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Università Ca’ Foscari Venezia, via Torino 155, Venice, Italy

Abstract. When a physical feature is observed by two or more cameras,
its position in the 3D space can be easily recovered by means of triangu-
lation. However, for such estimate to be reliable, accurate intrinsic and
extrinsic calibration of the capturing devices must be available. Extrin-
sic parameters are usually the most problematic, especially when dealing
with a large number of cameras. This is due to several factors, including
the inability to observe the same reference object over the entire network
and the sometimes unavoidable displacement of cameras over time. With
this paper we propose a game-theoretical method that can be used to
dynamically select the most reliable rigid motion between cameras ob-
serving the same feature point. To this end we only assume to have a
(possibly incomplete) graph connecting cameras whose edges are labelled
with extrinsic parameters obtained through pairwise calibration.
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1 Introduction

Two points of view are in general enough to reconstruct 3D information from
2D projections. Nevertheless, in many practical scenarios, the adoption of mul-
tiple independent cameras is the preferred choice. This is the case, for instance,
when people have to be tracked within large areas [1] and strong resilience to
occlusion is sought [2].A collection of different points of view can also result
from dynamic scenarios, where cameras are mounted on drones [3] or images are
collected by different users on social networks and online services [4]. Camera
grids can also be very helpful when the phenomenon to be studied is difficult to
analyze from a single point of view. This happens with many Computer Vision
tasks, ranging from human action recognition [5] to video surveillance [6] and
tracking [7]. The adoption of multiple cameras could finally lead to improved
accuracy with image-based surface reconstruction [8], especially when dealing
with complex artifacts [9]. Of course, for any of these applications to be feasi-
ble, the geometry of the cameras must be known, at least to some extent. For
this reason, a lot of calibration methods that can be used to recover intrinsic
and extrinsic parameters have been proposed. Classic approaches use artificial
targets with known geometry [10] to compute intrinsic parameters and simul-
taneously assess the relative pose of each camera [11]. Other methods perform
pairwise calibrations that can be subsequently made consistent with respect to
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Fig. 1. Overview of the addressed scenario. Multiple cameras are loosely registered
through a partially incomplete graph of extrinsic transformation. A physical point is
observed by different cameras through an imaging process afflicted by random posi-
tional noise and a possibly wrong labelling.

a reference world [12]. It is also very common to exploit the scene itself to ob-
tain simultaneous extrinsic calibration ad structure reconstruction [13]. Finally,
many techniques have been proposed to calibrate a whole camera network at the
same time [14, 15]. Regardless of the method of choice, any calibration procedure
will result in some degree of inaccuracy. In addition, even very accurate calibra-
tions could deteriorate over time, as a consequence of movements of the cameras,
slight changes in the network topology or drift of intrinsic parameters. With this
paper we are not proposing a new calibration method. Neither are we interested
in how the calibration has been performed. We are just assuming that a (pos-
sibly large) set of cameras are available and that some process assessed their
extrinsic position up to its best accuracy. Within this scenario, our goal is not
to enhance the calibration or to correct its precision. Rather we are proposing a
consensus-based approach to select the more reliable set of extrinsic parameters
that can be used to perform triangulation given the current calibration. This
happens dynamically and depends on several factors, including the position of
the material points to be triangulated, the quality of the observations on the
image plane and the quality of initial extrinsic estimate.

2 General Scenario and Main Contributions

The general scenario we are working with is well represented in Fig. 1. We
are dealing with a network of cameras C = {C1, C2 . . . Cn}, each referred by a
unique label Ci. The typical size of such network can range from a few to several
tenths of independent devices. The cameras have been previously calibrated for
both intrinsic and extrinsic parameters. Within this paper, we are using the
term intrinsic calibration to refer to all the parameters needed to convert the
image acquired by the cameras to normalized image planes, as captured by an
ideal pinhole imaging process. By contrast, the term extrinsic calibration is used
to define the rigid transformations relating the camera reference frame to a
common world frame. To avoid any loss of generality, we make no assumption
about extrinsic calibration. Indeed, we model it as a set of rigid transformations
M = {M11,M12 . . .Mnn} where Mij is a 4 × 4 roto-translation matrix which



transforms 3D points expressed in the reference frame of Cj to point expressed
in the reference frame of Ci. Note that we are not assuming such matrices to
be transitively consistent. In fact, if the calibration method that produced M
is pairwise, we might easily have that, for instance M13 6= M12M23 6= M14M43.
Differently, if the calibration method is global, all the elements of M will be
consistent with respect to the same world, still this does not mean that they
exhibit the same accuracy, since it really depends on how they are built. For
instance, if they are built by incrementally chaining pairwise registrations, errors
can easily add up. Note that, although we are assuming Mii = I, we are not
pretending Mij = Mji to be true, since this property also depends on how the
extrinsic calibration was performed. Most of current literature aims to enforce
consistency in the calibration graph G = {C,M}. This usually happens by
means of some averaging process or by a-priori selection of optimal paths in
G. With this paper we take quite the opposite approach. In fact, we propose
to maintain the whole graph G and to select the optimal weighted subset of
paths (extracted from P(M)) for every triangulation to be performed. To this
end we assume that two or more cameras from C are able to observe the same
physical point p (see the right half of Fig. 1). This will result in a number of
points on the image planes, which are subject to random observation uncertainty
(usually modeled as zero-mean Gaussian additive noise). In addition, since a
scene can comprise several physical points, the labelling process that identifies
the same feature throughout all the observing cameras could fail, resulting in
outliers related to wrongly labelled observations. In the following we will refer to
observation a from camera i as Oai . An example is shown in Fig. 1. Here, cameras
C3 and C4 are observing material point p. A single observation, labelled O1

4 is
reported by camera C4. Differently, two observation are available from camera
C3, being O2

3 generated by the correct point of interest p, and O1
3 resulting from

a wrong labelling of the p′. In order for the position of p to be recovered from
its projections, four elements must be selected: two observations and two paths
connecting the observing cameras to the global reference. For instance, if we
assume C1 to be the world reference for our example, two feasible triangulation
hypotheses for p could be (M14M43, O

2
3,M14, O

1
4) and (M13, O

1
3,M12M24, O

1
4).

The ultimate goal of our method is to find the best way to triangulate p. This
happens by modeling each possible pair of paths and observations as strategies
in a non-cooperative game and by letting them play together until a consistent
weighted subset emerges. Key advantages of this approach include the ability to
select different paths for different regions for the Euclidean space. This makes
sense, since, out of geometrical considerations, is easy to observe that different
type of calibration errors will result in non-isotropic inaccuracies throughout
the space. Moreover, calibration quality could change over time due to physical
changes, making it desirable to dynamically select the optimal paths. Also our
method works equally well if extrinsic calibration are consistent with a common
space (i.e. transitively closed) and when only loosely related pairwise transfor-
mations are available. Finally, by properly defining the compatibility between
alternative labelling, we automatically filter outliers from the final solution.



3 Game-Theoretical Optimal Path Selection

Game Theory was introduced in the early 40’s by J. von Neumann to model
the behavior of entities with competing objectives, and was further developed
by J. Nash in the postwar period [16] through the introduction of the Nash
equilibrium. According to this view, the emphasis shifts from the search for
an optimum shared by the population, to the definition of equilibria between
opposing forces. The main intuition is that competitive behavior between agents
can be modeled as a game where a number of predefined strategies are available,
and a fixed payoff is gained by two individuals when they play a given pair
of strategies against each other. Evolutionary Game Theory [17] considers a
scenario where pairs of individuals, each pre-programmed with a given strategy,
are repeatedly drawn from a large population to play a game, and a selection
process allows “fit” individuals to thrive, while driving “unfit” ones to extinction.
The idea underlying the adoption of Evolutionary Game Theory for selection is
to model each hypothesis as a strategy and let them be played one against the
other, until a stable population emerges. We will cast this idea within our context
by using paths and observations as hypotheses and the consistence of the related
triangulations as their mutual payoff.

3.1 Hypotheses

We define H = {H1, H2, · · · , Hn} be the set of n available hypotheses. Each
hypothesis is a possible triangulation. To this end, it must include exactly two
observations and the two paths connecting the observing cameras to the world
frame. Without any loss of generality we can assume the world frame aligned with
C1, this way each hypothesis is a quadruple (M1x . . .Myi, O

a
i ,M1w . . .Mvj , O

b
j).

Here M1x . . .Myi and M1w . . .Mvj are paths that combine a sequence of rigid
transformation matrices connecting cameras Ci and Cj to C1. The accuracy of
such paths can vary according to the accuracy of the calibration. Oai and Obj are
two observations of the (hopefully) same physical point on the image planes of
camera Ci and Cj . Each hypotesis must include by construction two different
cameras, each path must not comprise cycles and must be shorter to a maximum
value maxpath. Accuracy of observations depends on several sources of noise,
usually distributed as a zero-mean Gaussian. In addition, each wrong labelling
could result in a totally misplaced point. Given these factors, the correctness of
each triangulation depends on both calibration-related and observation-related
error sources. It is very difficult, in general, to assess the quality of each hypoth-
esis by looking just at the single 3D point obtained.

3.2 Payoff

As a matter of fact, we are not really interested in the reliability of each hy-
pothesis alone. Rather, our focus is on the definition of a measure of how well
two hypotheses play together. This measure is called payoff and should be high
if the two hypotheses reliably converge on the same 3D point and low other-
wise. The payoff is usually expressed as a function π(i, j) : H × H → IR≥0,
where i and j are labels to hypotheses Hi and Hj . Since payoffs are defined



between all the pairs, an alternative notation is the payoff matrix Π = (πij),
where (πij) = π(i, j). Our goal is to define a payoff that can account for both
the consensus between reconstruction and their reliability. From each hypothesis
Hi it is possible to obtain a 3D point by means of triangulation. We call such
point x(Hi). Our method is not affected by the actual triangulation technique
used, as long as, in addition to the 3D points, it also return a skewness value
s(Hi) which measures the distance between the two rays used to recover the
material point. The position of the point x(Hi) and the triangulation skewness
s(Hi) can be used to build a proper payoff function. In fact, two hypotheses
can be deemed to be compatible if the associated 3D points are close. Moreover,
each one of them can contribute to the overall reliability measure according to
its skewness. Albeit these two error sources are not really independent, we can
still reasonably approximate them as a bidimensional Gaussian function:

π′(i, j) = e
− 1

2 (
(|x(Hi)−x(Hj)|)

2

σ2p
+
max(s(Hi),s(Hj))

2

σ2s
)

(1)

Where σp and σs are two parameters that represent respectively the expected
standard deviation of point position and of skewness. Note that (|x(Hi) −
x(Hj)|)2 is a pairwise measure that is defined between pairs of hypotheses.
Differently, s(Hi) and s(Hj) are independent one from the other, thus the max
operator is needed to account for them within the pairwise function π′.

While π′ expresses the degree of consensus between hypothesis, we must also
account for special cases where two hypotheses are not compatible regardless of
the quality of triangulation. This is the case when the hypotheses include two
different observations from the same camera. Indeed this is not possible since
we are tracking a single material point, thus one of the two observations must
be a wrong labelling. The other unfeasible case consists in the presence of two
different paths to the same camera. In fact, while different transformations might
be optimal for different points, it makes no sense to use two alternative paths to
the same camera for the same point, since it would break the reference to the
common world. These constraint can be enforced by explicitly setting a value of
zero in the final payoff function.

π(Hi, Hj)) = π((Puα , O
a
α, P

u′

α′ , O
a′

α′), (P
v
β , O

b
β , P

v′

β′ , O
b′

β′)) (2)

=



0 if α = β ∧ (u 6= v ∨ a 6= b)

α′ = β′ ∧ (u′ 6= v′ ∨ a′ 6= b′)

α′ = β ∧ (u′ 6= v ∨ a′ 6= b)

α = β′ ∧ (u 6= v′ ∨ a 6= b′)

π′(i, j) otherwise

where Puα represents a path connecting camera Cα to the world frame.

3.3 Evolution

With the set of hypotheses and payoff at hand, we can perform the evolution-
ary process needed to select mutually consistent triangulations. To this end
we need to define the concept of population. That is a discrete probability
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Fig. 2. Example of the selection process applied to the instance of the problem shown
in Fig. 1. Please note that this is a very simplified example with a non perfectly accurate
payoff matrix (albeit the sown evolution has been computed accurately). See the text
for an explanation of this specific example.

distribution x = (x1, . . . , xn)T over the available strategies H. Any popula-
tion vector is bound to lie within the n-dimensional standard simplex ∆n =
{x ∈ IRn : xi ≥ 0 for all i ∈ 1 . . . n,

∑n
i=1xi = 1} The support of a population

x ∈ ∆n, denoted by σ(x), is defined as the set of elements chosen with non-zero
probability: σ(x) = {i ∈ O | xi > 0}. In order to find a set of mutually coher-
ent hypotheses, we are interested in finding configurations of the population
maximizing the average payoff. Since the total payoff obtained by hypothesis i
within a given population x is (Πx)i =

∑
j πijxj , the (weighted) average pay-

off over all the considered hypotheses is exactly xTΠx. Unfortunately, it is not
immediate to find the global maximum for xTΠx, however local maxima can
be obtained using a rather wide class of evolutionary dynamics called Payoff-
Monotonic Dynamics. A quite common evolutionary process starts by setting
an initial population x near the barycenter of the simplex and then proceeds by
evolving it through the discrete-time replicator dynamic [18]:

xi(t+ 1) = xi(t)
(Πx(t))i

x(t)TΠx(t)
(3)

where xi is the i-th element of the population and Π the payoff matrix. This
family of dynamics are guaranteed to converge to an equilibrium where the
support does not include strategies with mutual payoff zero. This means that
the constraints expressed in equation (2) are actually guaranteed to be enforced.
This approach, while novel within the scenario covered by this paper, has shown
to be very successful in addressing a wide range of problems, including feature-
based matching [19], medical images segmentation [20] and registration [21],
rigid [22] and non-rigid [23] 3D object recognition.

To give to the reader a better understanding of how the process works we
illustrate a complete case in Fig. 2. While the example is kept intentionally sim-
ple, out of practical reasons, the evolution has been performed actually using
the shown payoff matrix and the replication dynamic described by equation (3).
Here, we are assuming the netwotk topology and observations shown in Fig. 1.



We are also assuming that all the pairwise extrinsic calibrations have been per-
formed with good accuracy, with the exception of M14 which is afflicted by a
larger error (for whatever reason). Observations O2

3 and O1
4 are correctly labeled,

albeit subject to measurement error. Observation O1
3 is an outlier and results

from a wrong labeling. We are considering two cameras (i.e. C = {C3, C4}) and a
total of four paths, two for each camera (i.e.M = {M13,M14M43,M14,M12M24}.
This result in a total of eight hypotheses, shown in figure. The payoff matrix is
shown with color coded entries. Namely we used red to highlight entries that
are zero due to the constraints expressed by equation (2). For instance hy-
potheses (M13O

1
3,M14O

1
4) and (M13O

2
3,M14O

1
4) are not compatible since they

include different observations from the same camera. Differently, hypotheses
(M13O

1
3,M14O

1
4) and (M13O

1
3,M12M24O

1
4) have zero mutual consensus since

they are connecting camera C4 to the world frame through two different paths.
Hypotheses that receive low mutual payoff due to geometrical inconsistencies are
highlighted in purple. Basically, they include all the pairs afflicted by the wrong
labeling of O1

3. Other pairwise payoffs are assigned according to the coherence
between reconstructions. Blue payoffs are slightly lower than green ones due to
the fact that they include the rigid transformation M14, which we assumed to
be less accurate. In the right part of the figure we show the actual evolution.
The process starts from an uniform distribution, where every hypothesis has the
same probability to thrive. After just 2 iterations of equation (3), hypotheses
related to outliers start to decrease, due to they low average payoff. After just
10 iteration, only feasible hypotheses survived. Note that paths including the
slightly inaccurate transformation M14 are less represented in the final popula-
tion. Indeed, the final distribution can be used to produce a weighted average of
the 3D point, rather than just selecting the hypothesis with higher score.

4 Experimental evaluation

To test our proposed optimal path selection approach we designed a set of syn-
thetic camera networks resembling typical real-world topologies. Testing with
a synthetic case allows us to factorize out all the unpredictable error sources
and properly analyze the behavior with respect to erroneous observations and
inaccurate positioning of the cameras.

We started by generating 3 different network topologies, namely: grid, hemi-
sphere and line. The first is composed by a regular grid of 15 cameras spanning
an area of 20 × 12 centered at the origin and lying onto the xy-plane (Fig 3,
left). All the cameras were rotated so that the z-axis points toward the network

center c = (0, 0, 10)
T

. We generated the exact relative motion between couple
of cameras whose distance is less than 10, for a total of 88 graph edges. The
second (hemisphere) is composed by 16 cameras disposed in a semi-sphere with
center c and radius r = 10 (Fig 3, center). We placed the cameras reference
frame origins with an uniformly distributed angular azimuth and elevation and
pointed all the optical axes toward the center. Also in this case, a total of 90
edges describe the relative motions of camera pairs that are less than 10 units
apart. Finally, we generated the line network topology as a set of 9 cameras lying



Fig. 3. The 3 generated graph topologies used for experimental evaluation: grid (left),
hemisphere (center) and line (right).

on the x-axis, uniformly spaced around the origin and oriented toward c (Fig
3, right). A set of 30 edges links together adjacent cameras. For all the three
topologies, camera intrinsic parameters were set with unitary focal length and
principal point lying at the origin. Furthermore, we placed the first camera C1 so
that its frame coincides with the world reference frame. From this ground truth,
many different perturbed instances of such topologies were generated by means
of a normally-distributed additive angular error (with zero mean and standard
deviation σr) to the rotation matrix of rigid motions associated to each edge.

In our first test we analyze the sensitivity of the proposed method wrt. payoff
parameters σp and σs. In Figure 5 (left) we show the spatial distance, varying σp
and σs, between a reconstructed 3D point and the generated ground truth for a
grid topology instance with σr = 9.1∗10−3. As expected, there exists a large area
around σp = 0.08, σs = 0.12 in which the interplay between the two parameters
leads to satisfactory results. This also give us a clue that the skewness, even if
is not a quantity directly measuring the final reconstruction error, can help the
effectiveness of the payoff function.

In the second experiment (Fig. 4) we compared the reconstruction accuracy of
our approach against “dual-quaternions” [12] and “SBA” [13]. The first method
exploits properties of dual-quaternions to diffuse the camera network error and
creates a new set of coherent motions to a common reference frame. The latter
is commonly used in structure-from-motion applications to simultaneously opti-
mize extrinsic camera parameters and the reconstructed 3D points given their
observations on each image plane. Reconstruction error is evaluated for grid,
hemisphere and line topologies (top to bottom row) varying the network graph
error σr (first column) and observation error σo (second column) by means of an
additive zero-mean Gaussian error with variance σ2

o . All the tests were performed
by reconstructing a structure of 10 points. For [12], we considered the best tri-
angulation in terms of re-projection error between all the graph paths with less
than 3 vertices whereas, for [13], all the structure points were optimized at the
same time. We can observe that SBA, even if it has the advantage of recomput-
ing the camera poses while triangulating, mostly suffers from the observation
errors. On the contrary, our proposed approach dynamically discards incoher-
ent observations producing structures that are less noisy and more reliable. A



Fig. 4. Comparison between our method, dual-quaternions [12] and SBA [13]. Trian-
gulation error is evaluated while perturbing the graph edges (left col.) and observations
(right col.) for grid, hemisphere and line graph topologies (top to bottom).

similar behaviour can be observed for [12] varying the network graph error σr.
Since [12] can only diffuse errors without discarding any edge, it suffers from
large relative motion displacements that may happen during graph calibration.
Overall, our method can deliver the best of the two worlds, being either able to
smooth the errors by averaging the triangulation among many cameras while still
being very effective when selecting a small set of reliable paths and observations.
Finally, we tested the behaviour of our method in case of observation outliers.
To this extent, we computed the number of false positives (wrong observations
still involved in the point triangulation) and false negatives (number of good
observations wrongly discarded) in the winning population for many different
triangulation attempts varying the observations outlier distribution for the grid
network topology. Specifically, we generated exactly one inlier observation (with
a random uniform uncertainty of σo = 10−3) and one outlier displaced from
the ground truth observation by Kσo. The more K is increased, the more the
distance on the image plane between inlier and outlier observations increase. As



Fig. 5. Left: triangulation error varying σp and σs. Right: false positives and negatives
wrt. inlier/outlier distance ratio K.

we can observe from Figure 5 (right), both the number of false positive and false
negatives decrease proportionally with K. With just 3 times σo, the number
of wrongly selected observations is almost 0. In a real-case scenario, we expect
wrong observations being either close to the correct one, so that they should not
hinder the triangulation, or more than 3 times the standard deviation apart and
thus discarded from the winning population.

5 Conclusions and Future Work
In this paper we introduced a dynamic path selection method that can be used
to perform robust 3D reconstructions when using multiple cameras characterized
by inaccurate extrinsic calibrations. Reconstruction is performed point-wise by
dynamically selecting the best possible set of camera poses and observations that
maximize the consistency of each pairwise triangulation. The ability to locally
exclude part of the graph or observations from the final triangulation makes our
method particularly effective in all the scenarios when either a precise calibration
or a reliable localization of the target cannot be provided. Finally, it should be
noted that the presented study is preliminary and our future goal is to complete
it with respect to both theoretical aspects and evaluation. From a theoretical
standpoint, the current solution works well only when the cameras are well over-
lapped. Suitable techniques should be introduced to obtain a transitive closure
throughout a long sequence of partially overlapped cameras. From a validation
point of view, we are presenting an entirely synthetic test set. An evaluation
using real-world data [24] could give a better insight about the practical merits
and limitations of the method.
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