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Abstract

Colorectal cancer (CRC) whit more than a million of new cases per year is one of the most common
registered cancers worldwide with few treatment options especially for advanced and metastatic
patients.

The tumor microenvironment is composed by extracellular matrix (ECM), cells and interstitial
fluids. Among all these constituents, in the last years an increased interest around the ECM and its
potential role in cancer tumorigenesis is arisen. During cancer progression the ECM structure and
composition became disorganized, allowing cellular transformation and metastasis.

Up to now, the focus has mainly been on the characterization of CRC microenvironment analyzing
separately structural ECM components or cell secretome modifications. A more extensive view
that interconnects these aspects should be addressed. In this review, biochemical (secretome) and
biomechanical (structure and architecture) changes of tumor microenvironment will be discussed,

giving suggestions on how these changes can affect cancer cell behavior.



Introduction

Colorectal cancer (CRC) is the third most common cancer in both sex with more than a million of
new cases per year and more than 500.000 deaths registered worldwide [1]. If diagnosed at early
stage (stages O, I, I, and Ill), CRC is in general highly treatable with surgery. For patients with stage
Il and some with stage Il, the chemotherapy is practiced after surgery in order to increase the
therapeutic response [2]. In the clinical practice, the established staging models for CRC such as
the TNM [3] and the tumor localization are based on morphological, histopathological and clinical
criteria, and should provide adequate information on the tumor metastatic potential directing
clinicians to plan an adequate therapeutic strategy. Possible new markers may result from the
study of extracellular matrix (ECM) components, particularly those that provide the evidence of
aggressiveness. These new markers could ameliorate the actual clinical staging differentiating
patients with an aggressive CRC from those with more indolent disease.

In the last decades, an increased interest around the ECM and its potential role in cancer
tumorigenesis is arisen [4-5]. The ECM, with its distinctive biochemical and biomechanical
properties, is one of the proximal structures that tumor cells of epithelial origin must destroy in
order to permit invasion and cell migration. The ECM structure and composition became
disorganized during cancer progression, promoting itself cellular transformation and metastasis.
Indeed the ECM microenvironment, or niche, plays an important role in regulating cell behavior.
This concept was initially true in the field of developmental biology, and in the past 20 years was
also demonstrated for cancer development and biology [6-7]. Several components of the niche
participate to cancer progression, especially inflammatory cells, such as T cells and myeloid
suppressor cells, which fail to exercise antitumor effector functions, and co-operate with cancer
cells to promote tumor growth [8]. Together with cellular component, recent progress highlighted
the ECM importance in cancer progression [9-12]. During embryonic development and organ
homeostasis, ECM is tightly controlled with the production, degradation, and remodeling of the
major protein components. The disruption of this fine control disorganizes the ECM, promoting
abnormal cell behavior, tumor-associated angiogenesis and inflammation, and finally leads to
generation and progression of cancer microenvironment. In this review, we describe how
biochemical and biomechanical changes could drive tumor progression and aggressiveness, with

suggestions on how these changes could be choosen as therapeutic targets for cancer treatment.



The colon ECM structure

The normal colon ECM structure is reported in Figure 1. The regular and organized
structure keeps under control cellular processes such as growth, death, adhesion, migration, and
differentiation. Its function is to maintain homeostasis and to orchestrate tissue repair in case of

injury or damage.
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Figure 1. Schematic representation of normal and colon cancer tissue. Upper panel: Masson's
Trichrome staining showing the connective tissue (blue), nuclei (dark red/purple), and cytoplasm
(red/pink). Lower panel: graphical scheme highlighting the transition from the normal colon (Isotropic)

mucosa to the cancer (anisotropic) microenvironment.

Colonic epithelial cells exert a physical barrier with absorptive and exocrine functions. These cells
possess a polarized structure in which is recognizable an apical pole, two lateral surfaces forming
inter-cellular connections and a basal surface anchored to the basement membrane (BM). The BM
is a specialized form of ECM separating the colon mucosa from its submucosa. The BM proteins
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are synthesized by both the epithelial and the mesenchymal cells under physiological conditions
[13-14] and rearranged to a characteristic sheet-like structure of 100-300 nm of thickness. The
main constituent of BM is the Collagen IV, a network-forming collagen composed by a
trimerization of alpha chains (two a.1- and one a.2-chain) encoded by six genes (COL4A1-COL4A6)
and other proteins such as the proteoglycan perlecan and the glycoproteins laminin, fibronectin
and nidogen [15]. From a structural point of view, the stromal ECM is constituted by similar
components already present in the BM, but Collagen IV is substituted by Collagen |
(COL1A1,COL1A2), this last forming a 3D structure thanks to its fibrillar proprieties. The Collagen |
is produced by resident fibroblasts and, differently from Collagen IV, no disulphide bridge are
present, thus providing a less rigid structure to the ECM with respect the BM. For several years the
ECM was considered a solely filling and inert substrate, but now its active role in carcinogenesis is
clear [16-17].

Beside the structural proteins, other constitutive elements of ECM are those proteins and
molecules secreted by tumor and stroma cells and “collected” under the term secretome. The
classical way of secretion is based on soluble proteins released after the signal peptide cleavage,
however also non-classical ways have been identified in tumor secretome including exosomes[18-
19] and microvesicles secretion [20]. Recently, Naba et al. [21] introduced the term matrisome to
gather all ECM components by the in silico prediction of putative ECM proteins. Further
proteomics data on extracted ECM samples confirmed their classification. Under this term, more
than one hundred of putative ECM proteins have been categorized in two distinct groups: i)
structural core matrisome and Jji) matrisome-associated proteins including secreted factors,

proteases and protein families such as mucins, galectins and semaphorins [21].

Changes in ECM structure in colorectal cancer

The tumor mass in CRC, like every other tumor, has three basic components: i) the
parenchyma, i.e. the proliferating neoplastic cells and the supportive stroma ii) the tumor
associated cells (TAM, tumor associated macrophages and the activated fibroblasts) and iii) the
blood vessels.

As mentioned before, under physiological and non-pathological conditions the ECM,
composed of BM and adjacent parenchyma, possesses isotropic arrangement of fibrillar protein
components. An orderly ECM confers to the matrix unique spatial, biochemical and biomechanical

properties that are essential for regulating cell behavior and tissue homeostasis. On the contrary,
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an organized, anisotropic arrangement of ECM fibers is a recognized hallmark of a pathological
microenvironment [22-23] and the term desmoplasia is used to define the abundant collagenous
stroma surrounding parenchymal cells that is deposited after BM degradation. It is important to
underline that the BM degradation is not only a passive event, but actively participate to the
tumoral progression releasing angiogenic, growth-stimulating, and chemotactic factors embedded
within the BM [24-26]. All these factors affect the tumor microenvironment, regulating tumor
growth, angiogenesis, and cell migration. This is the case of laminin-332 (formerly known as
laminin-5) protein, which is homogeneously present in the BM in the normal intestinal mucosa.
The laminin-332 degradation products activate the EGF receptor pathway causing a diminished
cell-matrix adhesion, ultimately leading the migration enhancement [27-29]. The loss of BM
integrity is one of the most common ECM marker studied up-to now and recently reviewed by
Mylonas et al. [30], who pointed out that in primary CRC tumors the discontinuity of the BM is
correlated to a higher metastatic potential [31] and poor patients’ survival rate [32].

The newly deposited collagen replace the proteolitically degraded ECM proteins by
secreted proteases. In the case of breast cancer, this structural evolution is known as tumor-
associated collagen signatures (TACS). Three levels have been identified denoting changes in fibers
organization during the tumoral progression from nonpalpable (TACS 1) to non-invasive (TACS 2)
and metastasis (TACS 3) [22]. Such a change causes local cell migration that is predominantly
oriented along radial aligned collagen fibers, facilitating the tumoral invasion. Recently, it has been
demonstrated that a similar event occurs also in CRC: in the healthy colon, collagen fibers are
disposed in the epithelium-stroma interface whit an angle of ~10°, while in the adenocarcinoma
collagen fibers are thicker and showed an averaged angled disposition around the 50° with respect
to interface [33]. In another work, changes in collagen density and alignment have been
demonstrated in polyps with high-grade dysplasia (HGD) and malignant samples. With respect to
the normal colon tissue, in which are present aligned collagen fibers, the HGD revealed the
presence of misaligned collagen fibers. The resultant changes in the ECM of malignant samples is a
more dense and ordered collagen fiber deposition [34] suggesting a pivotal role of collagen in
malignant tissue transformation.

Collagen degradation during stroma remodeling releases several fragmented peptides
which can be easily detected in plasma and urines [35] and two peculiar peptides of type |
Collagen are indicative of the degradation process: the N- and C-telopeptides. Beside these, other

fragments from the N- and the C-terminal regions, the PINP (the amino N-terminal propeptide)



and the PICP (the carboxy C-terminal propeptide) are indicative of collagen neo-synthesis [36].
Both the PICP and the C-telopeptide levels in serum of CRC patients (stages I-1V) have been found
increased with respect to the control group [37], indicating the presence of both collagen
degradation (tumoral mass expansion) and deposition (ordered fiber deposition). As a
consequence of ECM remodeling, triple-helical region fragments have been detected and
guantified in urine of patients affected by CRC with a sensitivity of 88% and a specificity of 88%
[35].
The liver is the most frequent site of metastasis from primary colorectal cancer [38]. With
difference to colon mucosa, the liver is enriched in type IV Collagen fibers mainly located in the
sinusoids and, together with perlecan and laminin is the main constituent of organized BM [39]. It
is know that Collagen IV plasma levels are generally increased in liver diseases associated with
hepatic fibrogenesis and fibrosis [40]. Because of a similar remodeling process occurs both in
primary cancer and in distant metastasis, the Collagen IV can be used as prognostic marker of
disease progression [41-42]. As a proof of this, in the plasma of patients presenting hepatic
metastasis, type IV Collagen increases compared to non-metastatic CRC patients and healthy
controls. Moreover, the ECM remodeling process combined with the increased expression of the
al- and a2- chains of type IV Collagen has been observed in the stroma of hepatic metastasis [43].
A deeper observation evidenced that type IV Collagen plasma levels were also correlated to the
therapeutic response and pathology progression showing a decrease during chemotherapy and an
increase in consequence of disease progression [43]. The prognostic value of hepatic Collagen IV is
increased by the concomitant detection of other ECM proteins such as tenascin-C, fibronectin, and
laminin. This composition has been highlighted to be peculiar of 'non-capsular' tumors and their
detection, as well as the presence of alpha-smooth muscle actin positive myofibroblasts, was
associated with a shorter median survival with respect to patients with “capsular” metastasis [44].
Beside collagens, other ECM proteins are deregulated in CRC cancer. Evidence of proteins
alteration can be obtained by the comparative analysis of colon-purified matrices in normal and
tumoral tissues in order to find other specific ECM signatures associable to cancer progression [45-
46]. The technical procedure used to obtained ECM purified proteins was based on the
assumption of their insolubility in traditional buffers, thus offering the advantage of sequentially
separate and remove cellular and nuclear proteins from that of ECM. Despite this consideration,
the major part of the identified proteins (1062 proteins) still were from cellular compartment and

relatively few proteins were associated with ECM (163 proteins) [45]. Nevertheless, the paired



analysis of three primary metastatic colon cancers and their hepatic metastasis proved that 23
ECM-related proteins were in common for both tissues. Beside these, 37 and 7 proteins were
exclusively present in the primary tumor and the metastasis, respectively. Tumor-derived proteins
were mainly structural proteins such as ECM glycoproteins, collagens, and proteoglycans and
other less abundant ECM-related proteins such as ECM remodeling enzymes and ECM-associated
secreted factors. As expected, proteases were peculiar of primary colon tumor: ADAM 9, 10, TSL1
and MMP1, 2, 9, 11, and 12 have been found solely in colon tumor [45] and not in the metastasis,
suggesting their role in the migration process. In another paper, the paired biopsies from tumor
and its normal counterpart were obtained from 13 patients. Fifty-six differentially expressed
proteins have been identified in the insoluble tissue fraction, after the extraction of lipids and
soluble proteins. The digested peptides from ECM fraction were analyzed using a nano-ESI source
by means of label-free quantitation approach (e.g. solely based on measurements of observed
peptide ion peak intensities). The obtained data highlighted that 31 proteins related to cellular
cytoskeletal filaments were up-regulated (fold change >1.2), and 25 proteins related to ECM were
down-regulated (fold change < 0.8). The down-regulated proteins included myosin, keratin, and
collagen; in particular the three chains (a1, a2 and a3) of type VI Collagen were among the lower

abundant proteins in cancer tissues [46].

Changes in ECM architecture in colorectal cancer

Directly linked with the above mentioned changes of biochemical properties, another
outstanding characteristic of the ECM is its elasticity, that ranges from soft and compliant to stiff
and rigid, and contributes to the development of disease. Increased matrix stiffness is typical of
most solid tumors and these changes can be due to different mechanism. For example, excess
activities of lysyl oxidase (LOX), an ECM-modify enzyme that among all ECM proteins cross-links
especially collagen fibers, could increase tissue stiffness. Up-regulation of LOX expression has been
found in several cancers, including CRC, and has been associated with poor prognosis [47-48]. The
LOX-mediated collagen cross-linking, in in vitro and in vivo models of CRC results in increased
tissue stiffness and activation of the FAK/SRC signaling. As a consequence, cells expressing high
levels of enzymatically active LOX protein have an increased capacity to proliferate, invade and
metastasize [49], data that support the correlation between stiffer stroma and cancer

aggressiveness.



When ECM became stiff, with formation of cross-linked collagen bundles, its biomechanical
properties change, and cells respond by exerting markedly different kinds of attitude, as
demonstrated by recent studies on mechanotransduction [50]. Balancing cell proliferation and
apoptosis is essential to proper tissue function. A disruption in this equilibrium can result in
tumorigenesis if there is inadequate apoptosis coupled to uncontrolled cell proliferation. The
Hippo pathway, which has been uncovered for the first time in Drosophila genetic screens, is a
potent regulator of tissue homeostasis by controlling cell growth, division, and apoptosis.
Recently, two fundamental Hippo pathway’s elements, the Yes-associated protein (YAP) and its
paralogue TAZ, have been shown to be directly involved in the mechanisms of response to
structural changes in the cell microenvironment [51-52]. Mechanical stimuli, such as increase
substrate stiffness, can trigger nuclear translocation of YAP/TAZ, initiating their interaction with
other transcription factors to control cell proliferation and motility [53]. In cancer environment,
YAP and TAZ over-expression induces cell proliferation and epithelial to mesenchymal transition
(EMT), and reduces apoptosis and contact inhibition [54-55]. YAP is associated with clear cell
ovarian tumors, an ovarian malignancy subtype with poor prognosis [56], and has been shown to
play an oncogenic role in esophageal squamous cell carcinoma [57]. TAZ is directly involved in the
progression of breast [58-59] and non-small cell lung cancer [60]. There are evidences that YAP
and TAZ play an important role also in colon cancer: YAP has been found over expressed in 68 of
71 human colon cancer analyzed biopsies and in 30 of 36 colon cancer-derived cell lines,
suggesting that this protein is likely to be an important driver in this malignancy [61].

Despite recent advances in the field, it is not clear yet if changes in stiffness can play a
causative role in cancer pathogenesis. In breast cancer has been demonstrated that ECM
deregulation is one of the primary inducers of tumorigenesis [11], suggesting that this type of

mechanism can be implicated in tumor initiation also in other tissues.

Changes in colorectal cancer secretome

Secreted proteins play important roles in homeostasis, immune response, development,
proteolysis, adhesion, and ECM organization. Moreover, in a living organism secretome is highly
dynamic, and its composition changes during cell differentiation [62] or in response to various
pathologies [63] and/or environmental stimuli [64-65]. In the last decades, the tumor secretome
has been judged a promising source for biomarker discovery and it has been extensively

investigated [66]. The tumor microenvironment is mainly composed by cells, ECM and interstitial

9



fluid (IF); this last is enriched in tumor-derived proteins secreted by classical (e.g. ER/Golgi
apparatus mediated) or non-classical (endosomial recycling, active protein transport, membrane
translocation and exosomes) pathways [67].

It has been largely demonstrated that not only the tumoral cells, but the cancer-associated
fibroblasts (CAF), the inflammatory cells (e.g., TAM) and the endothelial cells can also actively
participating to the secretome composition in the tumor microenvironment. This causes a
differential expression of proteases and cytokines in tumor cells compared with tumor-associated
stroma [68-69]. During tumor invasion and metastasis, tumor cells directly secrete degradative
enzymes or induce the host to produce proteolytic enzymes to degrade ECM. Proteolytic enzymes
are major players in the breakdown and reconstruction of ECM in a wide of physiological and
pathological processes. So great attention is paid on the aberrant expression and the predictive
value of the proteolytic enzymes (and their inhibitors), such as: MMPs [70], plasminogen
activation system [71], ADAMTSs [72] and cathepsins [73]. Table 1 summarized the changes in
expression and proteins levels of these proteolytic enzymes observed in CRC. In particular, in CRC
two key gelatinases (MMP-2 and MMP-9) and two key collagenases (MMP-1 and MMP-13) have
been extensively investigated and a good review on this topic is already present [74]. The CAF
produce and secrete growth factors and cytokines that promote tumor survival [75] and
aggressiveness [76], while the recruited inflammatory cells secrete angiogenic growth factors,
cytokines and other MMPs [77-78], which ensure the neoplastic progression and invasion. For
instance, it has been demonstrated that the MMP-2 is mostly synthesized by the inflammatory
infiltrated cells and only in a less extent by the tumoral cells itself [67]. In addition, endothelial
cells can be activated by tumoral cells. The release of hypoxia-inducible factors (HIF) and vascular
endothelial growth factor-A (VEGF-A) [79] by cancer cells stimulate the autocrine secretion of
VEGF and angiopoietin [79-80] in endothelial cells, with consequent tumor angiogenesis and
vasculogenesis.

Table 1: Overview of secreted proteolytic enzymes and their physiological inhibitors involved in the
colorectal cancer (CRC). Legend: ADAMTS, a-disintegrin and metalloproteinase with thrombospondin

motifs; MMP, matrix metalloproteases; TIMP, tissue inhibitor of metalloproteinases; uPA, urokinase-type
Plasminogen Activator; tPA, tissue Plasminogen Activator; PAI, Plasminogen Activator Inhibitor.

Recommended

Alternative name  Changes in protein levels/gene expression Ref.
name:
ADAMTS-15 - Decreased expression in colon cancer [81-83]
ADAMTS-18 - Decreased expression inactivated in colon cancer [83-84]
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Cathepsin B APP secretase Increased tumor tissue levels [85-88]

Cathepsin L1 Cathepsin L Increased tumor tissue levels [87, 89]
MMP-1 Collagenase-1 Increased plasma levels and tumor tissue expression [70, 90-91]
Increased tissue levels in tumor and metastasis [70, 92]
MMP-2 Gelatinase A
Decreased serum levels in 72 CRC patients [93]

Increased expression and protein levels in liver
MMP-7 Matrilysin [94-96]
metastases samples

Increased tissue and serum levels in tumor and liver

MMP-9 Gelatinase B [92,97-99]
metastasis
[68, 100-
MMP-12 Metalloelastase Increased tissue levels in metastasis ]
101
MMP-13 Collagenase-3 Increased tumor tissue levels [102-105]
[69, 106-
Increased expression in stroma cells at tumor tissue ]
108
PAI-1 Serpin E1 levels or in co-cultures
Higher plasma levels
[109-110]
PAI-2 Serpin B2 Increased expression at tumor tissue level [110-111]
[112-114]
TIMP-1 Increased plasma and tumor tissue levels in CRC patients
TIMP-2 Decreased serum and tissue levels [93, 115]
TIMP-3 Decreased tissue levels in CRC patients [116-118]
Increased levels in rectal cancer patients predict longer
TIMP-4 [119]
survival
[71, 109,
uPA Increased tissue levels in colon and rectal cancer
111]
tPA Decreased tissue levels and activity in CRC patients [120-122]

The secretome is an important source of biomarker discovery, since the IFs are relatively
enriched in proteins otherwise not easily detectable at blood or plasma levels. As a proof of this,
some authors provided the match of cell/tissue secretome with plasma levels of detected proteins
and positively tested their clinical value as biomarkers in CRC [123-124]. Mass spectrometry-based
proteomic approaches are the best way to investigate the secretome, since this technology leads
to detect hundreds of potentially secreted proteins per analysis. To identify with confidence such a
number of proteins, both pre-analytical and analytical issues are of fundamental importance. For
instance, sample pre-fractionation before mass spectrometry analysis by means of gel
electrophoresis (i.e. 1/2-DIGE or off-gel separations) [125] or proteins enrichment procedures

[126-127] are usually performed to diminishing the ion suppression phenomena or to increase the
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low-abundance proteins concentration, respectively. Together with nano-ESI sources and high
sensitive instrumentation, more than 2000 unique proteins have been identified in a single colon
secretome sample [128]. Curiously, the final step of this workflow requires the reduction of data
complexity by means of statistics [123] and bioinformatics [129], in order to pick-up few, but
extremely significant proteins.

The analysis of secretome changes during the development and progression of CRC has
been performed using different approaches. In Table 2, the comparison of biological source of
secretome, the experimental procedures and the most interesting results obtained are reported.
In the simplest protocols, cancer cell lines are cultured in traditional medium until confluence,
then cultures are shifted into a serum-free medium for at least 20h, in order to reduce the
contamination of non-endogenous proteins. Despite this approach minimize the sample
complexity, the collected conditioned medium (CM) is an extreme simplification of what really
occurs in vivo, not including all the other cells that participate to the secretome composition.
Indeed, the co-cultures of colon cancer cells with CAF or TAM highlighted the dramatic changes in
their secretome composition with respect to cancer cell cultured alone [78]. In fact, Kang et al.
demonstrated in different co-culture of colon cancer cells lines (HCT116, WiDr, SW480, and RKO)
and TAM cell lines (THP-1 and U937) that the latter cells cause the up-regulation of tumor cell-
derived MMP-2 and MMP-9, with increased tumoral invasiveness and migration with respect to
single cultured cancer cell line [78].

Table 2: Overview of secretome studies in colorectal cancer in cells and tissues performed using mass
spectrometry-based proteomic approach.

cell tumor cultures

Source Procedure Evidence Ref.
Culture of HT29 human CER M|crove5|gles Follectlon by Identification of proteins involved in MV [125
cells ultracentrifugation; LC- formation and tumorigenesis ]
’ MS/MS analysis. g ’
. Culture in 1% ITS, 24h; 39 glycoproteins identified, among those
g:::irei:fr;'twnicz)lljiecril(l)(;lgles xenograft minced in PBS, 1h; CDH17, LGALS3BP, and PTK7 were found both in [1]26
& " LC-MS/MS analysis. vitro and in the interstitial fluids.
iy CRC and ymph node. SeTUM-ree CM, collected in T S8ERE PO TS TTFER, M SHECtd 123
P ¥ ) ymp 20h; LC-MS/MS analysis. . P ]
metastasis. metastasis.
Culture of Colo205 and Serum-free CM, collected in CRMP-2 was found in CRC secretome; plasma [124
SW480 cell lines. 24h: MALDI-TOF/TOF. levels were significantly higher in CRC patients. ]
-f M Il i
Culture of Colo205, SW620 Serum-free CM, collected in 109 unique proteins detected in CRC cell lines [130
and SW480 cell lines 24h: MALDI-TOF/TOF and LC- secretome ]
’ MS/MS analysis. ’
Culture of KM12SM and CM of heavy and light labeled 155 proteins showed >1.5-fold change between [131
KM12C colorectal cancer cells cultures, 24 h. LC-MS/MS the two cell lines, of them 3 have been validated ]

12



lines. analysis. in serum: GDF15, S100A8/A9, and SERPINI1.

cell tumor and stroma cell co-cultures

Co-culture in  serum-free . L
Co-culture of colon cancer Collagen type XlI selected as dedifferentiation [132

dia, 2 days; LC-MS/MS .
cells and CAFs. 2:1;\'/35 ays / marker of myofibroblasts and/or cancer cells. ]

tissue secretome

Paired primary colon cancer ECM decellularization by ADAMs and MMPs found solely in primary colon
and liver metastasis vs. sequential extractions; LC- tumor; TIMP1 secreted by both primary cancer [45]

normal tissues. MS/MS analysis. and liver metastasis.
Paired plasma and xenograft- Interstitial fluids collected in . . e .

. . 39 glycoproteins were identified in cell lines
derived secretome; PBS, 1h; glycoproteins ) . - [126

. . . . secretome, five of them were confirmed in
comparison with cell line enrichment and LC-MS/MS ]
. xenograft model.
secretome. analysis.
Pieces of 1-3mm3 in serum-

Pair R LI) an Among the differentiall r roteins ther
aired CRC (stages I,1l) and free CM, 24h; lectin-based ong the differentially secreted proteins there (127

normal colorectal tissues
from 9 patients.

are several proteins from fibulin, serpine and

enrichment; LC-MS/MS peptidase S1 families.

analysis.
Paired tumor and normal
colon mucosa from 4
patients.

Pieces of 1mm3 in PBS, 1h; Selection of 76 proteins showing five-fold [128
LC-MS/MS analysis. changes in cancer tissues secretome. ]

Although it is known that few hours of starvation can affects protein expression and
phosphorylation, the use of stable isotope labeling techniques has been suggested to distinguish
newly synthesized proteins from those already present in standard serum-media [133]. The CM
from cancer cell lines has been investigated by several authors [125-126, 130]. The secretome
characterization of two CRC metastatic cell line models, the highly metastatic KM12SM and the
poorly metastatic KM12C cell lines, has been obtained using a quantitative stable isotope labeling
(SILAC) approach of conditioned serum-free medium [131]. Of the 155 differentially secreted
proteins, the majority was implied in cell adhesion, migration, and invasion processes [131]. In
particular, the authors correlated Neogenin (NEO1), Neuroserpin (SERPINI1), and Podocalyxin
(PODXL) deregulation with cellular adhesion, while other secreted proteins SOSTDC1, CTSS, EFNA3,
CD137L/TNFSF9, ZG16B, and Midkine with migration and invasion of highly metastatic cells.
Finally, starting from these results the authors showed the efficacy of their proteomic approach to
identify deregulated proteins that could be detected in human serum as new biomarkers for CRC.
They evaluated the presence of growth/differentiation factor 15 (GDF15), Protein S100-AS8
(Calgranulin-A), and Neuroserpin (SERPINI1) in the serum of 40 CRC patients and 20 controls:
increased levels of these proteins were detected in cancer patients with respect to control group.
The biomarker validity in terms of clinical application has been further evaluated by multivariate

ROC curves of these three proteins. The Area Under the Curve (AUC) of ROC curve revealed that
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these biomarkers were moderately accurate (AUC=0.884) in the discrimination of patients with
CRC and controls with a discrete sensitivity (60%), but a high specificity (95%) [131].

Tissue secretome is also an important biomarker source. From a proteomic-based analysis,
two different approaches are proposed in literature: the first recovered the tissue secretome by
protein passive diffusion from the tissue biopsies into PBS solution [126-128]. In the second, the
tissue is subjected to a sequential extraction procedure and the ECM scaffold is finally totally
digested before the mass spectrometry analysis [45].

As an example of the first-cited protocol, the label-free quantitative proteomics approach
has been used to find secreted biomarkers useful for the detection of lymph node metastasis [123]
in paired normal/tumor colon tissue of 4 patients. More than one hundred of candidate
biomarkers were obtained by the analysis of differentially abundant proteins (>1.5-fold change).
Among these, two peculiar proteins have been selected and quantified in serum samples of a
larger cohort of patients, the trefoil factor 3 (TFF3) and the GDF15.

The second protocol has been proposed by Naba et al. The paired analysis of metastatic
CRC and its hepatic metastasis has been performed [45] using an ECM enrichment procedure
based on the cells lysis and sequential extraction of intracellular components. This procedure
highlighted some differences in the secreted proteins and, in particular, most of ECM-remodeling
enzymes such as: the ADAM 9, 10 and the MMP-1, 2, 9, 11, 12 and LOXL1. These molecules have
been identified exclusively in the primary colon tumor secretome. Despite these promising
findings, it is still to investigate the impact of the sequential extraction procedure on the possible
loss of low molecular weight secreted factors, such as chemokines, growth factors and cytokines.
For instance, among the detected proteins the lack of interleukin-7, which is known to be secreted
by colorectal cancer cells to promote the expansion of tumor infiltrating lymphocytes [134], could

be ascribed to the aggressiveness of the sequential extraction procedure.

Conclusions and future perspectives

The idea that changes in ECM architecture may allow cancer development and progression
is quite new, and the possibility that these changes could be used as diagnostic or therapeutic
tools in cancer treatment is still poorly investigated. For instance, the desmoplastic reaction
characterized by Collagen | deposition and altered Collagen IV distribution can directly affects the

tumor response to treatment. This change in collagen composition has direct influence on the
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tumor cell survival and resistance to 5-fluorouracil (5-FU), camptothecin and etoposide [135-136].
Conti et al. demonstrated in 3 human CRC cell lines (HT-29, KM12SM and KM12c) that cells
cultured in presence of wild type Collagen IV and newly deposited fibrillar Collagen | differently
react to therapy. A significant alteration in apoptosis in response to 5-FU has been effectively
observed in cultures on fibrillar collagen compared to Collagen IV, and this change has been
related to an integrin-mediated mechanism [135]. Moreover, the earlier study of Kouniavsky et al.
[136] revealed that tumoral cells cultured onto both single protein layers and ECM-derived layers
significantly change their response to chemotherapy. The stroma-derived ECM, and in particular
the fibroblast-derived ECM, rendered the LiM6 cell lines more sensitive to the 5-FU. On the
contrary, the same fibroblast-derived ECM showed a protective effect on LiM6 cell lines against
the etoposide-induced apoptosis. The colon cell lines cultured on fibroblast ECM-layers showed
increased expression of two key anti-apoptotic proteins: the bcl-2 and the bcl-x(L). Nevertheless, a
direct correlation between the ECM components (are they structural or secreted protein) and bcl-
2 and bcl-x(L) expression is still lacking [136]. These data suggest a more complex role of ECM and
probably the changes in terms of tissue stiffness and 3D organization take part of this process: the
tumor stroma is typically stiffer than normal stroma, depending indeed on the substitution of
physiological ECM components with other proteins that dramatically change the tumor
microenvironment. For example, in the breast cancer, affected tissues can be 10 times stiffer than
normal tissues [11, 137]. In CRC, the stiffness changes and its implication of YAP and TAZ in tumor
progression was yet demonstrated [138], but only TAZ has been found to be a prognostic marker
after a screening of YAP, TAZ and two downstream target genes in two independent CRC patient
cohorts comprising 522 patients [139].

In conclusion, tumor stroma could appear to be a good candidate target for cancer
treatment, since it promotes cancer progression, growth and aggressiveness. However, some
recent studies demonstrated that inhibition of the stroma reorganization and alignment through
drugs or genetic engineering, accelerates tumor growth and decrease survival [140-141]. This
suggests that stroma possess a more complex role in cancer homeostasis and progression. For this
reason, it will be of paramount importance to analyze in depth the role of cancer matrix
composition and architecture to elucidate the mechanisms by which an aligned and stiff ECM can
modulate tumor progression and aggressiveness. Once a better understanding of these

mechanisms will be gained, new studies should be addressed to find, among the involved proteins
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and pathways, new targets suitable for cancer treatment beside to helpful markers predictive for

the patients’ response to therapy.
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