
Graph easy sets of mute lambda terms

A. Bucciarellia, A. Carrarob, G. Favroa,b, A. Salibrab

aUniv. Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, Paris, France
bDAIS, Università Ca’Foscari Venezia, Italy

Abstract

Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest
degree of undefinedness. In this paper, we define for each natural number n, an infinite and
recursive set Mn of mute terms, and show that it is graph-easy: for any closed term t of the
lambda calculus there exists a graph model equating all the terms of Mn to t. Alongside, we
provide a brief survey of the notion of undefinedness in the lambda calculus.

Keywords: Lambda-calculus, mute terms, graph models, forcing.

1. Introduction

Undefinedness in the lambda calculus is an important issue, tackled since the inception of
recursion theory: in order to show that the lambda calculus is Turing-complete, a sensible notion
of undefined λ-term is compulsory. In his 1936 paper showing that the Herbrand-Gödel’s general
recursive functions are λ-definable [31], Kleene somehow eludes this issue. First he adopts his own
characterization of general recursion, obtained by closing the set of primitive recursive functions by
the minimization operator µ [32]; second, when applying the µ operator to a (k+ 1)-ary primitive
recursive function f , he supposes that for all k-tuples of natural numbers n1, . . . , nk there exists
a natural number m0 such that f(n1, . . . , nk,m0) = 0. Hence, only the total general recursive
functions are taken into account in [31], and also in Turing’s work [40], that relies on Kleene’s
proof of λ-definability of general recursive functions. One may wonder what happens if Kleene’s
λ-term implementing the µ operator is applied to a λ-term defining a unary function that never
returns 0. Unsurprisingly, the resulting λ-term does not have a normal form.

Few years later, Church [21] showed that every partial recursive function f can be defined
by a λ-term tf in such a way that, whenever f(n) is not defined, tfpnq does not have a normal
form, where pnq denotes the Church numeral of n. Following the terminology of Barendregt [7],
Church’s result may be stated as follows: every partial recursive function can be λ-defined by using
the terms without normal form as undefined elements.

It is reasonable, however, that the set of λ-terms considered as undefined be a proper subset
of the non-normalising ones: for instance, the Turing fixpoint combinator [41] is non-normalising,
but it is very much significant from the point of view of the computations it can fire. Following
Kleene and Church, several results of λ-definability of the partial recursive functions with respect
to smaller and smaller sets of undefined elements have been proved. In particular, it has been
shown that the following sets of λ-terms (defined in Section 2) suitably represent undefinedness:
unsolvable terms [5], zero terms [38], and easy terms [42]. These results are subsumed and gen-
eralised by the following remarkable theorem of Statman [39] (see Theorem 3.5 below): every

Preprint submitted to Theoretical Computer Science November 23, 2015

general recursive function can be λ-defined with respect to any nonempty set U of closed λ-terms,
which is the complement of a recursively enumerable set (co-r.e. set, for short) and is closed under
λβ-conversion.

Among unsolvable λ-terms, easy terms have a very flexible computational behavior. A closed λ-
term t is easy if it can be consistently equated to any other closed term u. This notion dates back
to Jacopini [25], who proved, syntactically, the easiness of Ω = (λx.xx)(λx.xx). Then easiness
was explored by various authors, to begin with Baeten and Boerboom [4], who analysed the
interpretation of Ω in graph models and proved that Ω was even graph-easy, meaning that for
any other closed term u, the equation t = u could even be satisfied in some graph model. In the
meanwhile, the syntactic notion of a mute term had been introduced by Berarducci [9], correlated
to an infinitary lambda calculus. Mute λ-terms aims to define a model similar to the model of
Böhm trees, but which does not identify all the unsolvable terms. Mute terms are somehow the
“most undefined” λ-terms, as they are zero terms, which are not λβ-convertible to a zero term
applied to something else. For instance, Ω is mute, and Ω3 = (λx.xxx)(λx.xxx) is a zero term
that is not mute, since it reduces to Ω3(λx.xxx). Berarducci could argue that mute terms were
the “most undefined” terms, and proved (syntactically) that the set of mute terms is an easy-set,
meaning that all mute terms can be simultaneously and consistently equated to any given other
closed term. Whether there could be a semantical proof of this result remained unexplored.

The notion of easiness can be generalised to arbitrary classes of models. Given a class C of
models of the lambda calculus and a set Y of closed term, we say that Y is a C-easy set if, for
every closed λ-term u, there exists a model N ∈ C in which u and all elements of Y have the same
interpretation. A λ-term t is C-easy if {t} is a C-easy set. Studying C-easiness gives insights on the
expressive power of C. Concerning filter lambda models [8], for instance, it had been conjectured [3]
that they have full expressive power for easy terms, in the sense that any easy term was conjectured
to be filter easy. Carraro and Salibra [20] showed that this is not the case: there exists a co-r.e.
set of easy terms that are not filter easy.

The first negative semantical result was obtained by Kerth [29] and shows a limitation of graph
models: Ω3I, where I = λx.x, is an easy term, but no graph model satisfies the identity Ω3I = I.
The easiness of Ω3I was proven syntactically in [26] (see also [10]). A semantical proof was given
only in [1], where the authors build, for each closed t, a filter model of Ω3I = t.

Graph models are arguably the simplest models of the lambda calculus. There are two known
methods for building graph models, namely: by forcing or by canonical completion. Both methods
consist in completing a partial model into a total one; but, if we start with a recursive partial
web, the canonical completion builds a recursive total web, while forcing always generates a non
recursive web.

The canonical completion method was introduced by Plotkin and Engeler and then systematized
by Longo [34] for graph models. The word “canonical” refers here to the fact that the graph model
is built inductively from the partial one and completely determined by it. This method was
then used by Kerth [28] to prove the existence of 2ω pairwise inconsistent graph theories, and by
Bucciarelli–Salibra [17, 15, 16] to characterize minimal and maximal graph theories. In particular
[17] shows that the minimal graph theory is not equal to the minimal lambda theory λβ, and that
the lambda theory B (generated by equating λ-terms with the same Böhm tree) is the greatest
sensible graph theory.

The forcing method originates with Baeten–Boerboom [4] in graph models, and it is more
flexible than canonical completion. In fact, the inductive construction depends here not only on

the initial partial model but also on the consistency problem one is interested in. Forcing was
adapted later on to a few other classes of models by Jiang [27] and Kerth [30], and generalised by
Zylberajch [43] and Berline–Salibra [13] to some classes of “Omega-like terms” (cf. [11, 12] for a
survey of such results).

In this paper we define an infinite and recursive set of mute terms, the regular mute terms. An
n-ary regular mute term has the form s0s1 . . . sn, for some n, where each si is a hereditarily n-ary
λ-term (Section 6). An n-ary regular mute term s0s1 . . . sn has the property that, in n steps of
head reduction, it reduces to a term of the same shape sit1 . . . tn, and the tj are still hereditarily
n-ary λ-terms. As regular mute terms are mute, we know that the set of all regular mute terms
is an easy-set, since each subset of an easy set is itself easy. By generalising the forcing technique
used in [13], we show that the set of n-ary regular mute terms is actually graph easy for each n.
To the best of our knowledge, this is the first application of that technique to terms that do not
have the shape Ωt1 . . . tn for some n ≥ 0.

2. Preliminaries on lambda calculus

With regard to the lambda calculus we follow the notation and terminology of [6]. By Λ and
Λo, respectively, we indicate the set of λ-terms and of closed λ-terms. The symbol ≡ denotes
syntactical equality. The following are some notable λ-terms that will be used throughout the
paper:

• I ≡ λx.x; K ≡ λxy.x; ω ≡ λx.xx;

• Ω ≡ ωω; ω3 ≡ λx.xxx; Ω3 ≡ ω3ω3;

• Y ≡ λf.(λx.f(xx))(λx.f(xx)), the Curry fixed point combinator.

A λ-term has exactly one of the following forms:

(i) λx1 . . . xn.yt1 . . . tk (n, k ≥ 0);

(ii) λx1 . . . xn.(λy.s)ut1 . . . tk (n, k ≥ 0).

The first term is a head normal form (hnf, for short). The redex (λy.s)u in the second one is called
a head redex.

A λ-term t is solvable if it has a hnf u, i.e., t is β-convertible to a λ-term u and u is a hnf. A
term is unsolvable if it is not solvable.

An unsolvable t has: (i) order 0 if it is not β-convertible to an abstraction; (ii) order ∞ if, for
every natural number n > 0, t is β-convertible to λx1 . . . xn.u for some u; (iii) order n ≥ 1 if there
exists a greatest positive number n such that t is β-convertible to λx1 . . . xn.u for some u. Terms
of order 0 are also called zero terms. For example, Ω has order 0, λx.Ω has order 1 and YK has
order ∞.

A λ-theory is a congruence on Λ (with respect to the operators of abstraction and application)
which contains αβ-conversion. We denote by λβ the least λ-theory. A λ-theory is consistent if it
does not equate all λ-terms, inconsistent otherwise. The set of λ-theories constitutes a complete
lattice with respect to inclusion, whose top is the inconsistent λ-theory and whose bottom element
is the theory λβ.

If T is a λ-theory and t is a λ-term, we denote by [t]T the equivalence class of t.

Definition 2.1. Given a λ-theory T , a set A of λ-terms is T -closed if

t ∈ A ∧ t =T u⇒ u ∈ A.

A set A of λ-terms is T -closed if and only if A =
⋃
t∈A[t]T .

Definition 2.2. If X is a set of equations between λ-terms, then the λ-theory Th(X) generated
by X is defined as the intersection of all λ-theories containing X.

Notation 2.3. If Y ⊆ Λo, then we define Th(Y) to be the λ-theory Th({(t, u) : t, u ∈ Y }).

Definition 2.4. We say that Y ⊆ Λo is consistent if Th(Y) is consistent.

The definition of what is in general a “model of λ-calculus” can be found in many books and
papers (see, for example, [6, 33, 11]). We recall here that every model N of the λ-calculus induces
a λ-theory, denoted by Th(N), called the equational theory of N . Thus, t = u ∈ Th(N) if and
only if t and u have the same interpretation in N .

If Y ⊆ Λo, then we say that N satisfies Y , and we write N |= Y , if Th(Y) ⊆ Th(N).

3. Undefinedness in lambda calculus

The problem of characterizing λ-terms that represent an undefined computational process has
interested researchers since the origin of lambda calculus. In this section we survey some results
about this issue.

3.1. Unsolvable terms
If t is a solvable λ-term, then the principal hnf of t is obtained by applying to t the head

reduction: t �h λx1 . . . xn.yu1 . . . uk. The context λx1 . . . xn.y[]1 . . . []k can be considered as a
first partial result of the computation of t. The Böhm tree of t is the possibly infinite unfolding of
t according to the following coinductive definition:

BT(t) =

{
⊥ if t is unsolvable;
λx1 . . . xn.yBT(u1) . . .BT(uk) if t�h λx1 . . . xn.yu1 . . . uk.

The Böhm tree represents the idea of “asymptotic behavior”, where the possible computational
content of unsolvables is not taken into account, for they have all the empty Böhm tree.

If the operational semantics of a λ-term is its Böhm tree it is natural that the terms repre-
senting undefinedness are the unsolvable ones. The Genericity Lemma of lambda calculus (see
[6, Proposition 14.3.24]) provides evidence for the lack of operational meaning of unsolvables: for
every unsolvable t and normal form u, from C[t] =λβ u it follows that C[s] =λβ u for every s ∈ Λo.

All unsolvables can be identified and still we get a consistent λ-theory. Theories in which all
unsolvables are identified are called sensible and have been extensively studied in literature (see
[6, Chapter 16]). There is a continuum of sensible theories and it can be naturally equipped with
a structure of bounded lattice. The λ-theory H, generated by equating all unsolvables, is the
minimal sensible theory and it admits one maximal extension H∗. The most renowned sensible
theory is the theory B = {t = u : BT(t) = BT(u)} of Böhm trees.

3.2. A fine classification of undefinedness
We may classify the order of undefinedness of a set of closed λ-terms according to the “size” of

the set of terms it can be consistently equated to.
Let Y be a set of closed λ-terms. Define

Con(Y) = {u ∈ Λo : Y ∪ {u} is consistent (see Definition 2.4)}.

If Y = {t} is a singleton set, we write Con(t) for Con({t}).
It is obvious that Y ⊆ Λo is consistent if and only if Con(Y) 6= ∅. The case in which Con(Y) =

Λo is perhaps the most studied in the λ-calculus.

Definition 3.1. A set Y ⊆ Λo is an easy-set if Con(Y) = Λo.

A term t is easy if {t} is an easy-set.
Easy terms were introduced in [25], where it is also shown using syntactical techniques that Ω

is easy. Semantical proofs of easiness originated in [4].
The set of easy terms is a proper co-r.e. subset of the unsolvables. For example, Ω3 is unsolvable

but not easy, because it cannot be consistently equated to the identity I. Although Ω3 is not easy,
it is possible to show that Ω3I is easy (see [26]).

Definition 3.2. A term t is nf-easy if Con(t) ⊇ {u ∈ Λo : u is a normal form}.

In [10] Berarducci and Intrigila prove many interesting results on easy terms. Some of these
results are collected in the following theorem that shows the unusual behavior of easy terms.

We recall that the Böhm tree of a term t is incompatible with that of a term u if there exists
no λ-term s such that BT (t) ⊆ BT (s) and BT (u) ⊆ BT (s).

Theorem 3.3. [10] The following assertions hold:

1. There exists t ∈ Λo such that Con(t) = Λo \ [I]λβ.
2. There exists a nf-easy term that is not easy.
3. A term t is easy iff Con(t) ⊇ {u ∈ Λo : BT(u) is finite}.
4. u ∈ Con(YΩ3) for every closed term u such that BT (u) 6⊂ BT (ω3).

It is not yet known whether YΩ3 is easy ([14]).
Any element of an easy-set is obviously an easy term. Berline-Salibra [13] have shown that

the set {Ω(λx0 . . . xk+1.xk+1) : k ∈ N} is an easy-set. There exist sets of easy terms that are not
easy-sets: easiness of {Ω,ΩI} fails because {Ω,ΩI,K} is not consistent. In particular, the set of
all easy terms is not an easy-set ([24]).

3.3. Statman-sets
In this section we introduce Statman-sets, which are the most suitable candidates for repre-

senting inside lambda calculus the undefined value of a partial recursive function.
For every natural number n, we denote by pnq the Church numeral of n.

Definition 3.4. A λβ-closed set B ⊆ Λo is a Statman-set if, for every partial recursive function
f : N→ N, there exists F ∈ Λo such that{

Fpnq =λβ pf(n)q if f ↓ n;
Fpnq ∈ B otherwise.

Statman has shown the following beautiful result in an unpublished paper [39]. The proof by
Statman is based on early results by Visser [42] and can be found in [7].

Theorem 3.5. [7, Theorem 4.1] Every nonempty co-r.e. λβ-closed set of closed λ-terms is a
Statman-set.

Since Con(A) is a co-r.e. set for every λβ-closed r.e. set A, we get the following proposition.

Proposition 3.6. Let A (Λo be a λβ-closed r.e. set. Then we have:

1. Λo \ A is a Statman-set.
2. Con(A) is a Statman-set for every Con(A) 6= ∅.
3. Con(t) is a Statman-set for every closed λ-term t.

Example 3.7. The set of closed λ-terms without normal form is a Statman-set. The same holds
for the set of unsolvable (resp. easy, zero) closed terms.

3.4. Mute terms and meaningless sets
Berarducci trees [9] take into account the computational content of the unsolvables. As for

Böhm trees, Berarducci trees are obtained by an infinite unfolding of λ-terms.
A top normal form (top-nf, for short) is either a variable or an abstraction or a zero term

applied to another term. A term t has a top-nf if t is λβ-convertible to a top-nf.
The Berarducci tree of a term t is the possibly infinite unfolding of t according to the following

coinductive definition:

BD(t) =


⊥ if t has no top-nf;
x if t =λβ x;
λx.BD(u) if t =λβ λx.u;
BD(s) · BD(u) if t =λβ su with s zero term.

The function BD is well-defined by [9, Theorem 9.5].
As an example, we build the Berarducci tree of Ω3. The only possible reduction path of Ω3 is

the following:
Ω3 →β Ω3ω3 →β Ω3ω3ω3 →β Ω3ω3ω3ω3 →β . . . ,

where ω3 ≡ λx.xxx. So the zero term Ω3 can be seen as the infinite term ((. . . ω3)ω3)ω3.
One of the main results of [9] is that the λ-theory BD = {t = u : BD(t) = BD(u)} of Berarducci

trees is consistent. The terms that have a bottom Berarducci tree are called mute terms and can
be formally defined as follows.

Definition 3.8. [9] A term t is mute if t has no top-nf.

Mute terms have a totally undefined operational behavior. As expressed in the next theorem,
mute terms are “so undefined” that they satisfy the strongest property of undefinedness we have
introduced so far.

Theorem 3.9. [9] The set of mute terms is an easy-set.

All trees defined in this section can be also defined as infinite normal forms of an infinitary
extension of β-reduction. The infinite normal form NF∞(t) of a term t is the Böhm tree of t if
the infinitary reduction is made up to identifications of all unsolvables, or the Berarducci tree of t
if the infinitary reduction is made up to identifications of all mute terms.

If we do not identify a suitable set of unsolvables the infinitary calculus is in general not
confluent as the following example shows. The mute term tt, where t = λx.I(xx), reduces to
I(I(I(. . .))) with an infinite reduction and to Ω with a finite one; but then it is not possible to
close the diagram by reducing I(I(I(. . .))) to Ω.

The lack of confluence in infinitary lambda calculus originated the analysis of the so-called
meaningless sets. Informally, a set A of unsolvables is “meaningless” if the confluence of infinitary
lambda calculus can be restored by identifying all its elements.

The formal definition of a meaningless set can be found in [36, 37]. We have a lattice of
meaningless sets whose top element is the set of all unsolvables and whose bottom element is the
set of all mute terms. Every meaningless set A of unsolvables defines a notion of A-tree that
determines a consistent λ-theory. It has been shown in [36] that there exists a continuum of
different theories determined by meaningless sets.

3.5. Semantics
The following definition introduces the semantical notion of easiness.

Definition 3.10. Let Y ⊆ Λo and C be a class of models of the λ-calculus. We say that Y is a
C-easy set if, for every closed λ-term t, there exists a model N ∈ C such that N |= Y ∪ {t}. A
λ-term t is C-easy if {t} is a C-easy set.

The notion of C-easiness is useful to analyse the expressive power of a class of models.
In this paper we will focus on graph easiness, namely on C-easiness, where C is the class of

graph models (see Section 4). The origin of this technique dates back to the proof of graph easiness
of Ω in [4]. The main concern of this paper will be the definition of a familyMk (k ∈ N) of infinite
sets of mute terms, the regular ones, and a semantical proof that, for each k, the setMk is a graph
easy-set.

The reader can consult Section 8 for a list of positive and negative results concerning the
C-easiness of some classes of models.

4. Graph models

The class of graph models belongs to Scott’s continuous semantics (see [11, 12]). Graph models
owe their name to the fact that continuous functions are encoded in them via (a sufficient fragment
of) their graphs, namely their traces.

A graph model is a model of the untyped lambda calculus, which is generated from a web in a
way that will be recalled below. Historically, the first graph model was Plotkin and Scott’s Pω (see

e.g. [6]), which is also known in the literature as “the graph model”. The simplest graph model was
introduced soon afterwards, and independently, by Engeler [22] and Plotkin [35]. More examples
can be found in [11].

As a matter of notation, we denote by D∗ the set of all finite subsets of a set D. Elements of D∗
will be denoted by small roman letters a, b, c, . . . , while elements of D by Greek letters α, β, γ,

For short we will confuse the model and its web and so we define:

Definition 4.1. A graph model is a pair (D, p), where D is an infinite set and p : D∗ ×D → D
is an injective total function.

Such a pair will also be called a total pair. In the setting of graph models a partial pair
(see [11]) is a pair (A, q) where A is any set and q : A∗ × A ⇀ A is a partial (possibly total)
injection. Examples of partial pairs are: the empty pair (∅, ∅) and all the graph models.

If (D, p) is a partial pair, we write a →p α (or a → α if p is evident from the context) for
p(a, α). Moreover, β → α means {β} → α. The notation a1 → a2 → · · · → an−1 → an → α
stands for (a1 → (a2 → . . . (an−1 → (an → α)) . . .)). If ā = a1, a2, . . . , an, then ā → α stands for
a1 → a2 → . . . an−1 → an → α.

A total pair (D, p) generates a model of the λ-calculus of universe P(D), called graph λ-model.
We denote by EnvP(D) the set of environments, i.e., the functions from the set V of λ-calculus

variables to P(D). For every environment ρ, x ∈ V and a ⊆ D, we denote by ρ[x := a] the new
environment ρ′ which coincides with ρ everywhere except on x, where ρ′ takes the value a.

The interpretation |t|p : EnvP(D) → P(D) of a λ-term t relative to (D, p) can be described
inductively as follows:

• |x|pρ = ρ(x)

• |tu|pρ = {α : (∃a ⊆fin |u|pρ) a→ α ∈ |t|pρ}

• |λx.t|pρ = { a→ α : α ∈ |t|pρ[x:=a]}

Since |t|pρ only depends on the value of ρ on the free variables of t, we write |t|p if t is closed.
A graph model (D, p) satisfies t = u, written (D, p) � t = u, if |t|pρ = |u|pρ for all environments

ρ. The λ-theory Th(D, p) induced by (D, p) is defined as

Th(D, p) = {t = u : t, u ∈ Λ and |t|pρ = |u|pρ for every ρ}.

A λ-theory induced by a graph model will be called a graph theory.
It is well known that the semantics of lambda calculus given in terms of graph models is

incomplete, since it trivially omits the axiom of extensionality. In [17] Bucciarelli and Salibra
show the existence of a graph model (D, p), whose theory Th(D, p) 6= λβ is the least graph theory
with respect to the inclusion among theories.

5. Forcing in graph model

An important tool that we use in Section 7 is a technique introduced by Baeten and Boerboom
in [4], known as “forcing in graph models”. In [4] they gave the first semantical proof of the easiness
of Ω: for any term t, they build a graph model (D, p) such that (D, p) |= t = Ω. Their graph model

is defined by a method of forcing, which, although much simpler than the forcing techniques used
in set theory, is somewhat in the same spirit.

The essence of the forcing technique is the following: membership of some element of the
web to the interpretation of some adequate λ-term (here Ω) is forced by some condition on p. The
following proposition clarifies what we have just said. It gives a necessary condition and a sufficient
condition for an element to be in the interpretation of Ω in a graph model.

Proposition 5.1. ([4]) Let (D, p) be a graph model and α ∈ D.
1. If α ∈ |Ω|p, then there exists a finite subset a of D such that a→p α ∈ a;
2. If there exists β such that β = β →p α, then α ∈ |Ω|p.

The conditions expressed in Proposition 5.1 are the most important technical tools used in [4]
to solve the problem of the easiness of Ω from the semantical side.

Once the conditions on p, matching a given purpose, have been found, the following challenge
is to build a graph model satisfying those conditions; this is achieved by starting from a suitable
partial pair, and carefully completing it to a total pair. The completion must be careful in order
to preserve the desired property in the total pair. This is achieved with an ad hoc construction
in [4]. A generalisation of this construction, involving a notion of weakly continuous function and
presented below as Theorem 5.4, has been proposed in [13]. In Section 7 we will generalise it
further, proving Theorem 7.4, which is the key of the graph-easiness of the set of n-regular mute
terms. Let us explain now what “weakly continuous” means in this context.

Notation 5.2. Let D be an infinite countable set. By I(D) we indicate the cpo of partial injec-
tions q : D∗ ×D ⇀ D, ordered by inclusion of their graphs.

By a “total q" we will mean “an element of I(D) which is a total map” (equivalently: which
is a maximal element of I(D)). The domain and range of q ∈ I(D) are denoted by dom(q) and
rg(q). We will also confuse the partial injections and their graphs.

Definition 5.3. [13, Definition 10] A function F : I(D) → P(D) is weakly continuous if it is
monotone with respect to inclusion and if furthermore, for all total p ∈ I(D),

F (p) =
⋃
q⊆finp

F (q).

Since we are working with a countable infinite D, the difference with continuity comes of course
from the fact that there exist elements of I(D) which are not total but of infinite cardinality.

The forcing completion process we were referring to is the core of the proof of Theorem 5.4
below, which is the fundamental tool to prove the graph easiness of Ω.

Theorem 5.4. [13, Theorem 11] If F : I(D) → P(D) is weakly continuous, then there exists a
total p such that |Ω|p = F (p).

On the other hand, one has:

Lemma 5.5. [13, Lemma 15] For every closed λ-term t, the function Ft : I(D)→ P(D), defined
by Ft(q) = {α ∈ D : ∀ total p ⊇ q, α ∈ |t|p}, is weakly continuous, and we have Ft(p) = |t|p for
each total p.

The fact that for any closed term t there exists a total p ∈ I(D) such that |t|p = |Ω|p, that is
the graph easiness of Ω, is a simple corollary of the two results above.

6. The regular mute λ-terms

The aim of this section is to define the set of n-regular mute λ-terms (see Definition 6.4). A first
step will be to introduce the set of hereditarily n-ary λ-terms (see Definition 6.1). An n-regular
mute term has the form s0s1 . . . sn, where si is a hereditarily n-ary λ-term. An n-regular mute
term has the property that, in n steps of head reduction, it reduces to a term of the same shape
t0t1 . . . tn, where t0 = si for some 1 ≤ i ≤ n. We show that regular mute terms are mute, so that
the set of all regular mute terms is an easy-set, as subset of an easy-set. We will show that, for
each n, the set of n-regular mute terms is actually a graph-easy set, by generalising the forcing
technique used in [13].

A first step towards the definition of regular mute terms is the definition of the hereditarily
n-ary terms.

Definition 6.1. Let V be the infinite set of variables of λ-calculus and n ≥ 1. The set Hn[V] of
hereditarily n-ary terms (over V) is the smallest set of λ-terms containing V and such that: For
all t1, . . . , tn ∈ Hn[V], distinct variables y1, . . . , yn ∈ V and i ≤ n we have: λy1 . . . yn.yit1 . . . tn ∈
Hn[V].

We denote by Hn[x̄], for x̄ any finite (and possibly empty) sequence of distinct variables in V ,
the set of terms of Hn[V] whose free variables are included in x̄. We write Hn for Hn[].

Notice that

(i) The hereditarily n-ary terms are normal forms.

(ii) t ∈ Hn[x̄] iff either t is a variable in x̄ or there exists a sequence ȳ of fresh distinct variables
such that t = λy1 . . . yn.yit1 . . . tn, where tj ∈ Hn[x̄, ȳ].

Example 6.2. Some hereditarily unary and binary λ-terms:

(i) λy.yy ∈ H1

(ii) λy.yx ∈ H1[x]; (x ∈ H1[x, y])

(iii) λx.x(λy.yx) ∈ H1; (λy.yx ∈ H1[x])

(iv) λzy.yzx ∈ H2[x]; (z, x ∈ H2[x, y, z])

(v) λxy.x(λzt.tzx)y ∈ H2; (λzt.tzx), y ∈ H2[x, y]).

If x̄ is a sequence, then l(x̄) denotes the length of the sequence x̄.

Lemma 6.3. (Closure of Hn[V] under substitution) Let n ∈ ω and t ∈ Hn[V]. Then:

(i) For all z̄ ∈ V and all ū ∈ Hn[V] such that l(ū) = l(z̄), we have t[ū/z̄] ∈ Hn[V].

(ii) Moreover if t ∈ Hn[x̄, z̄] and ū ∈ Hn[x̄], then t[ū/z̄] ∈ Hn[x̄].

Proof. One gets (i) via a trivial induction on t; then (ii) trivially follows.

Definition 6.4. An n-regular mute term is a term s0s1 . . . sn such that si ∈ Hn. The set of all
n-regular mute terms is denoted byMn.

Example 6.5. Some unary and binary regular mute terms:

• (λx.xx)(λx.xx) ∈M1

• (λx.x(λy.yx))(λx.xx) ∈M1

• AAA ∈M2, where A := λxy.x(λzt.tzx)y.

Example 6.6. Let B := λx.x(λy.xy). Then BB is a mute term that is not regular:

BB = (λx.x(λy.xy))B →β B(λy.By)→β BB

In the following we denote by →h the head reduction (see [6, Definition 8.3.10]). We write →n
h

for n steps of head reduction.

Proposition 6.7. For every s0s1 . . . sn ∈Mn there exist r1, . . . , rn ∈ Hn and 1 ≤ i ≤ n such that

s0s1 . . . sn →n
h sir1 . . . rn.

Proof. Since s0 ∈ Hn, then s0 ≡ λy1 . . . yn.yit1 . . . tn with t1, . . . , tn ∈ Hn[y1, . . . , yn]. Hence
s0s1 . . . sn →n

h sit1[s̄/ȳ] . . . tn[s̄/ȳ], where ȳ ≡ y1 . . . yn and s̄ ≡ s1 . . . sn. By Lemma 6.3 the term
ti[s̄/ȳ] ∈ Hn, and we are done by defining ri ≡ ti[s̄/ȳ].

Theorem 6.8. Every n-regular mute term is mute.

Proof. Let s0 . . . sn be a n-regular mute term. By Proposition 6.7 there exists an infinite sequence
ik (k ≥ 1) of natural numbers and an infinite head reduction path

s0 . . . sn →n
h si1r1 . . . rn →n

h ri2t1 . . . tn →n
h . . .

that has an infinite number of redex at the top of the term. Since s0 . . . sn cannot reach a top
normal form, then it is a mute term.

Theorem 6.9. Mn is a recursive set of mute terms.

Proof. The recursiveness ofMn trivially follows from that of Hn, which is clear.

7. Forcing for regular mute terms

In this section we show that, given a closed λ-term t and a natural number n, there exists a
graph model which equates all the n-regular mute terms to t, using forcing.

7.1. Some useful lemmas
Lemma 7.2 below generalises Proposition 5.1 obtained by Baeten and Boerboom in [4] and

gives a sufficient condition for an element to be in the interpretation of an n-regular mute term in
a graph model.

Lemma 7.1. Let (D, p) be a graph model, ρ be an environment, β ∈ D, and β̄ = β, β, . . . , β
(n-times). If β = β̄ → α, t ∈ Hn[x̄] and β ∈ ρ(xi) (i = 1, . . . , k) then β ∈ |t|pρ.

Proof. The proof is by induction over the complexity of t as hereditarily n-ary λ-term. If t ≡ xi
then the conclusion is trivial because β ∈ ρ(xi). Otherwise, there exists ū ≡ u1, . . . , un ∈ Hn[x̄, ȳ]
such that t = λȳ.yiū.

β = β̄ → α ∈ |λȳ.yiū|pρ ⇔ α ∈ |yiū|pρ[ȳ:=β̄]
.

Since β ∈ ρ[ȳ := β̄](yi) for every i = 1, . . . , n, then by induction hypothesis β ∈ |ui|pρ[ȳ:=β̄]
for every

i = 1, . . . , n. It follows that α ∈ |yiū|pρ[ȳ:=β̄]
and we get the conclusion.

Lemma 7.2. Let (D, p) be a graph model, t ∈ Mn and γ ∈ |t|p. Then there exist a sequence
βi ≡ ai1 → · · · → ain → γ (i ∈ ω) of elements of D and a sequence di (i ∈ ω) of natural numbers
≤ n such that βi+1 ∈ aidi.

Proof. Let t = s0
0s

0
1 . . . s

0
n, where s0

i ∈ Hn. By Proposition 6.7 there exists an infinite sequence
of mute terms such that

s0
0s

0
1 . . . s

0
n →n

β s1
0s

1
1 . . . s

1
n →n

β . . . →n
β sk0s

k
1 . . . s

k
n →n

β . . .

and sk0 ≡ sk−1
dk−1

for some 1 ≤ dk−1 ≤ n. The number dk−1 is the order of the head variable of the
term sk−1

0 . By γ ∈ |s0
0s

0
1 . . . s

0
n|p there exists a0

1 → · · · → a0
n → γ ∈ |s0

0|p such that a0
i ⊆ |s0

i |p. We
define

β0 = a0
1 → · · · → a0

n → γ.

Assume βk = ak1 → · · · → akn → γ ∈ |sk0|p and akj ⊆ |skj |p for every 1 ≤ j ≤ n. Since βk ∈ |sk0|p and
sk0 = λȳ.ydku1 . . . un for some terms ui ∈ Hn[ȳ], then we have

γ ∈ akdk |u1[ā/ȳ]|p . . . |un[ā/ȳ]|p,

where ā = ak1, . . . , a
k
n. It follows that there exists

βk+1 = ak+1
1 → · · · → ak+1

n → γ ∈ akdk (1)

such that ak+1
j ⊆ |uj[ā/ȳ]|p. We have to prove that βk+1 ∈ |sk+1

0 |p and ak+1
j ⊆ |sk+1

j |p for every
j ≤ n. By applying the induction hypothesis and (1) we get βk+1 ∈ akdk ⊆ |s

k
dk
|p = |sk+1

0 |p.
The other relation can be obtained as follows, by defining s̄k = sk1, . . . , s

k
n: a

k+1
j ⊆ |uj[ā/ȳ]|p ⊆

|uj[|s̄k|p/ȳ]|p = |sk+1
j |p.

7.2. Forcing at work
Let I(D) be the cpo of partial injection from D∗ ×D into D. If p ∈ I(D) then the universe

Univ(p) of p is defined as follows:

Univ(p) =
⋃

(a,α)∈dom(p)

(a ∪ {α, p(a, α)}).

If p is finite, then the universe of p is also finite.

Definition 7.3. Let p ∈ I(D) be finite, α ∈ D and ε̄ ≡ ε1, . . . , εk ∈ D \Univ(p). Then pε̄,α is the
extension of p such that εj = ε1 → εj+1 (j = 1, . . . , k), where εk+1 = α.

Notice that
ε1 = ε1 → ε1 → · · · → ε1 → α (k-times)

and pε̄,α is also finite.
The next theorem is the main technical tool for proving the graph-easiness of the set of n-regular

mute terms. It generalises [13, Thm. 11].

Theorem 7.4. Let F : I(D)→ P(D) be a weakly continuous function and let e ∈ N. Then there
exists a total p′ : D∗ ×D → D such that (D, p′) |= t = F (p′) for all e-regular mute terms t.

Proof. The proof of this theorem will be concluded just before Theorem 7.9.
We are going to build an increasing sequence of finite injective maps pn : D∗×D ⇀ D, starting

from p0 = ∅, and a sequence of elements αn ∈ D ∪ {∗}, where ∗ is a new element, such that:
p′ =def ∪pn is a total injection, and (D, p′) |= t = F (p′) = {αn : n ∈ ω} ∩D, for all t ∈Me.

We fix an enumeration of D and an enumeration of D∗ ×D.
We start from p0 = ∅.
Assume that pn : D∗ ×D ⇀ D and α0, . . . , αn−1 have been built. We let

• αn = First element of F (pn)\{α0, . . . , αn−1} in the enumeration of D, if this set is non-empty,
and αn = ∗ otherwise;

• (bn, δn) = First element in (D∗ ×D) \ dom(pn);

• γn = First element in D \ (Univ(pn) ∪ bn ∪ {δn} ∪ {α0, . . . , αn−1, αn}).

We define a new finite injection r as follows:

r(β) =

{
pn(β) if β ∈ dom(pn)

γn if β = (bn, δn)

Case 1: αn = ∗. We let pn+1 = r.
Case 2: αn ∈ D. We define pn+1 = rε̄n,αn (see Definition 7.3), where ε̄n = εn1 , . . . , ε

n
e ∈

D \ (Univ(r) ∪ {αn}) are the first e distinct elements of D \ (Univ(r) ∪ {αn}).

It is clear that pn is a strictly increasing sequence of well-defined finite injective maps and that
p′ = ∪pn is total.

It is also clear that each pn (and p′) is partitioned into two disjoint sets: pn = p1
n ∪ p2

n, where
p1
n = {bi → δi = γi : 1 ≤ i ≤ n− 1} is called the gamma part of pn and p2

n = pn \ p1
n is called the

epsilon part.
For every γ ∈ D, we define

deg(γ) =

{
0 if γ /∈ rg(p′)

min{n : γ ∈ rg(pn)} if γ ∈ rg(p′)

Moreover, deg(c) = max{deg(x) : x ∈ c} for every c ⊆fin D.
The following claims easily derive from the construction of p′.

Claim 7.5. ∀n′ > n, (rg(pn′) \ rg(pn)) ∩ Univ(pn) = ∅.

Proof. Let β ∈ rg(pn′) \ rg(pn) and k = deg(β). Then n < k ≤ n′. Since β ∈ rg(pk) \ rg(pk−1)
and β can be either γk−1 or one of the εk−1

j , then β is not an element of Univ(pk−1) by construction
of pk. Since Univ(pn) ⊆ Univ(pk−1), we get the conclusion.

Claim 7.6. If deg(a→ α) = n and α /∈ rg(pn), then α /∈ rg(p′).

Proof. If α ∈ rg(p′) then α ∈ rg(pj) for some j. By α /∈ rg(pn), it must be n < j. We also
have that p′(a, α) = pn(a, α), for deg(p′(a, α)) = n. Thus (a, α) ∈ dom(pn) and α ∈ Univ(pn). By
Claim 7.5 and α ∈ rg(pj) \ rg(pn), we get a contradiction.

Claim 7.7. (i) deg(a→ α) ≥ deg(a ∪ {α}).
(ii) If a→ α is in the gamma part of p′, then deg(a→ α) > deg(a ∪ {α}).

Proof. Let deg(a→ α) = n. Thus, p′(a, α) = pn(a, α) and a ∪ {α} ⊆ Univ(pn).
(i) If n < deg(α) = j, then α ∈ rg(pj) \ rg(pn), that contradicts Claim 7.6. It follows that

deg(α) ≤ n.
If n < deg(a) = j, then there exists θ ∈ a such that deg(θ) = j > n, so that θ ∈ rg(pj)\ rg(pn).

By Claim 7.5 θ /∈ Univ(pn). This contradicts a ⊆ Univ(pn).
(ii) By (i) it is sufficient to show that deg(a∪{α}) 6= n. By hypothesis a = bn−1, α = δn−1 and

pn(a, α) = γn−1. Then by construction deg(γn−1) = n. By definition of pn, α is different from γn−1

and from any εn−1
j . So it cannot be in rg(pn) \ rg(pn−1). The same reasoning applies to a = bn−1.

Claim 7.8. If αn ∈ rg(p′), then deg(αn) ≤ n.

Proof. By construction of p′ we have that αn ∈ Univ(pn+1) and αn /∈ rg(pn+1) \ rg(pn). Then
deg(αn) 6= n+ 1. If deg(αn) = j > n+ 1, then αn ∈ rg(pj) \ rg(pn+1), which contradicts Claim 7.5
because αn ∈ Univ(pn+1). This concludes the proof of Claim 7.8.

We now show that (D, p′) |= t = {αn : n ∈ ω} ∩D = F (p′), for every t ∈Me.
Let X = {αn : n ∈ ω} ∩D and t ≡ s0s1 . . . se ∈Me in the remaining part of this proof.

• X ⊆ F (p′): It follows from the definition of αn and from the fact that F (pn) ⊆ F (p′).

• F (p′) ⊆ X: Suppose γ ∈ F (p′); since F is weakly continuous, γ ∈ F (pi) for some i (and for
all the larger ones). If γ /∈ X then, for all n ≥ i, αn 6= ∗ has rank smaller than γ in the
enumeration of D, contradicting the fact that there is only a finite number of such elements.

• X ⊆ |t|p′ : Let αn 6= ∗. The condition (D, p′) |= αn ∈ |t|p
′ follows immediately from Lemma

7.1 and the fact that

εn1 = εn1 → εn1 → · · · → εn1 → αn (e-times).

• |t|p′ ⊆ X: Assume that γ ∈ |t|p′ . Then by Lemma 7.2 there exists a sequence βj ≡ aj1 →
· · · → aje → γ (j ∈ ω) of elements of D and a sequence dj (j ∈ ω) of natural numbers ≤ e
satisfying the property βj+1 ∈ ajdj . By Claim 7.7 and by βj+1 ∈ ajdj the sequence deg(βj)
is an infinite decreasing sequence of natural numbers. Then there exist i and n such that
deg(βk) = n+ 1 for all k ≥ i.

There are (at most) e+ 1 elements having degree n+ 1, namely

γn = bn → δn

εn1 = εn1 → · · · → εn1 → αn (e-times)

εn2 = εn1 → · · · → εn1 → αn (e− 1-times)

. . .

εne = εn1 → αn.

Since deg(βi) = n+ 1, then βi is one of the element listed above, too. We have the following
possibilities:

(1): βi ≡ γn = bn → δn is not possible. In fact, by the definition of βi we derive that bn ≡ ai1
and δn ≡ ai2 → · · · → aie → γ. By Claim 7.7(ii) deg(bn) and deg(δn) are strictly less than
n+ 1, so that deg(aij) < n+ 1 for every 1 ≤ j ≤ e. From βi+1 ∈ aidi we get the contradiction
deg(βi+1) < n+ 1.

Then we must have that βi ≡ εnr for some r.

(2) βi ≡ εnr = εn1 → · · · → εn1 → αn (e− r + 1-times). By the definition of βi we derive that
aij = {εn1} for every 1 ≤ j ≤ e− r + 1 and αn ≡ aie−r+2 → · · · → aie → γ. But by Claim 7.8
we have that deg(αn) < n+ 1. This implies that βi+1 = εn1 and then that γ = αn.

This concludes the proof of Theorem 7.4.

Theorem 7.9. Let t be a closed term. Then, for every natural number n there exists a graph
model (D, p′) such that (D, p′) |= t = u for all n-regular mute terms u ∈Mn.

Proof. Take (D, p′) as defined in Theorem 7.4, using Ft as defined in Lemma 5.5.

8. Conclusion and Future Work

We have defined a familyMk (k ∈ N) of infinite, recursive sets of mute terms, the regular ones,
and shown that for each k, the setMk is a graph-easy set: for any closed λ-term t there exists a
graph model which equates t and all the k-ary regular mutes.

In a broader perspective, we have provided a positive answer to an instance of the following
problem:

Given a set E of closed λ-terms and a class C of models of λ-calculus, is it the case that E is
a C-easy set?

We refer to this problem as the one of the C-easiness of E. If E = {t} is a singleton set we
refer to the C-easiness of t. Few instances of this problem have been solved so far:

1. graph-easiness of Ω, proved in [4]. Generalisations of the techniques of [4] led to several new
proofs of graph-easiness in [43] and [13].

2. graph-easiness of the set {Ω(λx1 . . . xk.xk) : k ≥ 1}, proved in [13].
3. filter-easiness of Ω3I and some other easy terms, proved in [1], using the framework set up

in [3].
4. C-easiness of Ω for the class C of the reflexive coherent spaces (in stable semantics), proved

in [30].

A very restricted number of instances of the problem of C-easiness has obtained a negative
answer so far:

5. the graph-easiness of Ω3I disproved in [29], where it has been shown that no graph model
satisfies the identity Ω3I = I.

6. It has been conjectured in [3] that every easy term is filter-easy. This problem became
popular as the nineteenth item of the TLCA list of open problems and has been recently
disproved in [20], where it was shown the existence of a nonempty co-r.e. set of easy terms
which are not filter-easy.

The landscape obtained considering these results in a unified framework, suggests several re-
search directions. Some examples:

• It is unknown whether Y Ω3 is easy. Is there a suitable class of models C such that Y Ω3 is
C-easy? Otherwise stated: is it possible to attack the problem of the easiness of Y Ω3 from
the semantical side? Generalising techniques à la forcing in graph models to other classes of
models, like for instance the relational ones [18], could be promising.

• Is there a non-syntactical class C of models, such that t is C-easy, for every easy term t?

• More directly related to the content of this work is the following:

Is
⋃
nMn a graph-easy set?

Using a technique developed in [19] we are able to prove that the answer is yes, if
⋃
n∈EMn

is a graph-easy set for each finite set E.

Nevertheless, for n1 < n2, dealing with Mn1 and Mn2 simultaneously is problematic in
our approach, since the elements ε1, . . . , εn2 , as defined in the proof of Theorem 7.4, force
new, unwanted elements to belong to the interpretation of the n1-regular mutes. A simpler
question, embodying the difficulty of the problem, concerns the graph-easiness ofM1 ∪M2.

[1] Alessi, F., Dezani-Ciancaglini, M., Honsell, F.: Filter models and easy terms, Italian Confer-
ence on Theoretical Computer Science, LNCS 2202, Springer-Verlag, 17–37, 2001.

[2] Alessi, F. , Dezani-Ciancaglini, M., Lusin, S. : Intersection types and domain operators,
Theoretical Computer Science, 316(1), 25–47, 2004.

[3] Alessi, F., Lusin, S.: Simple easy terms, in S. van Bakel (ed.), Intersection Types and Related
Systems, ENTCS 70, Elsevier, 1–18, 2002.

[4] Baeten, J., Boerboom, B.: Omega can be anything it should not be, in Proceedings of the
Koninklijke Nederlandse Akademie van Wetenschappen, Serie A, Indag. Mathematicae 41,
111–120, 1979.

[5] Barendregt, H.P.: Some extensional term models for lambda calculi and combinatory logics,
PhD Thesis, Utrecht University, 1971.

[6] Barendregt, H.P.: The lambda-calculus, its syntax and semantics, Studies in Logic vol. 103,
North_Holland, revised edition 1984.

[7] Barendregt, H.P.: Representing ‘undefined’ in lambda calculus. J. Functional Programming
2(3): 367–374, 1992.

[8] Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter model and the completeness of
type assignment, Journal of Symbolic Logic 48(4), p.931-940, 1983.

[9] Berarducci, A.: Infinite λ-calculus and non-sensible models, in Logic and Algebra, eds. A.
Ursini and P. Agliano, Lecture Notes in Pure and Applied Mathematics 180, Marcel Dekker
Inc., 339–377, 1996.

[10] Berarducci, A., Intrigila, B.: Some new results on easy λ-terms, Theoretical Computer Science
121, 71–88, 1993.

[11] Berline, C.: From computation to foundations via functions and application: The lambda-
calculus and its webbed models, Theoretical Computer Science 249, 81–161, 2000.

[12] Berline, C.: Graph models of λ-calculus at work, and variations. Mathematical Structures in
Computer Science 16, 185–221, 2006.

[13] Berline, C., Salibra, A.: Easiness in graph models, Theoretical Computer Science 354, 4–23,
2006.

[14] Bertini Y.: La notion d’indéfini en lambda-calcul. PhD thesis, Université de Savoie, 2005.

[15] Bucciarelli, A., Salibra, A.: The minimal graph-model of lambda-calculus, 28th Internat.
Symp. on Math. Foundations of Comput. Science, LNCS 2747, Springer-Verlag, 300–307,
2003.

[16] Bucciarelli, A., Salibra, A.: The sensible graph theories of lambda-calculus, Proceedings of
the 19th Annual Symposium on Logic in Computer Science (LICS’04), IEEE, 276–285, 2004.

[17] Bucciarelli, A., Salibra, A.: Graph lambda-theories, Mathematical Structures in Computer
Science 18(5), 975–1004, 2008.

[18] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Not Enough Points Is Enough. in CSL 2007,
LNCS 4646, 298-312, Springer 2007.

[19] Bucciarelli, A., Carraro, A., Salibra, A.: Minimal lambda-theories by ultraproducts. In D.
Kesner and P. Viana: Proceedings Seventh Workshop on Logical and Semantic Frameworks,
with Applications (LSFA 2012), EPTCS 113, 61–76, 2012.

[20] Carraro, A., Salibra, A.: Easy lambda-terms are not always simple, RAIRO - Theor. Inform.
and Applic. 46(2), 291–314, 2012.

[21] Church, A.: The calculi of lambda conversion. Princeton University Press, 1941.

[22] Engeler, E.: Algebras and combinators, Alg. Univ. 13(3), 289–371, 1981.

[23] Hasegawa, M.: Recursion from cyclic sharing: Traced monoidal categories and models of cyclic
lambda calculi. In P. de Groote (ed.), Proceedings of Typed Lambda Calculi and Applications
(TLCA’97), LNCS 1210, 196–213, 1997.

[24] Intrigila B.: A problem on easy terms in lambda calculus. Fund. Inform, 15(1), 99–106, 1991.

[25] Jacopini, C.: A condition for identifying two elements of whatever model of combinatory logic,
in C. Böhm, ed., LNCS 37, Springer Verlag, 213–219, 1975.

[26] Jacopini, C., Venturini-Zilli, M.: Easy terms in the lambda-calculus, Fundamenta Informaticae
VIII.2, 225–233, 1985.

[27] Jiang, Y.: Consistency of a λ-theory with n-tuples and easy terms, Archives of Math. Logic,
34(2), 79–96, 1995.

[28] Kerth, R.: Isomorphism and equational equivalence of continuous λ-models, Studia Logica
61, 403–415, 1998.

[29] Kerth, R.: Isomorphisme et équivalence équationnelle entre modèles du λ-calcul, Thèse, Uni-
versité Paris 7, 1995.

[30] Kerth, R.: Forcing in stable models of untyped λ-calculus, Indagationas Mathematicae 10 ,
59–71, 1999.

[31] Kleene, S.C.: λ-definability and recursiveness, Duke Math. J. 2, 340–353, 1936.

[32] Kleene, S.C.: General recursive functions of natural numbers, Math. Ann. 112, 727–742, 1936.

[33] Krivine, J. L.: Lambda-Calculus, Types and Models. Masson, Paris, and Ellis Horwood,
Hemel Hempstead, 1993.

[34] Longo, G.: Set-theoretical models of λ-calculus : theories, expansions and isomorphisms,
Annals of Pure and Applied Logic 24, 153–188, 1983.

[35] Plotkin, G.: A set-theoretical definition of application, Memorandum MIP-R-95, School of
artificial intelligence, University of Edinburgh, 1972.

[36] Severi, P.G., de Vries, F.J.: Weakening the Axiom of Overlap in the Infinitary Lambda
Calculus. In RTA, LIPICS vol. 10, 313–328, 2011.

[37] Severi, P.G., de Vries, F.J.: Decomposition and cardinality of intervals in the lattice of mean-
ingless sets, in WOLLIC, LNAI 6642, Springer, 210–227, 2011.

[38] Statman, R.: Two recursion theoretic problems in lambda calculus. Manuscript, Department
of Mathematics, Carnegie Mellon University, Pittsburgh, USA, 1987.

[39] Statman, R.: The Visser Fixed Point Theorem. Manuscript, Department of Mathematics,
Carnegie Mellon University, Pittsburgh, USA, 1990.

[40] Turing, A.: Computability and λ-definability. J. Symbolic Logic 2(4), 153–163, 1937.

[41] Turing, A.: The þ-function in λ-K-conversion. J. Symbolic Logic 2(4), 164, 1937.

[42] Visser, A.: Numerations, λ-calculus and arithmetic, To H.B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism (J.R. Hindley and J.P. Seldin eds.), Academic Press,
New York, p. 259-284, 1980.

[43] Zylberajch, C.: Syntaxe et sémantique de la facilité en λ-calcul, Thèse, Université Paris 7,
1991.

