψ) represent the mean and the variance corrections. In analogy, the
bootstrap counterpart of (9) is

H∗ (y;ψ) = Φ(r∗) + φ(r∗)

(
1

r∗
− 1

q∗

)
+O(n−1), (10)

with q∗ and r∗ indicating the bootstrap versions of q and r, respectively. Moreover, the

saddlepoint α is defined by R̃∗
′

n(α) = t∗(y;ψ)2 with t∗(y;ψ) = y
√
ṽb(ψ) + mb(ψ) where

mb(ψ) and ṽb(ψ) indicate the bootstrap constrained mean and the variance corrections.
Note also that R̃∗

n(α) is the bootstrap version of R̃n(α). The difference H (y;ψ)−H∗ (y;ψ)
is Op(n

−1), then we will obtain inferences which are second order accurate.
The main steps of the constrained parametric bootstrap approach can be summarized as

follows:

Step 0–Preliminaries: Let x = (x1, . . . , xn) be the original sample and let ψ0 a fixed
value for ψ. Evaluate the constrained scoring rule estimate θ̂Sψ0 = (ψ0, λ̂Sψ0).

Step 1–Outer level: For b = 1, . . . , B, sample with replacement n elements from F (x; θ̂Sψ0)
obtaining the b-th new sample xb. Using xb, compute the b-th bootstrap version of rSp (ψ0),
given by rSbp (ψ0), and store it.

Step 2–Inner level: Compute the bootstrap mean and variance

mb(ψ0) =
1

B

B∑

i=1

rSbp (ψ0)

and

vb(ψ0) =
1

B

B∑

i=1

(rSbp (ψ0)−mb(ψ0))
2 .

Step 3–Final step: Adjust rSp (ψ0) using the bootstrap mean and variance, i.e.

rSbMp(ψ0) =
rSp (ψ0)−mb(ψ0)√

vb(ψ0)
.

In parametric bootstrap with nuisance parameter, the B samples could alternatively be
drawn from a distribution F (x; θ̃), where θ̃ = (ψ̃, λ̃) is a suitable estimate of θ. Resulting
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accuracy depends on the choice of θ̃, provided B is large enough. In the classical likelihood
approach, results in Di Ciccio et al. (2001) and Stern (2006) show that if θ̃ is a

√
n-consistent

estimator of θ, then the parametric bootstrap provides a O(n−1) order of accuracy, while the
special choice θ̂Sψ provides an additional order of accuracy, i.e. O(n−3/2) order of accuracy.
The resulting approximation is called constrained pre-pivoting of the signed likelihood root
statistic (see Di Ciccio et al. (2001)). Other natural choices, such as θ̃ = (ψ, λ̃) or θ̃ = θ̂S are
then second-order accurate. For general scoring rules, the bootstrap does not improve on the
asymptotic approximation of rSMp(ψ), and thus the normal approximation of the distribution
of rSbMp(ψ) has an error up to the second order, i.e. to order O(n−1). An exception could occur

when third- and higher-order cumulants of rSM(ψ) are of order O(n−3/2) or smaller. In this
case, the parametric bootstrap could provide a O(n−3/2) order of accuracy, this happens for
the logarithmic score (see Di Ciccio et al. (2001), Mameli and Ventura (2015)). The accuracy
of the proposed method is clearly dependent on the number B of bootstrap simulations used.
As in Di Ciccio et al. (2001), we note that means and variances require fewer simulations
for precise estimation than do, for instance, tail probabilities. In particular, if confidence
intervals are to be used, then it is advisable to have a small B, whereas in simulation based
test at least B = 999 should generally be safe (see Davison and Hinkley (1997), Sections
4.2.5 and 5.2.3).

4 Simulation studies

In this section we provide simulation results to assess coverage levels of confidence in-
tervals for a scalar parameter of interest ψ in presence of nuisance parameters based on the
bootstrap modified profile signed scoring rule root statistic rSbMp(ψ), both when the model
is correctly specified and under model contamination. In particular, Example 4.1 focuses
on the linear regression model while Example 4.2 treats the non-linear regression model.
For Example 4.1 the stability of the coverage levels under model contamination is assessed
by considering a contamination model of the form Qǫ = (1 − ǫ)Qθ + ǫP , where P denotes
the contaminating distribution, and ǫ is the contamination percentage. The contamination
percentage ǫ is set at 10%. In order to show the instability of the classical likelihood proce-
dures, in Example 4.2 we consider a sensitivity analysis. The parameter γ of the Tsallis score
has been fixed in order to achieve approximately 90% or 95% efficiency under the assumed
model (see Basu et al. (1998); (Huber and Ronchetti, 2009, Chapter 6), Mameli and Ventura
(2015)).

4.1 Linear regression model

Let us consider a linear regression model as in Mameli and Ventura (2015) of the form

y = Xβ + σε,

where X is a n × p fixed matrix of explanatory variables, β ∈ IRp (p ≥ 1) an unknown
regression coefficient, σ > 0 a scale parameter, and ε an n-dimensional vector of random
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errors from a standard normal distribution N(0, 1). Let θ = (β, σ). The Hyvärinen total
empirical score is

SH(θ) =
2n

σ2
− 1

σ4

n∑

i=1

(yi − xTi β)
2,

where xTi is the i-th row of X, i = 1, . . . , n.
The Tsallis total empirical score is (see Mameli and Ventura (2015), and reference therein)

ST (θ) =
γ

(2πσ2)
γ−1
2

n∑

i=1

e−
(γ−1)

2σ2 (yi−x
T
i β)

2 − n(γ − 1)√
γ(2πσ2)(γ−1)/2

.

The Tsallis score estimator is B-robust since the influence function is bounded (see Dawid
et al. (2016) and Mameli and Ventura (2015)).
For p = 3, let ψ = β2 be the scalar parameter of interest, and let λ = (β1, β3, σ) be the
nuisance parameter. In order to assess the accuracy of the parametric bootstrap modified
profile signed scoring rule root statistic (rSbMp(β2)), we consider the same simulation set-up
as in Mameli and Ventura (2015). In particular, we ran a simulation experiment, for several
values of n and with θ = (1, 2, 3, 1), when the model is correctly specified and when the
contaminated model is Q0.10 = 0.90N(0, 100)+ 0.1N(0, 502). Results of the Tsallis statistics
are given for γ = 1.22; see Mameli and Ventura (2015), and reference therein. Table 1 gives
the results of the study based on 10,000 simulations with B = 500 bootstrap replications.
The bootstrap statistics perform as the analytical counterparts in the case of the Tsallis and
logarithm scoring rules. The same is not true for the Hyvärinen scoring rule both in the cen-
tral and contaminated models. However, as the sample size increases the difference among
the bootstrap and the analytical versions vanishes. The accuracy of the parametric boot-
strap depends mainly on the choice of the estimate to use for generating samples. Indeed,
parametric bootstrap of the Tsallis profile signed scoring rule root statistic rTMp(ψ) under

the model F (y; θ̂Sψ), provided B is large enough, yields an accurate parametric inference
approach, bypassing any analytical computation. On the contrary, results, not shown here,
indicated that the same accuracy is not retained when we sample from F (y; θ̂S). This is in
agreement with the findings in the likelihood framework (Di Ciccio et al. (2001)).

Table 1 about here.

4.2 Non-Linear regression models

An useful extension of the classical regression model is obtained by replacing the linear
predictor xTi β by a known non-linear function µ(xi, β), called the mean function. The model

yi = µ(xi, β) + σεi,

with i = 1, . . . , n, is called a non-linear regression model, where xi is a scalar and β is
an unknown p-dimensional parameter, and εi are independent and identically distributed
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N(0, 1) random variables.
The log-likelihood function for θ = (β, σ) is

ℓ(θ) = −n
2
log (2πσ2)− 1

2σ2

n∑

i=1

[yi − µi(xi, β)]
2. (11)

The Hyvärinen score is

SH(θ) = −2n

σ2
+

1

σ4

n∑

i=1

[yi − µi(xi, β)]
2. (12)

The Tsallis score is

ST (θ) =
n∑

i=1

[
−γ

(
1√
2πσ2

)(γ−1)

exp

(
−(γ − 1)

2σ2
(yi − µi(xi, β)

2

)
+

(γ − 1)
√
γ(2πσ2)

(γ−1)
2

]
.

Let us consider an application to the calcium data frame (Rawlings (1988)). In this exam-
ple, we consider a non-linear regression model applied to the calcium data set reported in
Rawlings (1988), which is available in the R-package boot. This data set consists of n = 27
observations. The variable of interest is cal, which records the amount of radioactive calcium
absorbed by cells, there is an explanatory variable (time) representing the time in minutes
that cells were suspended in a radioactive calcium solution. As in Brazzale (2005), we fit an
homoskedastic non linear model

yi = β0(1− exp (−β1xi)) + σǫi,

with i = 1, · · · , n. In this example the mean function is µ(x, β) = β0(1 − exp (−β1x)), and
β0 and β1 are unknown regression coefficients. The parameter of interest is ψ = β1 and the
nuisance parameter is λ = (β0, σ).
To assess the reliability of the confidence intervals for the parameter ψ, we ran a simula-
tion with 10.000 replicate data sets generated from the fitted model obtained by maximum
likelihood estimation (β̂0 = 4.309, β̂1 = 0.208, σ̂ = 0.526). Empirical coverage levels of 95%
confidence intervals for ψ = β1 are reported in Table 2. Results of the Tsallis statistics
are given for γ = 1.22. Table 2 reveals that the parametric bootstrap Tsallis modified
profile signed scoring rule root performs similarly to the parametric bootstrap higher-order
signed profile likelihood root. The higher-order signed profile likelihood root r∗p(ψ), which
as expected gives approximately the same value of its bootstrap counterpart r∗pb(ψ) which is
obtained by using the nlreg R-package Brazzale (2005).

Table 2 about here.

A sensitivity analysis was conducted to illustrate the instability of the maximum like-
lihood estimator and of the p-value associated with the parametric bootstrap higher-order
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signed profile likelihood root test of the null hypothesis H0 : β1 = 0.208. It consists in replac-
ing one observation of the amount of radioactive calcium absorbed by cells by an arbitrary
value which varies from 0 to 10 in the case of the estimators and from 0 to 20 in the case
of the p-values. The effect on the values of the estimators is shown in Fig. 1 and the effect
on the p-values is shown in Fig. 2. It can be noted that the Tsallis estimator behaves like a
redescending estimator. Specifically, Fig. 2 shows the p-values for the parametric bootstrap
Tsallis modified profile signed scoring rule root, the parametric bootstrap Hyvärinen modi-
fied profile signed scoring rule root and the parametric bootstrap higher-order signed profile
likelihood root tests. The variation in the parametric bootstrap higher-order signed profile
likelihood root and Hyvärinen root tests’ p-value shows their non-robustness.

Figures 1 and 2 about here.

5 Final remarks

Inferential procedures based on scoring rules offer flexibility in simplifying computations
and in achieving robustness. However, these strengths may be compromised when resorting
to first-order methods or to higher-order analytical approximations. Analytical adjustments
of the signed scoring rules ratio statistics are easy to compute only in simple models. We
face these challenges by resorting to the application of bootstrap methods. Constrained
parametric bootstrap is a generally applicable and accurate inferential procedure which by-
passes any analytical computation. The only requirement is the capacity to simulate from
the full model. Unfortunately however, the generality of the procedure is at the expense of
an increased computational burden.
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Figure 1: Sensitivity analysis of the Maximum likelihood (L), Tsallis (T ) and Hyvärinen
(H) estimators when an observation of the amount of radioactive calcium absorbed by cells
is changed.
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Figure 2: Sensitivity analysis of the p-values for the parametric bootstrap higher-order signed
profile likelihood root (L), the bootstrap Tsallis modified profile signed scoring rule root (T )
and the parametric bootstrap Hyvärinen modified profile signed scoring rule root (H) tests
when an observation of the amount of radioactive calcium absorbed by cells is changed.

14



Table 1: Empirical coverages of 95% confidence intervals for β2. Pivots used: higher-order
signed profile likelihood root (r∗p), parametric bootstrap higher-order signed profile likelihood
root (r∗pb), Tsallis modified profile signed scoring rule root (rTMp) and parametric bootstrap

Tsallis modified profile signed scoring rule root (rTbMp) with γ = 1.22. B = 500 bootstrap
replications.

N(0, 1)
n r∗p r∗pb rHMp rHbMp rTMp rTbMp

10 0.951 0.949 0.946 0.976 0.948 0.955
20 0.946 0.948 0.942 0.966 0.947 0.951
30 0.948 0.950 0.946 0.961 0.945 0.948

N(0, 1) cont.
n r∗p r∗pb rHMp rHbMp rTMp rTbMp

10 0.955 0.952 0.982 0.974 0.943 0.946
20 0.965 0.960 0.994 0.979 0.949 0.951
30 0.967 0.967 0.998 0.958 0.951 0.953

Table 2: Empirical coverages of 95% confidence intervals for β1. Pivots used: higher-order
signed profile likelihood root (r∗pb), parametric bootstrap Hyvärinen modified profile signed

scoring rule root (rHbMp) and parametric bootstrap Tsallis modified profile signed scoring rule
root (rTbMp) with γ = 1.22. B = 500 bootstrap replications.

N(0, 1)
n r∗p r∗pb rTbMp rHbMp

27 0.951 0.951 0.949 0.958
54 0.953 0.954 0.956 0.956
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