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Abstract
We propose an algebraization of classical and non-classical logics,
based on factor varieties and decomposition operators. In particular,
we provide a new method for determining whether a propositional
formula is a tautology or a contradiction. This method can be autom-
atized by defining a term rewriting system that enjoys confluence
and strong normalization. This also suggests an original notion of
logical gate and circuit, where propositional variables becomes log-
ical gates and logical operations are implemented by substitution.
Concerning formulas with quantifiers, we present a simple algorithm
based on factor varieties for reducing first-order classical logic to
equational logic. We achieve a completeness result for first-order
classical logic without requiring any additional structure.

Categories and Subject Descriptors Theory of computation
[Logic]: Equational logic and rewriting

Keywords universal algebra, equational logic, factor variety, dis-
criminator variety, multi-valued logic, factor circuit.

Introduction
Algebraic logic investigates the connections between a logic and al-
gebraic properties of its corresponding class of algebras. The origin
of modern algebraic logic goes back to Tarski’s 1935 paper [24],
where he introduced the Tarski-Lindenbaum algebra as a tool for es-
tablishing the correspondence between classical propositional logic
and Boolean algebras. In this context the tautologies coincide with
those formulas equivalent to the truth value “true”. Subsequently, a
number of different propositional logics were algebraized in this way,
the most important being the intuitionistic logic and the multi-valued
logics of Post and of Łukasiewicz. The problem of formulating the
notion of an algebraizable logic in full generality has been addressed
by Blok and Pigozzi in [3], where they showed that, if a logic L is
algebraizable, then there exists a unique quasi-variety K of algebras
which coincides with the equivalent algebraic semantics of L. This
means that the consequence relation `L over L and the equational
consequence relation |=K over K are interpretable in one another in
a certain (strong) sense (see [3, Def. 2.8 and Thm 2.15]).

The problem of algebraizing predicate logics is much more
complicated because of the variable binding properties of the
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quantifiers. On the one hand, the algebraization of classical predicate
logic led Tarski to the definition of cylindric algebras [13] and
Halmos to the notion of polyadic Boolean algebras [12]. In practice
these algebras are difficult to manipulate because they are endowed
with operators representing the quantifiers in the algebraic structure
and this complicates their theory.

On the other hand, much work in computer science has been
focused on reducing first-order logic to equational logic and, more
recently, to term rewriting systems. In [16] McKenzie proved that
for every sentence Φ in first-order classical logic there is an equa-
tion Φ′ in a suitable algebraic language such that Φ has non-trivial
models of a given cardinality κ exactly when Φ′ does. In his 1992
paper [5], Burris made a substantial advance by using discriminator
varieties [27]. A discriminator variety V is characterized by a quater-
nary term s that realizes the switching function on any subdirectly
irreducible member of V [6, Def. 7.3]:

s(a, b, c, d) =

{
c if a = b,
d otherwise.

Thanks to this switching function, Burris has shown that discrimina-
tor varieties have unitary unification, which is at the basis of resolu-
tion theorem provers and of the Knuth-Bendix method for finding
rewriting systems. He was also able to combine McKenzie’s analysis
of satisfiability with a standard reduction of Ψ1, . . . ,Ψn |=Φ to a
set of unsatisfiable sentences in prenex normal form. Indeed, given a
formula Φ and a finite set T of formulas, one can prove that T ` Φ
holds by showing T |= Φ which is, in turn, equivalent to showing
that Σ := T ∪ {¬Φ} has no models. In [5], Burris shows how to
define a set E of equations in the equational logic of a given dis-
criminator variety such that Σ has no models of cardinality greater
than 1 exactly when E has no non-trivial models. To show that E
has no non-trivial models it is enough to derive the identity x = y
from E. This approach is however not applicable to propositional
logic and the process of deriving x = y is not easily automatable
because of the complexity of the axioms in the system.

In this paper we provide a new method for extracting the logical
content of a formula: in particular, it allows to determine whether a
propositional formula is a tautology or a contradiction. This method
is general enough to be applied to any finite multi-valued matrix
logic, and we feel that it can be extended to infinite logics, like
fuzzy logic [11] and probabilistic logic [19]. In our approach, rather
than using the switching function of discriminator varieties, we
use the decomposition operators characterizing the factor varieties.
Indeed, the very definition of the switching function s suggests a
natural move. One could meaningfully wonder what happens if the
set {t, f} of classical truth values is substituted by an arbitrary set
V = {v1, . . . , vp} and the role of the equality in the definition of s
is played by a generic (multi-valued) relation R : An → V .

In other words, we could define an R-factor function on a set A
as a function fR : An+p → A such that:

∀b1...bp.fR (a1, . . . , an, b1, . . . , bp) = bi iff R(a1, . . . , an)=vi.



These R-factor functions are at the core of our definition of factor
variety, which generalizes not only the notion of discriminator
variety, but also the one of factor variety as it was introduced
in [23]. Indeed, in that paper Salibra et al. only consider theR-factor
function corresponding to an arbitrary, but fixed, binary relation R.

Given a relational type ν, we define a factor variety as a variety V
having an R-factor term fR(x1, . . . , xn, ξ1, . . . , ξp) for each n-ary
relation symbol R ∈ ν, that is a term such that the p-ary function
fA
R (~a,−1, . . . ,−p) is a decomposition operation (see Definition 2)

for all A ∈ V and all ~a ∈ An. The factor variety V is generated by
the class Vfa of all factor algebras A, that are algebras such that,
for every R ∈ ν, the decomposition operator fA

R (~a,−1, . . . ,−p)
is trivial (i.e. it is an R-factor function on A). The class Vfa is
in bijective correspondence with the class of (proper) ν-structures.
Once associated a factor algebra with every structure, we translate
the formula Φ into an algebraic term Φ∗. Under this translation,
each truth value vi becomes a fresh variable ξi, each relation R is
sent to the corresponding R-factor term and logical connectives are
translated via suitable substitutions. If vp represents the truth value
“true”, we then characterize the logical truth of a universal formula Φ
through the equation Φ∗ = ξp in the factor variety.

Concerning formulas with quantifiers, we present a new method,
simplifying Burris-McKenzie’s one, for reducing first-order classical
logic to equational logic. This approach allows to achieve a com-
pleteness result without requiring any additional structure. However,
it cannot be generalized further since it relies on specific properties
of classical logic, namely the fact that all formulas can be written in
prenex normal form, Skolemization and logical completeness.

Since the axioms of a factor variety are very simple, the process
of checking whether Φ∗ = ξp holds in such a variety can be
automatized in the propositional case by defining a confluent
and terminating term rewriting system. The problem of showing
Φ∗ = ξp is then reduced to the problem of checking whether
the normal form of Φ∗ is ξp. The analysis of the computational
complexity of this system is left for future works.

Our algebraic framework also suggests a new notion of logic
circuits, that we call factor circuits and are based on components
that we call D-gates. Rather than implementing a logical connective,
a D-gate represents a decomposition operator of some algebra A
belonging to a factor variety. A propositional D-gate has a selector
switch and p input ports. When the selector switch is connected to
a propositional variable P , the D-gate implements the operator fP
and its input ports correspond to the variables ~ξ in fP (~ξ). So, the
wires that are used for connecting D-gates do not carry signals
representing truth values, but rather elements of the algebra A.

We believe that these applications are promising as McKenzie’s
and Burris’s works appear to have been largely overlooked by the
communities working on proof assistants. This might be due to the
fact that it is not readily apparent how to manipulate the axioms of a
discriminator variety. In future works, we plan to investigate unitary
unification for factor varieties and extensions of our rewriting system
to relational types. It would be interesting to combine our rewriting
system with the results of Section 7 for reducing first-order logic
inference to a rewriting process. The integration of our methods in
theorem provers also deserves to be investigated.

Outline. Section 1 contains some preliminary notions of uni-
versal algebra and logics. In Section 2 we discuss classical logic
as a motivating example. Factor algebras and factor varieties are
introduced in Section 3. Section 4 is devoted to present our al-
gebraization of multi-valued logics. In Section 5 we show how
this method can be automatized via a suitable term rewriting sys-
tem. In Section 6 we introduce the factor circuits and we com-
pare them with the usual boolean circuits. Finally, in Section 7
we explain the new algorithm for reducing first-order classical logic
to equational logic, and we prove a completeness theorem.

1. Preliminaries
We refer to [6] for universal algebra and to [3] for logics.

1.1 Algebras, Varieties and Factor Congruences
Let ν be a relational type, that is a family of function/relation
symbols with arity. We denote by νn the set of symbols in ν having
arity n. Function symbols will be denoted by lower case letters
f, g, h, while relation symbols by capital letters R,R1, R2, . . .
Relation symbols of arity 0 are called propositional variables and
are denoted by P,Q. We write f ∈ ν (resp. R ∈ ν) to indicate that
f is a function symbol (resp. R is a relation symbol) of type ν.

An algebraic type is a relational type without relation symbols.
If τ is an algebraic type, an algebra A of type τ is called a τ -
algebra. Con(A) is the lattice of all congruences on A. The trivial
congruences ∆ = {(x, x) : x ∈ A} and ∇ = A × A constitute
the bottom and the top elements of Con(A), respectively. Given
a, b ∈ A, we write ϑ(a, b) for the principal congruence generated
by a and b, that is for the smallest congruence relating them.

Definition 1. A family (ϕi)i∈I of congruences on A is a family of
complementary factor congruences if the function

f : A→
∏
i∈I(A/ϕi)

defined by f(a) = (a/ϕi)i∈I is an isomorphism. When |I| = 2, we
say that (ϕ1, ϕ2) is a pair of complementary factor congruences.

A factor congruence is any congruence which belongs to a family
of complementary factor congruences.

Proposition 1. A family (ϕi)i∈I of congruences on A is a family
of complementary factor congruences exactly when:

1.
⋂
i∈I ϕi = ∆;

2. ∀a ∈ AI , there is u ∈ A such that ai ϕi u, for all i ∈ I .

Therefore (ϕ1, ϕ2) is a pair of complementary factor congru-
ences if and only if ϕ1 ∩ ϕ2 = ∆ and ϕ1 ◦ ϕ2 = ∇. The pair
(∆,∇) corresponds to the product A ∼= A × 1, where 1 is the
singleton algebra; obviously 1 ∼= A/∇ and A ∼= A/∆. The set of
factor congruences of A is not, in general, a sublattice of Con(A).

We say that an algebra A is: (i) subdirectly irreducible if the
lattice Con(A) has a unique atom; (ii) simple if Con(A) =
{∆,∇}; (iii) directly indecomposable if it admits only the two trivial
factor congruences. Any simple algebra is subdirectly irreducible
and any subdirectly irreducible algebra is directly indecomposable.

A class V of τ -algebras is a variety if it is closed under subalge-
bras, direct product and homomorphic images. By Birkhoff theorem
a class of algebras is variety if and only if it is an equational class.

Factor congruences can be characterized in terms of certain
algebra homomorphisms called decomposition operators and acting
on sequences (see [17, Def. 4.32] for more details).

Given a set A and a set of indices I we define an I-sequence ~x
on A as a function ~x : I → A. For every index i ∈ I and element
a ∈ A we denote by ~x[a/i] the I-sequence which coincides with ~x,
except on i, where it takes the value a. Given a ∈ A we let aI

denote the constant sequence taking value a for all indices i ∈ I .

Definition 2. A decomposition operator on an algebra A is a
function f : AI → A satisfying the following conditions:
(D1) f(aI) = a, for all a ∈ A;
(D2) f(f(aij)j∈I)i∈I = f(aii)i∈I ;
(D3) f is an algebra homomorphism from AI to A.

If I is finite, the axioms (D1)-(D3) can be equationally expressed.
There is a bijective correspondence between families of comple-

mentary factor congruences and decomposition operators, and thus,
between decomposition operators and factorizations.



Proposition 2. Any decomposition operator f : AI → A on an
algebra A induces a family of complementary factor congruences
(ϕi)i∈I where each ϕi ⊆ A×A is defined by:

a ϕi b if and only if f(aI [b/i]) = a.

Conversely, any family (ϕi)i∈I of complementary factor congru-
ences induces a decomposition operator f on A:

f(~x) = u if and only if xi ϕi u, for all i ∈ I.
Indeed, it is possible to prove that such an element u is unique.

1.2 Matrix Logics
A matrix logic L is defined by specifying the logical connectives,
the set of truth values, among which there is a “designated value”
representing the traditional truth value “verum”, and the truth
functions that interpret the logical connectives.

We start by taking an algebraic type τ that represents the set of
logical connectives together with their arity.

Definition 3. A logical τ -matrix is a pair (V, t) where V is a finite
τ -algebra and t is an element of V .

When τ is clear from the context, we just speak of a logical matrix.
The elements of the universe V are called truth values and are
denoted by v1, . . . , vp, while t is called the designated element.

We write Pvar for the set of propositional variables. Proposi-
tional formulas φ of type τ are defined by induction as follows:

φ, ψ ::= P | o(φ1, . . . , φn) where P ∈ Pvar and o ∈ τn.

A truth assignment is any function I : Pvar → V . Given a
propositional formula φ, its interpretation in V w.r.t. I is the
element JφKI inductively defined by (for P ∈ Pvar, o ∈ τn):

1. JP KI = I(P );

2. Jo(φ1, . . . , φn)KI = oV(Jφ1KI , . . . , JφnKI).

We say that a propositional formula φ is a tautology (resp. a
contradiction) whenever JφKI = t (resp. JφKI 6= t) for all truth
assignments I.

Definition 4. The propositional matrix logic L induced by a logical
τ -matrix (V, t) is the logic whose semantics is defined as follows:
ψ1, . . . , ψn |=L φ if and only if, for every truth assignment I,
JφKI = t whenever JψiKI = t for all i.

Example 1. We provide some examples of matrix logics.
1. Classical Logic C. The type of logical connectives is τ =

{∧,∨,¬, f, t}, the logical matrix is (2, t) where 2 is the two
elements boolean algebra of truth values f, t and t is the designated
element. As usual, we consider f < t.

2. The n-valued logics under consideration (Łukasiewicz, Gödel
and Post Logics) have a totally ordered set 0 < 1

n−1
< 2

n−1
<

· · · < n−2
n−1

< 1 of truth values, 1 as designated element, and join
and meet are defined by a∨ b = max{a, b} and a∧ b = min{a, b}.
These logics only differ for the definition of negation and implication,
which is not present in Post Logic.

• Łukasiewicz Logic L–n:

¬a = 1− a; a→ b = min(1, 1− a+ b).

• Gödel Logic Gn:

a→ b =

{
1 if a ≤ b
b if a > b

¬a =

{
1 if a = 0

0 if a 6= 0.

• Post Logic Pn:

¬a =

{
a− 1

n−1
if a 6= 0

1 if a = 0.

The n-valued Gödel logics are superintuitionistic logics, which
means they are logics between intuitionistic and classical logics.
Superintuitionistic logics form a complete lattice whose unique
coatom is the 3-valued Gödel Logic G3. As shown by Gödel in [10],
the intuitionistic logic is not definable by a finite logical matrix.

Quantified Matrix Logics. In the rest of the section, we con-
sider fixed a countably infinite set Var of individual variables (that
will be denoted by x, y, z, w), an algebraic type τ of logical connec-
tives, a logical τ -matrix (V, t) and a relational type ν containing
both function and relation symbols with arity.

Terms of type ν, or ν-terms, are defined as usual from individual
variables in Var and function symbols in ν. The set of all ν-terms
will be denoted by Tν and its elements by t, t1, t2, . . .

Well formed formulas are defined by the following grammar,
where R ∈ νm is a relation symbol, o ∈ τn is a logical connective
and t1, . . . , tm are ν-terms:

Φ,Ψ ::= R(t1, . . . , tm) | o(Φ1, . . . ,Φn) | ∀x.Φ | ∃x.Φ
We say that a formula Φ is: (i) a sentence if it has no free variables;
(ii) open if it is quantifier-free; (iii) in prenex form if it has the
shape Q1x1 . . . Qnxn.Ψ where Qi ∈ {∀, ∃} and Ψ is an open
formula (called the matrix of Φ); (iv) universal if it is in prenex
form and all its quantifiers Qi are universal.

Definition 5. A ν-structure S on V is given by (S, gS , RS)g,R∈ν
where S is a set, gS : Sk → S is a k-ary operation for any function
symbol g ∈ νk and RS : Sn → V is a function for any relation
symbol R ∈ νn. We say that S is proper whenever |S| > 1.

We let Str∗ν,V be the class of all proper ν-structures on V .
Given a ν-structure S on V as above, an environment is a

function ρ : Var → S. The interpretation JtKSρ of a term t is
defined as usual. To interpret the quantifiers we assume the set V of
truth values to be a finite lattice, whose top element is the designated
element t. The interpretation of a formula Φ in S w.r.t. ρ is then
defined inductively as follows (for R ∈ νm, ~t ∈ Tmν and o ∈ τn):

1. JR(t1, . . . , tm)KSρ = RS(Jt1KSρ , . . . , JtmKSρ );

2. Jo(Φ1, . . . ,Φn)KSρ = oV(JΦ1KSρ , . . . , JΦnKSρ );

3. J∀x.ΦKSρ =
∧
a∈SJΦKρ[a/x];

4. J∃x.ΦKSρ =
∨
a∈SJΦKρ[a/x].

We write S |=ρ Φ whenever JΦKSρ = t. We say that a formula Φ is
a logical truth if S |=ρ Φ for every structure S and environment ρ.

A class S of ν-structures is called universal if it can be axioma-
tized by universal formulas.

Definition 6. The quantified matrix logicQL, induced by a logical
τ -matrix (V, t) and a relational type ν, is the logic whose semantics
is defined as: Ψ1, . . . ,Ψn |=QL Φ if and only if, for every structure
S and environment ρ, JΦKSρ = t whenever JΨkKSρ = t for all k.

The propositional translation of a formula Φ is the propositional
formula Φp defined as:
− R(t1, . . . , tm)p = PR, where PR ∈ Pvar;
− o(Φ1, . . . ,Φn)p =o(Φp

1 , . . . ,Φ
p
n);

− (∀x.Φ)p =(∃x.Φ)p =Φp.
In classical logic with equality, there exists an equality symbol
which is propositionally translated by setting (t1 = t2)p = t.

Lemma 1. A formula Φ is true in all singleton structures if and
only if its propositional translation Φp is a tautology.

Proof. Let S be a structure over {s}, ρ : Pvar→ {s} be its unique
environment and I : Pvar → V be a truth assignment such that
I(PR) = vi if and only ifRS(s, . . . , s) = vi. It is possible to prove
that JΦKSρ = JΦpKI by induction on the complexity of Φ.



2. The Motivating Example
In the following sections we provide a new method for extracting the
logical content of a propositional formula φ and determine whether
φ is a tautology or a contradiction.

As a motivating example, we consider the classical logic C as
defined in Example 1.1. Our approach consists of two steps.

Step 1. The first step consists in defining a translation (·)∗
sending propositional formulas into algebraic terms. Under this
translation, the truth values f, t become new algebraic variables ξf , ξt.
A propositional variable P becomes a binary operator P (−,−). A
propositional formulas φ is translated inductively into an algebraic
term φ∗ on the variables ξf , ξt. To simplify the notation, we will
write φ∗(t0, t1) for the substitution φ∗{t0/ξf , t1/ξt}.

P ∗ = P (ξf , ξt);
(¬φ)∗ = φ∗(ξ¬f , ξ¬t) = φ∗(ξt, ξf);

(φ ∧ ψ)∗ = ψ∗(φ∗(ξf∧f , ξf∧t), φ
∗(ξt∧f , ξt∧t));

= ψ∗(φ∗(ξf , ξf), φ
∗(ξf , ξt));

(φ ∨ ψ)∗ = ψ∗(φ∗(ξf∨f , ξf∨t), φ
∗(ξt∨f , ξt∨t));

= ψ∗(φ∗(ξf , ξt), φ
∗(ξt, ξt));

(φ→ ψ)∗ = (¬φ ∨ ψ)∗ = ψ∗(φ∗(ξt, ξf), φ
∗(ξt, ξt)).

Connectives are therefore implemented through substitutions and
Boolean operations on the indices of ξf , ξt. The above translation
determines a congruence ∼∗ on the set of propositional formulas
by setting φ ∼∗ ψ if and only if φ∗ = ψ∗. For instance, we
have ¬¬φ ∼∗ φ and (φ1 ∨ φ2) ∨ φ3 ∼∗ φ1 ∨ (φ2 ∨ φ3), but
φ1 ∨ φ2 6∼∗ φ2 ∨ φ1. This defines a non-commutative intermediate
logic Cint which is strictly weaker than classical logic.

For example, we have (¬P ∨P )∗ = P (P (ξt, ξf), P (ξt, ξt)) and
(P ∨¬P )∗ = P (P (ξt, ξt), P (ξf , ξt)), hence ¬P ∨P 6∼∗ P ∨¬P .

Step 2. To retrieve classical logic, we need to give each P the
operational behavior of a binary decomposition operator:
(D1) P (x, x) = x;

(D2) P (P (x, y), P (w, z)) = P (x, z);

(D3) P (Q(x, y), Q(w, z)) = Q(P (x,w), P (y, z)), for every
propositional variable Q ∈ Pvar.

Both truth values and propositional variables, that are static objects
in the logic C, become dynamic entities after the translation: indeed
variables ξf , ξt can receive substitutions and operators P (−,−)
induce decompositions. We prove that the formula φ is a tautology
(resp. a contradiction) if and only if φ∗ = ξt (resp. φ∗ = ξf ) is
provable using the axioms (D1)-(D3) above, see Corollary 1.

For example, the formula ¬P ∨ P is a tautology since

(¬P ∨ P )∗ = P (P (ξt, ξf), P (ξt, ξt)) =D2 P (ξt, ξt) =D1 ξt.

In Section 5, we give this process a computational flavor by
showing that, by orienting the equations (D1)-(D3) from left to
right, we obtain a confluent term rewriting system. Moreover, by
well-ordering the propositional variables we can prevent (D3) from
looping and ensure termination. This approach also suggests a
new notion of circuit, described in Section 6, which is based on
components that we call “decomposition gates” and behave like the
decomposition operators of an algebra in a factor variety.

The translation above can be also generalized to first-order
formulas by transforming an n-ary relation symbol R into an
operator R(−1, . . . ,−n+2) of arity n + 2 (since there are two
truth values), which is a decomposition operator in the last two
coordinates. Open formulas can be therefore inductively translated,
as in Step 1, into algebraic terms on the variables Var ∪ {ξf , ξt},
assuming the following translation of atomic formulas:

R(t1, . . . , tn)∗ = R(t1, . . . , tn, ξf , ξt).

Such a translation provides a bijective correspondence between
first-order theories axiomatized by universal sentences without

equality and varieties of factor algebras axiomatized by identities
such as Φ∗ = ξt. In presence of equality, the situation becomes
more subtle. Intuitively, the problem is that factor algebras can only
capture correctly proper structures. In other words, a formula like
∀x∃y.¬(x = y), which is true in all proper structures, but fails in
any singleton structure, will be seen as a logical truth in any factor
algebra. Hence, to see whether the formula Φ is actually a logical
truth, one also need to verify that its propositional translation Φp is
a tautology and apply Lemma 1.

3. Factor Algebras and Factor Varieties
In this section we are going to introduce factor algebras and factor
varieties. We consider fixed a relational type ν and a logical τ -
matrix (V, t) where V = {v1, . . . , vp}. We write ν̂ for the smallest
algebraic type containing: a function symbol g ∈ ν̂k for each
function symbol g ∈ νk; a function symbol fR ∈ ν̂n+p for each
relation symbol R ∈ νn. Remark that a relation R of arity n is
transformed into a function fR having p additional arguments.

Definition 7. A ν̂-factor algebra A = (A, gA, fA
R )g,R∈ν is a ν̂-

algebra such that, for all fR ∈ ν̂n+p and ~a ∈ An there exists an
index i ∈ [1..p] such that:

∀ξ1 . . . ξp.fR(~a, ξ1, . . . , ξp) = ξi. (3.1)

The class FAν̂ of all ν̂-factor algebras is a universal class, i.e. it
is closed under subalgebras and ultraproducts. We write FA∗ν̂ for the
class of proper factor algebras (where proper means that |A| > 1).

Given a ν̂-factor algebra A, the algebraic reduct of A is the
algebra Alg(A) = (A, gA)g∈ν .

Definition 8. We associate with every proper factor algebra A a
proper structure Str(A) having the same algebraic reduct, and
relations defined by (for all fR ∈ ν̂n+p and ~a ∈ An):

RStr(A)(~a) = vk iff ∀ξ1, . . . , ξp.fA
R (~a, ξ1, . . . , ξp) = ξk.

Conversely, we associate with every proper structure S a proper
factor algebra Fa(S) having the same algebraic reduct as S and
whose functions fR (R ∈ νn) are defined as follows:

f
Fa(S)
R (~a, ξ1, . . . , ξp) = ξk iff RS(~a) = vk.

In particular, we have Str(Fa(S)) = S and Fa(Str(A)) = A.

Note that the above correspondence fails on singleton structures.
Let S, T be two structures over {∗} with a relation symbol R such
that RS(∗) = t but RT (∗) 6= t. The structures S and T are not
isomorphic, but correspond to the same trivial factor algebra.

3.1 Congruences of Factor Algebras
This technical section, that can be skipped on a first reading, is
devoted to analyze some properties of the congruences on factor
algebras. Let us consider a relational type ν and a ν̂-factor algebra A.
Remember that p is the cardinality of the set V of truth values.

Definition 9. We say that a pair of elements (b, c) ∈ A×A splits
A if there exist fR ∈ ν̂n+p, ~a ∈ An and an index i ∈ [1..n] such
that (for all ~ξ ∈ Ap):

fR(~a[b/i], ~ξ) = ξk, fR(~a[c/i], ~ξ) = ξj , for k 6= j.

A pair is called unsplitting if it does not split A. We denote by ΥA

the set of all unsplitting pairs of A.

From the point of view of the structure Str(A), a pair (b, c)
is unsplitting if the elements b and c are indistinguishable, which
means that for all R ∈ νn, ~a ∈ An and index i ∈ [1..n] we have:

RStr(A)(a1, . . . , ai−1, b, ai+1, . . . , an) =

RStr(A)(a1, . . . , ai−1, c, ai+1, . . . , an).
(3.2)



Lemma 2. Let fR ∈ ν̂n+p and ~a,~b ∈ An be two sequences. If
there exists ~ξ ∈ Ap such that fR(~a, ~ξ) 6= fR(~b, ~ξ), then there exists
an index k ∈ [1..n] such that (ak, bk) splits A.

Proof. The proof is by induction over the cardinality of the set
{j : aj 6= bj}. Let i be the least index such that ai 6= bi. If the
pair (ai, bi) splits A then we have the conclusion. Otherwise, by
defining ~c = a[bi/i], we have fR(~c, ~ξ) = fR(~a, ~ξ) 6= fR(~b, ~ξ).
Now, if ~c = ~b we have a contradiction. If ~c 6= ~b then the conclusion
follows by the induction hypothesis.

Definition 9 extends to sets S ⊆ A×A by saying that S splits
A if there exists a pair (c, d) ∈ S splitting A (i.e. S 6⊆ ΥA).

Lemma 3. Let b, c be two distinct elements of A and B = Alg(A)
be the algebraic reduct of A. The principal congruence ϑA(b, c) ∈
Con(A) generated by b, c satisfies the following conditions:

• ϑB(b, c) ⊆ ϑA(b, c);

• ϑA(b, c) =

{
∇A if ϑB(b, c) splits A;
ϑB(b, c) otherwise.

Proof. If (d, e) ∈ ϑB(b, c) splits A, then for some fR,~a and i,
fR(~a[d/i]) and fR(~a[e/i]) project on different coordinates, say
j and k. Thus ξj = fR(~a[d/i], ~ξ) ϑA(b, c) fR(~a[e/i], ~ξ) = ξk,
so (ξj , ξk) ∈ ϑA(b, c). As ξj , ξk are arbitrary ϑA(b, c) = ∇A.
Otherwise, since the operations fR(~a,−, . . . ,−) are projections,
the relation ϑB(b, c) is a congruence on A.

By Lemmas 2 and 3, any proper congruence is contained in ΥA.

Definition 10. A factor algebra A is rigid whenever ΥA = A×A.

In other words, the factor algebra A is rigid exactly when the
interpretation RStr(A) of a relation symbol R is a constant function.

Proposition 3. If A is directly decomposable then A is rigid.

Proof. Let A be directly decomposable. Then there is a pair (ϕ, ϕ̄)
of non-trivial complementary factor congruences. By Lemma 3 and
the fact that ϕ, ϕ̄ 6= ∇, we have ϕ ∪ ϕ̄ ⊆ ΥA. Since ΥA is an
equivalence relation, we have∇ = ϕ ◦ ϕ̄ = ΥA, so A is rigid.

We now characterize simple and directly indecomposable factor
algebras in terms of properties of their congruences.

Proposition 4. Let A be a proper factor algebra.

1) A is simple iff every proper congruence ϑAlg(A)(b, c) splits A.
2) A is directly indecomposable iff one of the following conditions

is satisfied: (i) A is not rigid; (ii) A is rigid and the algebraic
reduct Alg(A) of A is directly indecomposable.

Proof. Trivial by Lemma 3 and Proposition 3.

3.2 Factor Varieties
A variety V generated by a class of ν̂-factor algebras is called a
factor variety. If V is a factor variety then Vfa denotes the class of
ν̂-factor algebras belonging to V.

Proposition 5. The variety Vν̂ generated by the class of all ν̂-factor
algebras is axiomatized by (for fR ∈ ν̂n+p):
(F1) fR(~x, ξ, . . . , ξ) = ξ;
(F2) fR(~x, fR(~x, ξ11, . . . , ξ1p), . . . , fR(~x, ξp1, . . . , ξpp)) =

fR(~x, ξ11, . . . , ξpp);
(F3) fR(~x, h(ξ11, . . . , ξ1k), . . . , h(ξp1, . . . , ξpk)) =

h(fR(~x, ξ11, . . . , ξp1), . . . , fR(~x, ξ1k, . . . , ξpk)), where h ∈ ν̂k
is an arbitrary element of ν̂.

Let A ∈ Vν̂ . For every fR ∈ ν̂n+p and ~a ∈ An, the p-ary map
fR(~a,−, . . . ,−) is a decomposition operator on A. By (F3), the
decomposition operators fR (R ∈ ν) are closed under composition.

By Definition 7 and by [6, Ch. 5, Thm. 2.20], the following
proposition holds.

Proposition 6. Given a factor variety V, the class Vfa is a universal
class, so that it is closed under subalgebras and ultraproducts.

Proposition 7. Given a factor variety V, every directly indecom-
posable algebra A ∈ V is a factor algebra.

Proof. In any directly indecomposable algebra A ∈ V, every map
fR(~a,−, . . . ,−) is a trivial decomposition operator. So there must
be i ∈ [1..p] such that A |= ∀ξ1...ξn.fR(~a, ξ1, . . . , ξn) = ξi.

Example 2. Let P,Q,R be propositional variables.
In this example we will write: (i) x · y, or just xy, for fP (x, y);

(ii) x+ y for fQ(x, y); (iii) 〈x, y, z〉 for fR(x, y, z).
• Two-valued logic with a unique propositional variable. The fac-
tor variety of all algebras A = (A, ·A), where the binary operation
·A is a decomposition operator on A, is the variety of rectangular
bands (see [14]), i.e., idempotent semigroups satisfying xyz = xz.
The factor algebras in this variety are the left-zero bands (satisfying
xy = x) and the right-zero bands (satisfying xy = y).
• Two-valued logic with two propositional variables. The factor
variety of all algebras A = (A, ·A,+A), where the binary opera-
tions ·A and +A are commuting decomposition operators on A, is
the variety of distributive rectangular double bands. Every algebra
A in this variety is such that (A, ·A) and (A,+A) are rectangular
bands, where the operations ·A and +A distribute over each other.
We have four kinds of factor algebras: (1) ll-zero double bands:
xy = x = x+ y; (2) rr-zero double bands: xy = y = x+ y; (3)
lr-zero double bands: xy = x = y + x; (4) rl-zero double bands:
xy = y = y + x.
• Two-valued logic with two propositional variables P,Q such
that P↔ ¬Q. The factor subvariety of the variety of distributive
rectangular double bands generated by the rl-zero and lr-zero dou-
ble bands constitutes the variety of rectangular skew lattices. Skew
lattices, whose study began with the 1989 paper of Leech [15],
represent the most studied class of non-commutative lattices. The
importance of skew lattices lies in the structural role they play in
the study of discriminator varieties.
• Three-valued logic with a unique propositional variable corre-
sponds to the factor variety axiomatized by: (i) 〈x, x, x〉 = x;
(ii) 〈〈x, y, z〉, 〈a, b, c〉, 〈m,n, p〉〉 = 〈x, b, p〉.

4. Algebraization of Multi-Valued Logics
In this section we consider fixed a relational type ν and a logical τ -
matrix (V, t), where V = {v1, . . . , vp}. As announced in Section 2,
we define a translation (·)∗ from open ν-formulas into suitable terms
of type ν̂, that we call logical terms.

4.1 Logical terms
First, let us fix a set Ξ = {ξ1, . . . , ξp} of fresh algebraic variables
(one for each truth value), called logical variables. Recall that Tν
stands for the set of all ν-terms (denoted by t, ti) over the set Var.
The set LTν̂ of logical terms of type ν̂ (denoted by s, u) is generated
by this grammar (for ξi ∈ Ξ, fR ∈ ν̂ and ~t ∈ T nν ):

s, u ::= ξi | fR(~t, u1, . . . , up)

Note that LTν̂ 6⊆ Tν since ν 6= ν̂ and neither the logical variables ξi
nor the function symbols fR can occur in t. Let s, u1, ..., up ∈ LTν̂ ,
we write s{u1/ξ1, . . . , up/ξp} for the logical term obtained by
substituting simultaneously ui for each occurrence of ξi in s.



Lemma 4. Given a factor algebra A, an environment ρ : Var→ A
and a logical term u, there exists a k ∈ [1..p] such that A |=ρ

∀ξ1 . . . ξp.u = ξk.

Proof. By induction on the size of the logical term u.

4.2 From Open Formulas to Logical Terms through
Substitutions

The translation (·)∗ given in Section 2 for classical logic, can be
easily generalized to an arbitrary p-valued matrix logic L. Since
the result of the translation is very verbose, we first introduce some
clever notation based on (hyper)matrices.

Tabular notation. We consider hypermatrices of dimension
n1 × · · ·× nk over the set LTν̂ of logical terms, that is functions
M : n1 × · · · × nk → LTν̂ . Given a hypermatrix M as above, we
write Mi1...ik for the logical term M(i1, . . . , ik). A hypermatrix
M of dimension pk is called cubical. A vector v is any hypermatrix
of dimension p× 1 (or 1× p) and its transpose is denoted by vT .

Given a logical term s, we write v(s) for the constant vector
[s, . . . , s]T , thus of dimension p× 1.

Let M be a cubical hypermatrix of dimension pk such that
Mi1...ik ∈ LTν̂ and let s be a logical term possibly containing
ξ1, . . . , ξp as variables. The matrix multiplication Mv(s) is a
hypermatrix of dimension pk−1 defined as follows:

(Mv(s))i1...ik−1 = s{Mi1...ik−1,1/ξ1, . . . ,Mi1...ik−1,p/ξp}.

As an example, the product between a p×p-matrix and v(s) is: u11 · · · u1p

...
. . .

...
up1 · · · upp


 s...
s

 =

 s{u11/ξ1, . . . , u1p/ξp}
...

s{up1/ξ1, . . . , upp/ξp}


Hereafter, we will write Mv1 · · · vk for ((· · · (Mv1) · · · )vk).

The translation. We translate inductively an open formula Φ of
a matrix logic L into a logical term Φ∗ as follows:

• v∗i = ξi;
• R(~t )∗ = fR(~t, ξ1, . . . , ξp);

• o(Ψ1, . . . ,Ψn)∗ = Mov(Ψ∗1) · · · v(Ψ∗n−1)v(Ψ∗n)T , where
Mo is the cubical hypermatrix of dimension pn defined by:
Mo
i1i2...in = ξk if and only if oV(vin , . . . , vi2 , vi1) = vk.

In particular, the translation of P ∈ Pvar is P ∗ = fP (ξ1, . . . , ξp).
Notice that, in the definition above, Mo has dimension pn and

each v(ψ∗i ) has dimension p×1. ThereforeMov(Ψ∗1) · · · v(Ψn−1)∗

is a p×1-matrix [u1, . . . , up]
T which is then multiplied by the vector

v(Ψ∗n)T giving a 1×1-matrix, that is a term. Moreover, we have:

o(Ψ1, . . . ,Ψn)∗ = Ψ∗n{u1/ξ1, . . . , up/ξp}. (4.1)

It is easy to check by a straightforward induction on the open
formula Φ that its translation Φ∗ is actually a logical term. Note that,
in the propositional case, such a translation induces a congruence∼∗
on the set of formulas: two formulas φ and ψ are ∼∗-equivalent
whenever they have the same translation φ∗ = ψ∗. Interestingly
enough, this defines a non-commutative logic L′ which is strictly
weaker than the logic L we started from. The precise relationship
between the logics L and L′ will be investigated in further works.

Theorem 1. Let S be a proper structure and ρ : Var → S be an
environment. Then JΦKSρ = vk iff Fa(S) |=ρ ∀ξ1 . . . ξp.Φ∗ = ξk.

Proof. The proof is by induction over the complexity of the open
formula Φ, using equation (4.1) and Lemma 4.

Recall that Φp denotes the propositional translation of Φ (see
Section 1). From Theorem 1 and Lemma 1, we obtain this corollary.

Corollary 1. A universal ν-sentence Φ is a logical truth if and only
if Vν̂ |= ∀ξ1 . . . ξp.Φ∗ = ξt and Φp is a tautology.

When the logic under consideration is without equality, a sen-
tence Φ fails in a singleton structure if and only if it fails in some
proper structure. Therefore, in this case it is possible to omit “and
Φp is a tautology” in the statement of Corollary 1.

4.3 The algebraization of propositional logics
Propositional logic is a particular instance of quantified logic.
Indeed, the set Pvar of propositional variables can be considered
as a relational type, where every P ∈ Pvar is a relation symbol
of arity 0. According to Definition 5, a structure S of type Pvar,
hereafter called a propositional structure, is a pair (S, PS)P∈Pvar

such that PS ∈ V for every P ∈ Pvar. The propositional
structure S determines the truth assignment IS : Pvar → V
defined by IS(P ) = PS . Conversely, every truth assignment
I : Pvar→ V determines, for each set S, a propositional structure
SI = (S, PSI )P∈Pvar where PSI = I(P ). The interpretation of
a propositional formula φ in a propositional structure S coincides
with its propositional interpretation w.r.t. the truth assignment IS :
in other words, JφKSρ = JφKIS for every environment ρ : Var→ S.

We call p-factor algebra every factor algebra associated with
a propositional structure according to Definition 8. Every p-factor
algebra A is rigid and Con(A) coincides with the lattice of equiva-
lence relations on A. So, a p-factor algebra A is directly indecom-
posable exactly when A is finite of prime cardinality. We denote by
Vprop the factor variety generated by all p-factor algebras.

Corollary 2. Let Pvar be the type of propositional variables. A pro-
positional formula φ is a tautology iff Vprop |= ∀ξ1 . . . ξp.φ∗ = ξt.

We now apply our translation to propositional formulas of the
logics in Example 1. To simplify the notations we confuse P with
fP , and i with ξi. We also perform some on-the-flight application
of (F1) and directly write u rather than s{u/ξ1, . . . , u/ξp}.
Example 3. (3-valued Logics with 0 < 1

2
< 1) The translation of

some basic formulas:

• L– 3G3P3: (P ∧Q)∗ = Q(0, P (0, 1
2
, 1

2
), P (0, 1

2
, 1))

• L– 3G3P3: (P ∨Q)∗ = Q(P (0, 1
2
, 1), P ( 1

2
, 1

2
, 1), 1)

• L– 3: (¬P )∗ = P (1, 1
2
, 0)

• G3: (¬P )∗ = P (1, 0, 0)
• P3: (¬P )∗ = P (1, 0, 1

2
)

• L– 3: (P → Q)∗ = Q(P (1, 1
2
, 0), P (1, 1, 1

2
), 1)

• G3: (P → Q)∗ = Q(P (1, 0, 0), P (1, 1, 1
2
), 1).

Example 4. The translation of P ∨ ¬P in three-valued logics:

• L– 3: P (1, P ( 1
2
, 1

2
, 1), P (0, 1

2
, 1))

• G3: P (1, P (0, 1
2
, 1), P (0, 1

2
, 1))

• P3: P (1, P (0, 1
2
, 1), P ( 1

2
, 1

2
, 1)).

Example 5. The Pierce law ((P → Q)→ P )→ P translated in
classical logic and in some three-valued logics:

• C: P (P (Q(P (t, f), t), f), t)
• L– 3: P (P (α1, α2, 0), P (β1, β2,

1
2
), 1) where

α1 = Q(P (1, 1
2
, 0), P (1, 1, 1

2
), 1)

α2 = Q(P ( 1
2
, 0, 0), P ( 1

2
, 1

2
, 0), 1

2
)

β1 = Q(P (1, 1, 1
2
), 1, 1)

β2 = Q(P (1, 1
2
, 1

2
), P (1, 1, 1

2
), 1)

• G3: P (P (γ1, 0, 0), P (δ1, δ2,
1
2
), 1) where

γ1 = Q(P (1, 0, 0), 1, 1)

δ1 = Q(P (1, 1
2
, 1

2
), 1, 1)

δ2 = Q(P (1, 1
2
, 1

2
), P (1, 1, 1

2
), 1).



4.4 The Treatment of Equality in Classical Logic
Classical logic with equality has a binary relation symbol E as a
primitive logical symbol which is always interpreted as the actual
equality relation between members of the domain of discourse.

If S is a structure with equality on V = {ξf , ξt}, then the factor
algebra Fa(S) has the following switching function fE defined on S:

fE(x, y, w, z) =

{
z if x = y;
w if x 6= y.

As mentioned in the introduction, a variety of algebras generated
by a class of algebras with a common switching term operation is
called a discriminator variety [6, §9]. Discriminator varieties [27]
are referred by Burris and Sankappanavar in [6, p. 186] as “the most
successful generalization of Boolean algebras to date, successful
because we obtain Boolean product representations (which can be
used to provide a deep insight into algebraic and logical properties)”.

If νeq is a relational type with equality, then the factor variety
VE
νeq generated by all ν̂eq-factor algebras, where fE is the switching

function, is a discriminator variety. Notice that VE
νeq is a proper

subvariety of the variety generated by all ν̂eq-factor algebras.
Following Vaggione [26], we have that VE

νeq is axiomatized by
the axioms (F1)-(F3) and the identities fE(x, x, ξf , ξt) = ξt (the
reflexive property of E) and fE(x, y, x, y) = x. This last identity
expresses the implication E(x, y)→ x = y.

We now introduce a general method to express some properties
of relations involving equality, such as the anti-symmetric property
of a binary relation, without introducing an operation symbol fE for
equality in the algebraic type. Let Φ be a formula without equality,
whose free variables include x and y, and let Φ → x = y be
an implication. The logical term Φ∗, which is the translation of
the formula Φ, depends on ξf , ξt. If S is a proper structure and
ρ : Var → S is an environment, then by Theorem 1 we have
S |=ρ Φ if and only if Fa(S) |=ρ ∀ξfξt.Φ∗ = ξt.

Lemma 5. Given a proper structure S and a formula Φ without
equality, we have that S |= Φ → x = y holds if and only if
Fa(S) |= ∀ξf .Φ∗{x/ξt} = Φ∗{y/ξt} holds.

Notice that Vaggione’s axiom fE(x, y, x, y) = x (that ex-
presses the implication E(x, y) → x = y) can be rewrit-
ten as follows fE(x, y, ξf , x) = fE(x, y, ξf , y), while the anti-
symmetric property (xRy ∧ yRx → x = y) can be translated by
fR(y, x, ξf , fR(x, y, ξf , x)) = fR(y, x, ξf , fR(x, y, ξf , y)).

In the next example we explain how ordered algebras, introduced
by Bloom in [4], can be developed as pure algebraic structures.

Example 6. (Ordered Algebras = Classical logic with a binary
relation defining a compatible partial ordering) An ordered algebra
is an algebra endowed with a compatible partial order≤. The factor
variety corresponding to ordered algebras is the variety axiomatized
by (F1)-(F3) and the following identities:

(O1) f≤(x, x, ξf , ξt) = ξt (Reflexivity);
(O2) f≤(x, z, f≤(y, z, ξt, f≤(x, y, ξt, ξf)), ξt) = ξt (Transitivity);
(O3) f≤(y, x, ξf , f≤(x, y, ξf , x))) = f≤(y, x, ξf , f≤(x, y, ξf , y))

(Antisymmetry);
(O4) f≤(g(~z [x/zi]), g(~z [y/zi]), f≤(x, y, ξt, ξf), ξt) = ξt for

every function symbol g (Monotonicity wrt coordinate i).

Every factor algebra A in this variety is a simple algebra, because
every pair (a, b) (with a 6= b) splits A (see Section 3.1).

The remaining examples are devoted to show that some universal
theories can be represented by well-known varieties of algebras.

Example 7. (Right-handed Skew Boolean Algebras = Classical
logic with a unary relationR satisfyingR(0)∧∀x(R(x)→ x = 0))

LetR be a unary relation and 0 be a constant. Following Cvetko-Vah
and Salibra [8], the factor variety axiomatized by fR(0, ξf , ξt)=ξt
and fR(x, ξf , 0) = fR(x, ξf , x), is term equivalent to the variety
of right-handed skew Boolean algebras. A factor algebra A in
this variety satisfies fR(0, ξf , ξt) = ξt and fR(x, ξf , ξt) = ξf for
all x ∈ A \ {0}. Skew Boolean algebras, introduced by Cornish
in [7], are non-commutative one-pointed generalizations of Boolean
algebras, and occur naturally in rings, where they can be defined
on certain sets of idempotents, and in particular in rings whose full
set of idempotents is closed under multiplication.

Example 8. (Boolean Algebras = Classical logic with a unary re-
lation R satisfying ¬R(0) ∧ R(1) ∧ ∀x(¬R(x) → x = 0) ∧
∀x(R(x) → x = 1)) Following Salibra et al. [22], the fac-
tor variety axiomatized by fR(0, ξf , ξt) = ξf , fR(1, ξf , ξt) = ξt,
fR(x, ξf , 1) = fR(x, ξf , x) and fR(x, 0, ξt) = fR(x, x, ξt), is
term equivalent to the variety of Boolean algebras. Up to isomor-
phism, we have only one factor algebra which corresponds to the
Boolean algebra of truth values 2.

5. Term Rewriting System for Factor Axioms
We now show how to turn the equations (F1)-(F3) axiomatizing
the factor variety Vν̂ into rewriting rules. The term rewriting
system (TRS, for short) that we obtain enjoys confluence and strong
normalization. Therefore, in order to check whether Vν̂ |= Φ∗ = ξk
holds it is enough to see whether the normal form of Φ∗ is ξk.

For the sake of simplicity, we consider a propositional matrix
logic L with two truth values t, f (so Ξ = {ξt, ξf}). All definitions
and results extend easily to all p-valued propositional matrix logics.
We feel that this method is generalizable to arbitrary quantified
matrix logics, but the actual generalization is left for future works.

We then consider a relational type ν only containing (countably
many) propositional variables. Let us fix an enumeration (Pi)i∈N
of all the propositional variables in ν. Intuitively, this associates
a priority i ∈ N with each propositional variable. To simplify the
notation, we will still denote by Pi the binary operator fPi ∈ ν̂.

Definition 11. The rewriting rulesR on LTν̂ are (for i ∈ N):

(F1) Pi(x, x) � x;
(F `2 ) Pi(Pi(x, y), z) � Pi(x, z);
(F r2 ) Pi(x, Pi(y, z)) � Pi(x, z);
(F3) Pi(Pj(x, y), Pj(w, z)) � Pj(Pi(x,w), Pi(y, z));
(F `3 ) Pi(Pj(x, y), z) � Pj(Pi(x, z), Pi(y, z));
(F r3 ) Pi(x, Pj(y, z)) � Pj(Pi(x, y), Pi(x, z));

where the rules (F3), (F `3 ) and (F r3 ) only apply when i > j.

The TRS R is rather standard, except for the fact that it has
infinitely many function symbols, a property that we need to handle
carefully when proving termination. Note that equation (F2) of
Proposition 5 is recovered in two steps:Pi(Pi(x, y), Pi(w, z)) �F `

2

Pi(x, Pi(w, z)) �Fr
2
Pi(x, z). Analogously, (F3) corresponds to

(F `3 ) and (F r3 ), but we keep the redundant rule (F3) to avoid an
unnecessary growth of the size of the terms during the reduction.

We prove that R is locally confluent and terminating, so we
conclude that it is confluent by Newman’s lemma [2, Thm. 1.2.1].

Proposition 8. The TRSR is locally confluent.

Proof. By [2, Lemma 2.7.15], as all critical pairs are convergent.

The fact thatR is terminating is non-trivial because the duplica-
tion in the rules (F ∗3 ) may increase substantially the size of the term.
Thanks to the condition “i > j” these rules push the symbols with
small indices towards the root and those with big indices toward
the leaves. Thus, two terms should be compared by first comparing



their root symbols, and then recursively comparing their immediate
subterms. In other words, we need a lexicographic path order (lpo).

Definition 12. The lexicographic path order >lpo on terms is
defined as follows: s >lpo u if and only if

(LPO1) u ∈ Var ∪ Ξ , u occurs in s and s 6= u, or
(LPO2) s = Pi(s1, s2), u = Pj(u1, u2) and one of the following

conditions holds:
(a) ∃k ∈ [1, 2], sk ≥lpo u,
(b) i > j, and ∀k ∈ [1, 2], s >lpo uk,
(c) i = j, (s1, s2)>lex

lpo (u1, u2) and ∀k∈ [1, 2], s>lpouk,

where >lex
lpo stands for the lexicographic lpo-order on pairs.

By [2, Prop. 6.4.25], the relation >lpo is a simplification order,
which means that it is an order closed under contexts, under
substitutions, and possesses the subterm property.

Let us denote by Fun(u) the set of function symbols occurring
in u. The TRSR satisfies the following properties:

Lemma 6. For all rewriting rules s� u ∈ R we have:
(i) s >lpo u,
(ii) Fun(u) \ Fun(s) = ∅.

Proof. By a straightforward case analysis.

Condition (i) amounts to saying that the TRS is simplifying, that
is compatible with a simplification order. In the case of finite TRS,
this is enough to conclude termination. As shown in [20], for infinite
TRS one also need to check that the rules only introduce finitely
many function symbols (in our case none, see condition (ii)).

Theorem 2. The TRSR is confluent and terminating.

Proof. By Lemma 6 and [20, Thm. 4.13]R is terminating, therefore
by Proposition 8 and Newman’s lemma it is confluent.

We denote by nf(u) the (unique) normal form of u w.r.t.R.

Corollary 3. A propositional formula φ is a tautology iff nf(φ∗) = ξt.

As an example, we apply the TRS to show that the law of Pierce
((P → Q)→ P )→ P holds in classical logic C, but not in Gödel’s
logic G3. We recall that both translations are given in Example 5.
Without loss of generality, we assume that the priority ofP is smaller
than the priority of Q. As in Example 5, we will just write i for ξi.

In C we have the following reduction:
P (P (Q(P (t, f), t), f), t) �F `

2
P (Q(P (t, f), t), t) �F `

3

P (P (Q(t, t), Q(f, t)), t) �F `
2
P (Q(t, t), t) �F1

P (t, t) �F1 t.

Since t is designated, the formula is a classical tautology.
To compute the reduction in G3, we will use the notations γ1, δ1,

δ2 introduced in Example 5, and the following facts:
1. γ1

F3→ γ′1, for γ′1 = P (Q(1, 1, 1), Q(0, 1, 1), Q(0, 1, 1));
2. δ2

F3→ δ′2, for δ′2 = P (Q(1, 1, 1), Q( 1
2
, 1, 1), Q( 1

2
, 1

2
, 1)).

Therefore, in G3 we have the following reduction:

P (P (γ1, 0, 0), P (δ1, δ2,
1
2
), 1) �F2 P (γ1, δ2, 1) �F3

P (γ′1, δ2, 1) �F3 P (γ′1, δ
′
2, 1) �F2 P (Q(1, 1, 1), δ′2, 1) �F2

P (Q(1, 1, 1), Q( 1
2
, 1, 1), 1) �F1 P (1, Q( 1

2
, 1, 1), 1)

Since P (1, Q( 1
2
, 1, 1), 1) is in normal form, we conclude that Pierce

law is neither a tautology nor a contradiction in G3.
We end this section by remarking that the logical terms that

appear during the reduction are not necessarily the translation of
a logical formula. Henceforth, this process of calculus cannot be
simulated within the logic under consideration.

6. Factor Circuits and Applications to Hardware
Design

Classical propositional logic is used as a technical tool for the
analysis and the synthesis of electrical circuits built up from switches
with two stable states: the voltage levels. Analogously, p-valued
logics correspond to circuits built from similar switches with p stable
states, each representing a different truth value. This whole field of
application of logic is called many-valued (or fuzzy) switching.

We refer the reader to [9] for a good introduction on this subject.
Our algebraic approach to multi-valued logics suggests a new

notion of circuit, based on components that we call “decomposition
gates” and behave as decomposition operators of an algebra A
belonging to a factor variety Vν̂ . In this section we consider A fixed.

We start by presenting the p-valued propositional case, then we
instantiate it to propositional classical logic and compare it with the
usual boolean circuits, finally we discuss the most general case.

A propositional decomposition gate (D-gate, for short) has:

- p input ports i1, . . . , ip (one for each truth value);

- a switch s, called the selector switch;

- an output port o.

The graphical representation of a D-gate is the following:
P

si1

ip
o

The selector switch has a particular status since it specifies which
decomposition operator fP is implemented by the gate. For instance,
when A is a factor algebra then fP is a projection πpk (that is a trivial
decomposition operator) and the selector switch transforms the D-
gate into a multiplexer selecting its k-th input (thus o := ik).

D-gates can be composed using wires by connecting the output
port o of a D-gate with one (or more) input port(s) ik of other
D-gates. Therefore the wires transport the values of the algebraic
variables ξ1, . . . , ξp, in other words elements of A.

The circuit obtained by composing several D-gates is called
factor circuit. Since each D-gate implements a decomposition
operator of the algebra A and by (F3) decomposition operators of
A commute, by [17, Ex. 4.38.15 p. 167] a factor circuit represents
itself a decomposition operator on A.

Every logical term u can be easily represented as a factor circuit
by following its syntactic tree and drawing a D-gate with selector
switch Pi for each function symbol fPi . A formula φ is then
transformed into the factor circuit corresponding to the term φ∗.

D-gates for propositional classical logic C are shown in Fig-
ure 1(a): to simplify the picture, we omit the selector switch and
directly label the gate with the propositional variable Pi, where i
represents the priority of P (as in Section 5). A quick comparison
between the usual boolean circuits and factor circuits shows the
novelty of this approach (cf. Figure 1(b)).

In the boolean circuits, each logical gate implements a logical
connective o ∈ τ of arity n, so it has n input ports i1, . . . , in,
and its output is obtained by applying such a connective to the
inputs: o(i1, . . . , in). The logical gates are connected with each
others through wires that transport truth values. The remaining input
wires are connected with propositional variables that can be seen
as switches allowing to choose their truth values. The circuit as a
whole corresponds to a boolean expression and can be simplified ac-
cordingly. Popular techniques are based, for instance, on Karnaugh
maps and the result is a circuit in sum-of-products form.

On the contrary, in factor circuits there is a unique kind of gate,
the D-gate, whose behavior depend on its selector switch. Every D-
gate implements a decomposition operator fPi , possesses two input
ports because there are two truth values, and its output is fPi(i1, i2).



D-gates are connected through wires transporting elements of
the ν̂-algebra A. The remaining input wires are connected with
switches representing algebraic variables ξi. Globally, a factor
circuit represents a decomposition operator built up from basic
decomposition operators (namely, those in ν̂). Factor circuits can be
simplified by calculating their normal form using the term rewriting
system defined in Section 5 (see Figure 1(c)). Note that a factor
circuit in normal form has a particular shape (see Figure 1(d)): it is
a binary tree such that all the D-gates Pi1 , . . . , Pik encountered in
a root-to-leaf path have strictly increasing priority.

An interesting feature of factor circuits is that it is possible to
exclude a sub-circuit by exploiting the algebraic properties of its
components. Consider, for instance, the circuit in Figure 1(d) and
suppose that we want to give ξf as first input of P2 (rather than the
result of P3(P4(x, y), P4(w, z))). Then it is enough to connect the
variable ξf to all input ports of the gates labelled with P4 and the
dashed subgraph trivializes thanks to axiom (D1).

The D-gates for quantified matrix logics are a straightforward
generalization of the propositional ones. Since an arbitrary D-gate
represents a decomposition operator of shape fR ∈ ν̂n+p, it has n
additional input parameters corresponding to the arguments of the
relation R(x1, . . . , xn), that is it can be drawn as follows:

R
s

x1, . . . , xn

i1, . . . , ip{
o

When composing arbitrary D-gates with each other, the new ar-
guments do not play any role. In other words, it is forbidden to
connect the output o with an input xk. In a factor circuit the wires
corresponding to x1, . . . , xn will remain as pending input lines.

7. Symbolic Computation
Much work in computer science has been focused on reducing first-
order logic to equational logic and term rewriting systems. In Tarski-
Givant [25] one has a reduction of first-order Zermelo-Fraenkel
set theory to traditional equational logic by using a sophisticated
encoding into the equational logic of relation algebras. Burris-
McKenzie’s reduction of first-order logic with equality to equational
logic through discriminator varieties uses a technique which is
described in [5]. The new technique of reduction introduced in this
section is based on factor varieties and can be applied to first-order
logic with or without equality.

Let ν be a relational type and let T ∪ {Φ} be a finite set of
first-order ν-sentences. One of the fundamental achievements of
Gödel was to show that the semantic notion T |= Φ can be captured
by a syntactic notion T ` Φ. The usual procedure to avoid the
manipulation of quantifiers consists in observing that T |= Φ holds
iff T ∪ {¬Φ} is not satisfiable iff the set of sentences in T ∪ {¬Φ}
Skolemized is not satisfiable. This reduces the syntactic level to
universally quantified sentences. Such sentences are easily expressed
as conjunctions of clauses (i.e., universally quantified disjunctions
of atomic and/or negated atomic formulas), so we have T |= Φ
iff a suitable set of clauses is not satisfiable. Robinson’s resolution
rule [21] is complete for unsatisfiable sets of clauses, provided that
the equality is not present in the language. In presence of equality,
other rules must be introduced like paramodulation [18].

Burris and McKenzie replaces all atomic subformulas of the
form R(t1, . . . , tn) in the universally quantified sentences obtained
after Skolemization, by fR(t1, . . . , tn) = t1, where fR is a new
function symbol corresponding to R (This approach to encoding
relations as functions can be found in [1, p. 98]). The switching
function of a suitable discriminator variety is used to remove the
logical connectives and to derive a set of equations axiomatizing
a new discriminator variety, which can be used to analyze T |= Φ
when we are working with a first-order language with equality.

gate AND

P
Q

P ∧Q P

D-gate

ξf
ξt P

Q

factor circuit
ξf

ξt

(a) A logic gate AND, a decomposition gate P and a factor circuit implement-
ing the classical logic formula P ∧Q.

logic gate AND D-gate
operation connective ∧ decomposition operator fP
meaning static (AND) dynamic (depends on P )

no. inputs arity of ∧ |V |
input values prop. variables P,Q algebraic variables ξ0, ξ1

signals carried truth values elements of A
by the wires

output P ∧Q fP (ξ0, ξ1)

(b) Comparison between a logic gate AND and a D-gate.
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(c) Rewriting System for Factor Circuits.

A Factor Circuit in Normal Form
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(d) Example of a factor circuit in normal form. The dashed subtree morally
disappears because all input ports receive the same value ξf .
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(e) Reduction showing that P1 ∧ ¬P1 is a contradiction. F2 stands for the
sequential contraction of F `1 and F r1 .

Figure 1. Factor circuits and decomposition gates.



7.1 Reduction to Equations through Factor Varieties
Let T = {Ψ1, . . . ,Ψn} be a set of first-order sentences in classical
logic and Φ be a sentence. Our goal is to reduce the semantical
problem of checking whether T |= Φ holds to an equational problem
in factor varieties. This will be achieved by executing the following
reduction procedure, and then applying Theorem 3 below.

Reduction procedure. Consider the set Σ = {Ψ1, . . . ,Ψn,¬Φ}.
1. Convert all sentences in Σ into prenex normal form.

2. Compute the set Σσ = {Ψσ
1 , . . . ,Ψ

σ
n, (¬Φ)σ} by Skolemizing

the sentences obtained in Step 1. As it is customary, we omit the
universal quantifiers in the Skolemized sentences.

3. Add to the relational type ν the new function symbols introduced
by the Skolemization to obtain the new relational type µ.

4. Consider the µ̂-factor variety VΣ axiomatized by:

(i) the axioms (F1)-(F3);

(ii) (Ψσ
1 )∗ = ξt, . . . , (Ψ

σ
n)∗ = ξt and ((¬Φ)σ)∗ = ξt;

(iii) fE(x, x, ξf , ξt) = ξt and fE(x, y, x, y) = x only if the
equality symbol E is present in the language.

Let us denote by Ax(VΣ) the set of these axioms.

We denote by `eq the deducibility in the equational calculus. We
have the following completeness theorem.

Theorem 3 (Completeness Theorem). Let Φ,Ψ1, . . . ,Ψn be first-
order sentences in classical logic. Then we have Ψ1, . . . ,Ψn |= Φ
if and only if Ax(VΣ) `eq ∀xy(x = y) and the propositional
formula (Ψ1 ∧ · · · ∧Ψn → Φ)p is a tautology.

Proof. (⇒) The factor variety VΣ is generated by the class (VΣ)fa

of factor algebras. From the hypothesis it follows that (VΣ)fa

is constituted by the trivial factor algebra. By Lemma 1 and by
hypothesis we conclude that (Ψ1 ∧ · · · ∧Ψn → Φ)p is a tautology.

(⇐) If Ψ1, . . . ,Ψn 6|= Φ then there exist a ν-structure S and
a µ-structure W such that S |= Σ, |S| = |W | and W |= Σσ . If
|W | > 1, then by Theorem 1 we have Fa(W) |= (Ψσ)∗ = ξt for
every Ψ ∈ Σ, so that Fa(W) ∈ VΣ and VΣ 6|= ∀xy(x = y). If
|W | = 1, then by Lemma 1 and the hypothesis onW the formula
(Ψ1 ∧ · · · ∧Ψn → Φ)p is not a tautology.

The following examples are described in [5, pp. 198-199]. The
reader can compare the simplicity of our method with respect to
Burris’s and McKenzie’s reduction procedure.

Example 9. Let T be empty and Φ = ∀x(R(x)∨¬R(x)). Then¬Φ
is logically equivalent to ∃x(¬R(x) ∧R(x)). After Skolemization
we obtain the formula ¬R(c)∧R(c). We consider the factor variety
axiomatized by the identity fR(c, ξf , fR(c, ξt, ξf)) = ξt, that implies
ξf = ξt. Then by Theorem 3 it follows that ∅ |= Φ.

Example 10. Let T be the theory axiomatized by:

a 6= b,
∀x(x = a ∨ x = b), ∀xyz(R(x, y) ∧R(x, z)→ y = z),
∀x∃yR(x, y), ∀xyz(R(x, z) ∧R(y, z)→ x = y).

Let Φ = ∀y∃xR(x, y) and Σ = T ∪ {¬Φ}.
After Skolemization of Σ we get the following Σσ:

a 6= b, x = a ∨ x = b, R(x, y) ∧R(x, z)→ y = z,
R(x, g(x)), ¬R(x, c), R(x, z) ∧R(y, z)→ x = y.

The factor variety VΣ is axiomatized by:

fE(x, x, ξf , ξt) = ξt, fE(x, y, x, y) = x,
fE(a, b, ξt, ξf) = ξt, fE(x, b, fE(x, a, ξf , ξt), ξt) = ξt,
fR(x, z, ξf , fR(x, y, ξf , y)) = fR(x, z, ξf , fR(x, y, ξf , z)),
fR(x, z, ξf , fR(y, z, ξf , x)) = fR(x, z, ξf , fR(y, z, ξf , y)),

fR(x, g(x), ξf , ξt) = ξt, fR(x, c, ξt, ξf) = ξt.

Since T has no singleton models, by Theorem 3 we have that T |= Φ
iff we can equationally prove Ax(VΣ) `eq a = b.
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A. Confluence and Strong Normalization
This technical appendix is devoted to ...

We recall from [2, Def. 2.7.14] that a critical pair u1 � s� u2

is called: trivial if u1 and u2 are equal; convergent if u1 and u2

have a common reduct.

Lemma 7. All critical pairs are convergent.

Proof. By an easy case analysis. Hereafter we suppose that i > j.
The rules (F1) and (F `2 ) are overlapping, but the corresponding

critical pair is trivial. Similarly, for (F1) and (F r2 ).
The rules (F1) and (F3) are overlapping, so we have:

Pi(Pj(x, y), Pj(z, z))

Pi(Pj(x, y), z) Pj(Pi(x, z), Pi(y, z))

F1 F3

F `3

and, analogously
Pi(Pj(x, x), Pj(y, z))

Pi(x, Pj(y, z)) Pj(Pi(x, y), Pi(x, z))

F1 F3

F r3

The rules (F1) and (F `3 ) are overlapping, so we have:
Pi(Pj(x, x), z)

Pi(x, z) Pj(Pi(x, z), Pi(x, z))

F1 F `3

F1

The overlap between (F1) and (F r3 ) is handled analogously.
Also the rules (F3) and (F `3 ) are overlapping:

Pi(Pj(x, y), Pj(w, z))

Pj(Pi(x,w), Pi(y, z))

Pj(Pi(x, Pj(w, z)), Pi(y, Pj(w, z)))

F3

F `3

Pj(Pj(Pi(x,w), Pi(x, z)), Pi(y, Pj(w, z)))

Pj(Pi(x,w), Pi(y, Pj(w, z)))

Pj(Pi(x,w), Pj(Pi(y, w), Pi(y, z)))

F r3

F `2

F r3
F r2

The overlap between (F3) and (F r3 ) is handled analogously.
Consider now an index q ∈ N such that i > j > q. The overlap

between (F `3 ) and (F `3 ) generate a convergent critical pair since:
Pi(Pj(x, y), Pq(w, z))

Pj(Pi(x, Pq(w, z)), Pi(y, Pq(w, z)))

Pj(Pq(Pi(x,w), Pi(x, z)), Pi(y, Pq(w, z)))

Pj(Pq(Pi(x,w), Pi(x, z)), Pq(Pi(y, w), Pi(y, z)))

Pq(Pi(Pj(x, y), w), Pi(Pj(x, y), z))

Pq(Pj(Pi(x,w), Pi(y, w)), Pi(Pj(x, y), z))

Pq(Pj(Pi(x,w), Pi(y, w)), Pj(Pi(x, z), Pi(y, z))

F `3

F r3

F `3

F3

F r3

F `3

F `3

All other cases are trivial.
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