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Abstract. We propose a class of preconditioners for symmetric linear systems arising from numerical
analysis and nonconvex optimization frameworks. Our preconditioners are specifically suited for large
indefinite linear systems and may be obtained as by-product of Krylov-subspace solvers, as well as by
applying L-BFGS updates. Moreover, our proposal is also suited for the solution of a sequence of
linear systems, say Ax = bi or Aix = bi, where respectively the right-hand side changes or the system
matrix slightly changes, too. Each preconditioner in our class is identified by setting the values of a
parameter and two scaling matrices, which are user-dependent, and may be chosen according to the
structure of the problem in hand. We specifically focus here on studying the condition number of the
preconditioned matrix, where the preconditioner belongs to our class.
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1 Introduction

We study a class of preconditioners for the solution of the symmetric indefinite linear system

Ax = b, A ∈ IRn×n, A = AT ,

where n is large and we do not assume any sparsity pattern for the system matrix A. The solution
of large linear systems is sought in a variety of real applications and in different contexts. Moreover,
the use of preconditioning is an essential issue to improve the efficiency of iterative solvers. Within
different frameworks of complex systems, the solution of sequences of large linear systems often comes
up, too. E.g., we often encounter sequences like

Ax = bi or Aix = bi, (1.1)

where {bi} are possibly arbitrary and the matrices {Ai} are slowly varying with the index ‘i’. Numerical
Analysis and Optimization give plenty of frameworks where the solution of a sequence of large linear
systems is sought. Truncated Newton methods in unconstrained optimization, KKT systems, interior
point methods, and PDE-constrained optimization are just some examples. Similarly, several real
applications, ranging from power systems networks to economic models and queuing systems, involve
the solution of large linear systems.

Typically, up to one decade ago, the specialized literature was keen on privileging the use of
direct methods when n was moderately small, in view to their reasonable cost, since O(n3) might
be unaffordable for large n. However, we have more recently observed an increasing blurred use of
techniques, in both sparse direct methods and iterative algorithms, in order to efficiently solve linear
systems (see e.g. [5, 7]). Observe that for linear systems where the matrix A is block-diagonal or
banded, which typically arise when solving discretized PDEs, specific solvers from the literature can
be used [19], which require to include effective preconditioning strategies, too.

In this paper we focus on the use of iterative methods to solve linear systems: the iterative
techniques are also used to provide sufficient information on the system matrix, in order to generate
the preconditioners.
We propose a general class of preconditioners, which uses information collected by any Krylov-subspace
method or possibly using L-BFGS updates, in order to capture the structural properties of the system
matrix.
In particular, we iteratively construct our preconditioners by using (but not performing) a factorization
of the system matrix (see, e.g. [11, 15, 26]), obtained as by product of Krylov-subspace methods. We
show that we can partially control the condition number of the preconditioned matrix, by introducing
some care when choosing specific parameters.

The basic idea of our approach draws its inspiration from Approximate Inverse Preconditioners,
which have proved in general to be remarkably robust and efficient in practice [5, 6]. These methods
claim that in principle, an approximate inverse of A should be computed and used as a preconditioner.
Though in practice it might be difficult to ensure that the approximate inverse is sparse, suitable
factorizations of matrix A can be fruitfully exploited, in order to build the approximate inverse pre-
conditioner. In particular, a generalization of the Gram-Schmidt process can be used to provide a
triangular factorization of A−1, where the triangular matrices are in general dense. This is the basic
idea of AINV preconditioner (see [5], Section 5.1.2).

In this paper we apply any Krylov-subspace method to implicitly generate a triangular factorization
of A−1. The latter is then used to build our preconditioners, namely the AINVK class, needing to store
just a few vectors, without requiring any matrix storage and any product of matrices (see also [2]).
As we collect information from Krylov-subspace methods, we assume that the entries of the system
matrix are not stored at once and the necessary information is gained by simply using a routine,
which computes the product of the system matrix times a vector. Note that, typically, the product
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of a matrix times a vector allows fast parallel computing, which is another possible advantage of our
approach, in large scale settings.

AINVK can be naturally extended to the solution of a sequence of large linear systems (see also
[3, 4]). Indeed, when sequences of systems are tackled, we generate the preconditioner P, for the
solution of the first linear system in the sequence, i.e. Ax = b1 or A1x = b1. Then, we apply P for
solving either Ax = bi or Aix = bi, i = 2, 3, . . . Thus, the cost of computing P, for i = 1, is repaid by
accelerating the solution for i = 2, 3, . . .; a similar strategy was proposed in [21]. The latter approach
might be strongly advantageous in numerical analysis and optimization frameworks, where the cost
for computing the preconditioner is relatively small, with respect to solving each linear system in the
sequence. Furthermore, when a Krylov-subspace method is adopted to compute the preconditioner,
the full storage of system matrix is never required. On the other hand, the same Krylov-subspace
method might be used also to compute the solution of the linear system (see also [24, 25]).

Unlike following the idea early developed in [22], where a full-memory quasi-Newton formula is
adopted for the preconditioner, we show that a few iterations of any Krylov-subspace method can be
used, in order to provide information for building our preconditioners. Even if the resulting matrices
are not sparse, they allow to consider preconditioning also for large scale problems, by simply storing
k vectors, with k ≪ n.

AINVK retains great generality, since it may be applied also when the system matrix is indefinite.
Further generality is also provided by AINVK through the dependency on one parameter and two
scaling matrices, which are user-dependent. Finally, we recall that in place of Krylov-subspace meth-
ods, in principle also L-BFGS updates can be used to build our preconditioners, so that they may be
easily embedded within different numerical frameworks.

The paper is organized as follows: Section 2 reports some preliminaries and Section 3 contains
the definition of the AINVK class. In Section 4 we study more in depth the condition number of
the preconditioned matrix PA, where P belongs to the class AINVK. Finally, Section 5 adds some
conclusions.

As regards the notations, for a n × n real matrix A we denote by Λ[A] the spectrum of A. Ik is
the identity matrix of order k. With C ≻ 0 we indicate that the matrix C is positive definite, tr[C],
rk[C] and det[C] are the trace, the rank and the determinant of C, respectively. Finally, while κ(B)
indicates the condition number of B, ‖ · ‖ denotes the Euclidean norm,

⊕

1≤j≤m Cj represents the
direct sum of matrices {Cj} (see e.g. [20]) and eh is the h−th unit vector.

2 Preliminaries

In this section we first introduce some preliminaries, then we propose our class of preconditioners.
Consider the indefinite linear system

Ax = b, (2.1)

where A ∈ IRn×n is symmetric and n is large. Assume that a Krylov-subspace method is used for the
solution of (2.1), e.g. the Lanczos process (SYMMLQ, MINRES [23]) or the Conjugate Gradient (CG)
method [15, 18] (but Planar-CG methods [10, 18] may be also an alternative choice). As well known,
the Lanczos process and the CG are equivalent as long as A ≻ 0, whereas the CG, though cheaper, in
principle may not cope with the indefinite case.

2.1 The matrix factorization we use

With reference to the definition in [14, 27], we say that a symmetric indefinite matrix c is factorizable
if the diagonal (or 2× 2 block diagonal) matrix B and the unit lower triangular matrix L exist such
that C = LBLT .

In the next assumption we consider that a finite number of steps, say h ≪ n, of the Krylov-subspace
method adopted have been performed.
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Assumption 2.1 [Factorization] Let us consider any Krylov-subspace method to solve the symmet-
ric linear system (2.1). Suppose at step h of the Krylov-subspace method, with h ≤ n− 1, the matrices
Rh ∈ IRn×h, Th ∈ IRh×h and the vector uh+1 ∈ IRn are generated, such that

ARh = RhTh + ρh+1uh+1e
T
h , ρh+1 ∈ IR. (2.2)

Suppose that the matrix Th is factorizable, so that there exists the following decomposition:

Th = LhBhL
T
h , (2.3)

where

Rh = (u1 · · · uh), uTi uj = 0, ‖ui‖ = 1, 1 ≤ i 6= j ≤ h+ 1,

Th is tridiagonal, irreducible, nonsingular, with eigenvalues not all coincident,

Bh is 1× 1 or 2× 2 block diagonal, Lh is unit lower bidiagonal.

To have a better intuition on the reason for which h steps of almost any Krylov-subspace method
satisfies Assumption 2.1, we remark that they are essentially all based on the generation of orthogonal
vectors (the Lanczos vectors or the residuals for CG-based methods), used to transform the system
(2.1) into a tridiagonal one. Then, they substantially differ only in the way the resulting tridiagonal
system is solved by factorization.

In particular, also observe that from (2.2) we have Th = RT
hARh, so that whenever A ≻ 0 then

Th ≻ 0. The Krylov-subspace method adopted may, in general, perform m ≥ h iterations, generating
the orthonormal vectors u1, . . . , um. Then, we can set Rh = (uℓ1 , . . . , uℓh), where {ℓ1, . . . , ℓh} ⊆
{1, . . . ,m}, and change relations (2.2)-(2.3) accordingly; i.e. Assumption 2.1 may hold selecting any
h out of the m vectors (among u1, . . . , um) computed by the Krylov-subspace method, up to step m.

Observe also that from Assumption 2.1, if ρh+1 6= 0, the subspace span{u1, . . . , uh} is not invariant
under the transformation by matrix A. This implies that here we consider a more general case with
respect to [1].

3 Our class of preconditioners AINVK

On the basis of Assumption 2.1, we can now define our preconditioners and show their properties. To
this aim, suppose Th = LhBhL

T
h in (2.3), where Bh =

⊕

1≤j≤m{Eh
j }, and where either Eh

j ∈ IR or

Eh
j ∈ IR2×2, for any j ∈ {1, . . . ,m}. Moreover, if Eh

j ∈ IR2×2 for an index j, assume that we compute
the eigen-decomposition

Eh
j = Uh

j D
h
j (U

h
j )

T , (3.1)

with Dh
j = diag{d1hj ; d2

h
j } and (Uh

j )
TUh

j = Uh
j (U

h
j )

T = I2. On the other hand, if Eh
j ∈ IR for an index

j, for the sake of notation we again assume that (3.1) holds, setting

Dh
j ≡ d1hj ≡ Eh

j and Uh
j = 1.

Then, we have (for the sake of simplicity and without loss of generality we assume Dh
j ∈ IR2×2, for

any j ∈ {1, . . . ,m})

Bh =
⊕

1≤j≤m

{

Eh
j

}

=
⊕

1≤j≤m







Uh
j





d1hj 0

0 d2hj



 (Uh
j )

T






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and we define (see also [13]) the matrix

|Bh|
def
=

⊕

1≤j≤m







Uh
j





|d1hj | 0

0 |d2hj |



 (Uh
j )

T







.

Moreover, we have equivalently

|Bh| =





⊕

1≤j≤m

{

Uh
j

}



 ·





⊕

1≤j≤m











|d1hj | 0

0 |d2hj |













 ·





⊕

1≤j≤m

{

(Uh
j )

T
}





= Uh · Dh · (Uh)
T , (3.2)

where
Uh =

⊕

1≤j≤m

{

Uh
j

}

,

Dh =
⊕

1≤j≤m











|d1hj | 0

0 |d2hj |











,

and we also define
|Th|

def
= Lh|Bh|L

T
h .

Observe that of course, by the definition of |Bh|, we have |Th| = Th in case Th is positive definite.
Furthermore, it is easily seen that |Th| is positive definite, for any h, and |Th|

−1T 2
h |Th|

−1 = Ih whenever

Th ≻ 0. As a consequence, by (2.3) we have Th|Th|
−1 = (|Th|

−1Th)
T = LhÎhL

−1
h , where

Îh = Bh|Bh|
−1 (3.3)

is at most 2× 2 block-diagonal with all the eigenvalues in {−1,+1}.
We are now ready to introduce the following class of preconditioners, which depends on the pa-

rameter a and the matrices Wh, D

M ♯
h(a,Wh,D)

def
= D

[

In − (Rh | uh+1) (Rh | uh+1)
T
]

DT

+ (Rh | Duh+1)

(

|Th(Wh)| aeh
aeTh 1

)−1

(Rh | Duh+1)
T , h ≤ n− 1, (3.4)

M ♯
n(a,Wn,D)

def
= Rn|Tn(Wn)|

−1RT
n . (3.5)

In (3.4)-(3.5) a ∈ IR, Wh ∈ IRh×h is diagonal positive definite and D ∈ IRn×n is nonsingular. Finally,
using (3.2) we also define the matrix

|Th(Wh)| = LhUh (WhDh)U
T
h L

T
h , (3.6)

so that the matrix WhDh is diagonal.

When D = In, a = 0 and Wh = Ih, M
♯
h(a,Wh,D) reduces to the preconditioner in [12].
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4 Issues on the condition number of M ♯
h(a,Wh, D)A

In this section we want to estimate the condition number κ(M ♯
h(a,Wh,D)A) of the unsymmetric matrix

M ♯
h(a,Wh,D)A (i.e. the preconditioned matrix A), where M ♯

h(a,Wh,D) is computed as in (3.4)-(3.5).
We immediately have the general formula

κ(M ♯
h(a,Wh,D)A)

def
= ‖M ♯

h(a,Wh,D)A‖ · ‖(M ♯
h(a,Wh,D)A)−1‖

= ‖M ♯
h(a,Wh,D)A‖ · ‖A−1(M ♯

h(a,Wh,D))−1‖. (4.1)

Observe that (4.1) provides an upper bound for the spectral condition number of M ♯
h(a,Wh,D)A (see

also formula (3.10) in [17]), which strongly affects the efficiency of preconditioning. Indeed (see also

[20]), if λ1, . . . , λn are the (nonzero) eigenvalues of M ♯
h(a,Wh,D)A, we have in general

maxi |λi|

mini |λi|
≤ κ(M ♯

h(a,Wh,D)A).

Moreover, in this section we consider the general case where A is indefinite. Now we prove the next
technical lemma.

Lemma 4.1 Let C ∈ IRh×h be a symmetric and positive definite matrix. Let 0 < ω1 ≤ · · · ≤ ωh be
the ordered eigenvalues of C, with ω1, . . . , ωh−1 not all coincident, and let a ∈ IR. Then, given the
quantities

α = −(h− 1)ω1 + tr(C) + 1,

β =
det(C)

[

1− a2eThC
−1eh

]

(ωh)h−1
,

we have
α2 − 4β > 0,

and
[tr(C)− (h− 1)ω1]ω

h−1
h

det(C)
> 1.

Proof: By the definition of α and β, and since C ≻ 0, the condition α2 − 4β ≥ 0 is satisfied if and
only if

(eThC
−1eh)

−1

[

1−
α2(ωh)

h−1

4det(C)

]

≤ a2. (4.2)

Now, observing that ω1, . . . , ωh−1 are not all coincident, α > ωh + 1 and for any ω1 ≥ 0 we have
(ω1 + 1)2 ≥ 4ω1, we obtain

α2(ωh)
h−1

4det(C)
≥

α2

4ω1
>

(ωh + 1)2

4ω1
≥

(ω1 + 1)2

4ω1
≥ 1, (4.3)

so that (4.2) holds for any choice of a, which also implies that α2 − 4β ≥ 0. Also observe that by (4.3)
α2(ωh)

h−1/[4det(C)] > 1, so that (4.2) can never be satisfied as an equality, i.e. α2 − 4β 6= 0 for any
value of the parameter a.

Finally, note that since det(C) = Πh
i=1ωi we have

ωh−1
h >

det(C)

tr(C)− (h− 1)ω1
, (4.4)
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inasmuch as ω1, . . . , ωh−1 are not all coincident, and

det(C)

tr(C)− (h− 1)ω1
≤

det(C)

ωh
=

h−1
∏

i=1

ωi < ωh−1
h .

As a consequence, we have the condition

[tr(C)− (h− 1)ω1]ω
h−1
h

det(C)
> 1.

We remark that from (3.4)-(3.5) and (4.1), in case A ≻ 0, a = 0, Wh = Ih and D = In, using
the Krylov-subspace method in Assumption 2.1 we easily obtain κ(Th) ≤ κ(A) (see for instance [15]).
Thus, in the latter case relation (4.1) yields

κ
(

M ♯
h(a,Wh,D)A

)

= κ
(

M ♯
h(0, Ih, In)A

)

≤ κ(Th)κ(A) ≤ [κ(A)]2 . (4.5)

However, the bound (4.5) seems rather poor and does not depend on the parameters in our class of
preconditioners. On the contrary, in the following result we provide an estimation of the condition
number κ(M ♯

h(a,Wh,D)A) in (4.1), which depends on the parameter ‘a’, and the matrices ‘Wh’ and
‘D’ in (3.4). Note that for the sake of clarity (but with a little abuse of notation), in the sequel we
directly indicate with µ1, . . . , µh the eigenvalues of |Th(Wh)| and not the eigenvalues of Th.

Proposition 4.2 [Condition Number] Let us consider the matrix M ♯
h(a,Wh,D) in (3.4)-(3.5),

with h ≤ n− 1, where Th satisfies Assumption 2.1. Let µ1 ≤ · · · ≤ µh be the (ordered) eigenvalues of
|Th(Wh)|, where µ1, . . . , µh−1 are not all coincident. Then, if

|a| < (eTh |Th(Wh)|
−1eh)

−1/2 (4.6)

we have
κ
(

M ♯
h(a,Wh,D)A

)

≤ ξh · κ(N)2 · κ(A), (4.7)

with

ξh =
max

{

1,
γh+(γ2

h−4σh)
1/2

2

}

min
{

1,
γh−(γ2

h−4σh)1/2

2

} , (4.8)

N = [Rh | Duh+1 | DRn,h+1],

and

γh = −(h− 1)µ1 + tr(|Th(Wh)|) + 1 (4.9)

σh =
det(|Th(Wh)|)

[

1− a2eTh |Th(Wh)|
−1eh

]

(µh)h−1
. (4.10)

In particular, when D = In in (3.4), then κ(M ♯
h(a,Wh, In)A) ≤ ξh · κ(A).

Proof: Consider the matrix
(

|Th(Wh)| aeh
aeTh 1

)

, (4.11)
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which is positive definite as long as condition (4.6) is fulfilled. Indeed, observe that setting ∆h =
1− a2eTh |Th(Wh)|

−1eh, by the identity
(

|Th(Wh)| aeh
aeTh 1

)

=

(

Ih 0

aeTh |Th(Wh)|
−1 1

)(

|Th(Wh)| 0

0 ∆h

)(

Ih a|Th(Wh)|
−1eh

0 1

)

we have

det

(

|Th(Wh)| aeh
aeTh 1

)

= det(|Th(Wh)|)∆h. (4.12)

Now, let λ1 ≤ · · · ≤ λh+1 be the (ordered) eigenvalues of the matrix (4.11). By the Cauchy interlacing
properties (Lemma 8.4.4 in [8]) between the sequences {µj}j=1,...,h and {λi}i=1,...,h+1 we have the
relation

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λh ≤ µh ≤ λh+1. (4.13)

By (4.11), (4.12) and (4.13) we can immediately infer the following intermediate results:

i) µ1 ≤ λi ≤ µh, i = 2, . . . , h

ii)

h+1
∑

i=1

λi = tr(|Th(Wh)|) + 1,

iii)

h+1
∏

i=1

λi = det(|Th(Wh)|)∆h.

From i) we deduce that

(h− 1)µ1 ≤

h
∑

i=2

λi ≤ (h− 1)µh,

so that from ii), iii), (4.13) and recalling that the matrix (4.11) is positive definite, we have

max {0,−(h− 1)µh + tr(|Th(Wh)|) + 1} ≤ λ1 + λh+1 ≤ −(h− 1)µ1 + tr(|Th(Wh)|) + 1 (4.14)

and
det(|Th(Wh)|)∆h

(µh)h−1
≤ λ1 · λh+1 ≤

det(|Th(Wh)|)∆h

(µ1)h−1
. (4.15)

From (4.14) and (4.15) (see Figure 4.1), in order to compute a lower [upper] bound λ̃1 [λ̃h+1] for the
smallest [largest] eigenvalue of matrix (4.11), we have to solve the linear system (σh and γh are defined
in (4.9) and (4.10))

{

λ̃1 + λ̃h+1 = γh
λ̃1 · λ̃h+1 = σh,

which yields

λ̃1 =
γh − (γ2h − 4σh)

1/2

2

λ̃h+1 =
γh + (γ2h − 4σh)

1/2

2
,

(4.16)

provided that γ2h − 4σh ≥ 0. The latter condition directly holds from Lemma 4.1. Now, observe
that setting N = [Rh | Duh+1 | DRn,h+1] (where N is nonsingular by hypothesis), for h ≤ n − 1 the

preconditioners M ♯
h(a,Wh,D) may be rewritten as

M ♯
h(a,Wh,D) = N





(

|Th(Wh)| aeh
aeTh 1

)−1

0

0 In−(h+1)



NT , h ≤ n− 1. (4.17)
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λ
1

λ h+
1

λ
1
 + λ

h+1
 = − (h−1)µ

1
 +  tr (|T

h
(W

h
)|) +1  

λ
1
 + λ

h+1
 =  − (h−1)µ

h
 +  tr (|T

h
(W

h
)|) +1

.

.

λ
1
 ⋅ λ

h+1
 = det(|T

h
(W

h
)|) ∆

h
 / (µ

h
)h−1  

λ
1
 ⋅ λ

h+1
 = det(|T

h
(W

h
)|) ∆

h
 / (µ

1
)h−1  

(A)

(B)

(C)

(D)

.

.

Figure 4.1: Relation between the eigenvalues λ1 and λh+1 of matrix (4.11).

As a consequence, setting

Hh =





(

|Th(Wh)| aeh
aeTh 1

)

0

0 In−(h+1)



 ,

we have for the smallest [largest] eigenvalue of the symmetric matrices Hh and H−1
h the expressions







λm(Hh) = min {1, λ1}

λM (Hh) = max {1, λh+1}










λm(H−1
h ) = 1

max{1,λh+1}

λM (H−1
h ) = 1

min{1,λ1}
.

Thus, if λm(A) [λm(A−1)] and λM (A) [λM (A−1)] are the smallest [largest] eigenvalues of matrix A
[A−1], from (4.17) we have

‖M ♯
h(a,Wh,D)A‖ ≤ λM (A) · ‖N‖2 · λM (H−1

h ) = λM (A) · ‖N‖2 ·
1

min {1, λ1}

and

‖(M ♯
h(a,Wh,D)A)−1‖ = ‖A−1(M ♯

h(a,Wh,D))−1‖ ≤ λM (A−1) · ‖N−1‖2 · λM (Hh)

=
1

λm(A)
· ‖N−1‖2 ·max {1, λh+1} ,

so that from (4.16)

κ
(

M ♯
h(a,Wh,D)A

)

= ‖M ♯
h(a,Wh,D)A‖ · ‖(M ♯

h(a,Wh,D)A)−1‖ ≤
max

{

1, λ̃h+1

}

min
{

1, λ̃1

} κ(N)2κ(A),

(4.18)
which is relation (4.7). Finally, when D = In in (3.4) then κ(N) = 1.
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4.1 On the assessment of the bound (4.7)

In order to further address the bound (4.7) we can now prove the next proposition.

Proposition 4.3 Let us consider the hypotheses of Proposition 4.2 and let the quantity ξh be defined
in (4.8). Then, for any choice of the parameter a and the matrix Wh satisfying (4.6) we have

ξh =
γh + (γ2h − 4σh)

1/2

γh − (γ2h − 4σh)1/2
, (4.19)

where γh and σh are defined in (4.9) and (4.10).

Proof: First observe that ξh in (4.8) is independent of the matrix D in (3.4)-(3.5). The proof now
consists to analyze the following three cases:

1) γh < 2 (i.e. 1 < 1/[tr(|Th(Wh)|)− (h− 1)µ1])

2) γh = 2 (i.e. 1 = 1/[tr(|Th(Wh)|)− (h− 1)µ1])

3) γh > 2 (i.e. 1 > 1/[tr(|Th(Wh)|)− (h− 1)µ1]).

In case 1) is satisfied, observe that the inequality

γh + (γ2h − 4σh)
1/2

2
< 1

cannot hold, since (consider that γh − 2 < 0 and see Lemma 4.1) it requires that

γh < 1 + σh if and only if a2 <

[

1−
(γh − 1)µh−1

h

det(|Th(Wh)|)

]

1

eTh |Th(Wh)|−1eh

which can hold only if
(γh − 1)µh−1

h

det(|Th(Wh)|)
≤ 1.

However, the last inequality cannot hold because it is equivalent to

1 ≥
[tr(|Th(Wh)|)− (h− 1)µ1]µ

h−1
h

det(|Th(Wh)|)
,

which cannot be satisfied from Lemma 4.1. Moreover, in case 1), also

γh − (γ2h − 4σh)
1/2

2
> 1

cannot hold, since γh − 2 < 0. Therefore, when γh < 2 relation (4.19) holds.
The case 2) is pretty similar to the case 1), so that again (4.19) follows almost immediately.
In case 3), the inequality

γh + (γ2h − 4σh)
1/2

2
< 1

cannot hold since it is equivalent to (γ2h − 4σh)
1/2 < 2 − γh < 0. Moreover, from Lemma 4.1 and

considering that γh − 2 > 0, the condition

γh − (γ2h − 4σh)
1/2

2
> 1

9



can be satisfied if

γh < 1 + σh if and only if a2 <

[

1−
(γh − 1)µh−1

h

det(|Th(Wh)|)

]

1

eTh |Th(Wh)|−1eh
,

which holds only if
(γh − 1)µh−1

h

det(|Th(Wh)|)
≤ 1.

However, since γh − 1 = tr(|Th(Wh)|)− (h− 1)µ1, the last inequality is again equivalent to

1 ≥
[tr(|Th(Wh)|) − (h− 1)µ1]µ

h−1
h

det(|Th(Wh)|)

which cannot hold from Lemma 4.1. Thus relation (4.19) holds.

Lemma 4.4 Consider the matrix M ♯
h(a,Wh,D) in (3.4)-(3.5), with h ≤ n − 1. Let µ1 ≤ · · · ≤ µh

be the (ordered) eigenvalues of |Th(Wh)|, with µ1, · · · , µh−1 not all coincident, and let the parameter a
and the matrix Wh satisfy condition (4.6). Then, for any choice of the nonsingular matrix D in (3.4)

• the coefficient ξh in (4.19) increases when |a| → ρ, with ρ = (eTh |Th(Wh)|
−1eh)

−1/2, and

lim
|a|↑ρ

ξh = +∞

• the coefficient ξh in (4.19) attains its minimum when a = 0, and in this case we have

ξh =
γh +

(

γ2h − 4det(|Th(Wh)|)
(µh)h−1

)1/2

γh −
(

γ2h − 4det(|Th(Wh)|)
(µh)h−1

)1/2
. (4.20)

Proof: Observe that lim|a|↑ρ ξh = +∞. Indeed, when |a| → ρ we have σh → 0, so that γh − (γ2h −

4σh)
1/2 → 0 and γh + (γ2h − 4σh)

1/2 → 2γh, with γh > 1. Thus, since from Lemma 4.1 γ2h − 4σh ≥ 0,
Proposition 4.3 ensures that ξh satisfies (4.19), so that ξh increases as |a| → ρ, with lim|a|↑ρ ξh = +∞.
Moreover, from (4.19) and since ξh is a continuous function of the parameter a (see also (4.6)), we
have

∂ξh
∂a

=
∂ξh
∂σh

·
∂σh
∂a

=
−4γh

[γh − (γ2h − 4σh)1/2]2(γ
2
h − 4σh)1/2

·
−2a · det(|Th(Wh)|)e

T
h |Th(Wh)|

−1eh
(µh)h−1

,

so that from (4.6) we have sgn{∂ξh/∂a} = sgn{a}, which implies that ξh attains its minimum for
a = 0.

Finally, by Lemma 4.1 we obtain γ2h − 4σh ≥ 0 for any choice of a satisfying (4.6), and when a = 0
it results σh = det(|Th(Wh)|)/(µh)

h−1. Thus, from Proposition 4.3 the value of ξh when a = 0 is given
by (4.20).

Remark 4.1 By (4.20) we observe that as expected, the matrix Wh affects the distribution of eigen-

values of M ♯
h(a,Wh,D)A, and also its condition number κ(M ♯

h(a,Wh,D)A), when it is computed
according with (4.1).
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4.2 Guidelines to tighten the bound (4.7) on κ
(

M
♯
h(a,Wh, D)A

)

This section is devoted to suggest possible values for the matrix Wh in relation (3.6). In particular, we
want to show that by suitably setting Wh we can partially bound the spectral condition number of the
unsymmetric matrix M ♯

h(a,Wh,D)A, when D = In. We recall indeed that the bound (4.5) does not
seem so relevant, since it is independent of the parameters of our preconditioners. On this purpose,
observe that when a = 0 then, by (4.19),

ξh =
γh + (γ2h − 4σh)

1/2

γh − (γ2h − 4σh)1/2
.

Now, we want indicate possible values of Wh so that ξh is kept as low as possible, and the bound (4.7)
is as tight as possible. In particular, let us set







a = 0

Wh = δ2Ih,
(4.21)

which correspond to a simplification for the choice of Wh. By replacing the latter positions in ξh, and
indicating with 0 < ε1 ≤ ε2 ≤ · · · ≤ εh the eigenvalues of |Th|, we obtain

ξh =
γh + (γ2h − 4σh)

1/2

γh − (γ2h − 4σh)1/2

=
γh +

(

γ2h − 4 δ2hdet(|Th|)
(δ2)h−1(εh)h−1

)1/2

γh −
(

γ2h − 4 δ2hdet(|Th|)
(δ2)h−1(εh)h−1

)1/2

=
γh +

(

γ2h − 4 δ2det(|Th|)
(εh)h−1

)1/2

γh −
(

γ2h − 4 δ2det(|Th|)
(εh)h−1

)1/2
. (4.22)

Since the positions (4.21) yield

γh = 1 + δ2 [tr(|Th|)− (h− 1)ε1]

σh =
δ2hdet(|Th|)

(δ2)h−1εh−1
h

=
δ2det(|Th|)

εh−1
h

,

setting






























α =
det(|Th|)

εh−1
h

> 0

β = [tr(|Th|)− (h− 1)ε1] > 0

z = δ2,

(4.23)

we immediately obtain β ≥ εh ≥ α and the quantity ξh becomes

ξh =
(1 + βz) +

[

(1 + βz)2 − 4αz
]1/2

(1 + βz)− [(1 + βz)2 − 4αz]1/2
=

{

(1 + βz) +
[

(1 + βz)2 − 4αz
]1/2

}2

(1 + βz)2 − [(1 + βz)2 − 4αz]

=
(1 + βz)2 − 2αz + (1 + βz)

[

(1 + βz)2 − 4αz
]1/2

2αz

= −1 +
(1 + βz)2 + (1 + βz)

[

(1 + βz)2 − 4αz
]1/2

2αz
.
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On this guideline, in order to have a tighter bound (4.7) on the condition number of the preconditioned

matrix M ♯
h(a,Wh,D)A, we want to solve the problem

min
z≥0

ξh,

where possibly min stands for global minimum. To the latter purpose we observe that

lim
z→0

ξh = +∞,

lim
z→+∞

ξh = +∞,

which imply that since ξh is continuous in (0,+∞), there will be the values m > 0 and M < +∞ such
that by Weierstrass theorem ξh has at least an unconstrained minimum point for z ∈ [m,M ].
After some computation we obtain

dξh
dz

=
(β2z2 − 1)

[

(1 + βz)2 − 4αz
]1/2

+ β3z3 + β(β − 2α)z2 − (β − 2α)z − 1

2αz2 [(1 + βz)2 − 4αz]1/2
, (4.24)

and since by Lemma 4.1
[

(1 + βz)2 − 4αz
]

> 0, for z sufficiently small the latter derivative is negative,
while for z sufficiently large it is positive, meaning that the derivative has at least one zero in the
interval z ∈ [m,M ]. This also implies that we can adjust the values of δ, so that we can have a tighter

bound (4.7) on the condition number κ(M ♯
h(a,Wh,D)A). Note that for z = 1 (i.e. δ = 1) we have for

ξh the following bound

ξh = −1 +
(1 + β)2 + (1 + β)

[

(1 + β)2 − 4α
]1/2

2α
≤ −1 +

2(1 + β)2

2α
=

(1 + β)2

α
− 1,

and z = 1 is not necessarily a zero of (4.24), i.e. δ = 1 is not necessarily a stationary value of ξh.
Now we investigate more accurately the zeros of (4.24), i.e. the possible stationary values for ξh,

recalling that since |Th| ≻ 0 the denominator of (4.24) is always positive as long as δ 6= 0. Relation
(4.24) is zero if and only if the following equality holds

(β2z2 − 1)2
[

(1 + βz)2 − 4αz
]

=
[

−β3z3 + β(2α − β)z2 + (β − 2α)z + 1
]2

. (4.25)

For the left and right hand side of the latter relation we have, respectively,

β6z6 + 2β4(β − 2α)z5 − β4z4 − 4β2(β − 2α)z3 − β2z2 + 2(β − 2α)z + 1

and

β6z6 + 2β4(β − 2α)z5 − (β4 − 4α2β2)z4 −
[

4β2(β − 2α) + 8α2β
]

z3 + (4α2 − β2)z2 + 2(β − 2α)z + 1.

Thus, (4.25) holds if and only if

4α2β2z4 − 8α2βz3 + 4α2z2 = 0,

and recalling that z 6= 0 (i.e. δ 6= 0) and α 6= 0 (since |Th| ≻ 0), the latter equality implies

(βz − 1)2 = 0,

i.e. the unique stationary value z∗ of ξh is

z∗ =
1

β
.

Moreover, even for small values of h (say h ∈ [5, 10]), we often have that β > 2α. It is not difficult
to realize that if the latter inequality holds, for z > 1/β we obtain ξ′h(z) > 0, while for z < 1/β we
obtain ξ′h(z) < 0, so that ξh is strictly convex and z∗ = 1/β is the unique global minimum.

The Figures 4.2, 4.3, 4.4 and 4.5 show ξh vs. z, respectively using the following values of α and β

12
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δ2 ∈  [0.5/β −− 1.5/β]
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Testquad_it134:  plot of ξ
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  vs. δ2

Figure 4.2: Plot of ξ7 vs. δ2 for the CUTEst function Testquad, where α and β are computed as in
(4.23), at outer iteration 134 of the Truncated Newton method described in [12]. The values of δ are

such that δ2 ∈
[

0.5
β , 1.5β

]

.

Figure 4.2:







α = 190.6662

β = 3.4485106
=⇒ z∗ =

1

β
= 0.289910−6

Figure 4.3:







α = 2.585710−4

β = 6.7200
=⇒ z∗ =

1

β
= 0.1488

Figure 4.4:







α = 2.755610−4

β = 6.7510
=⇒ z∗ =

1

β
= 0.1481

Figure 4.5:







α = 3.8582

β = 1.2084105
=⇒ z∗ =

1

β
= 0.827510−5 .

The function ξh in Figures 4.2, 4.3, 4.4 and 4.5 is obtained by selecting h = 7 (see also [12]) in
Assumption 2.1, and applying the preconditioner (3.4)-(3.5), with the positions (4.21). The matrix
A used in Assumption 2.1 is the Hessian matrix of the sample functions (see CUTEst collection [16])
Testquad, Dixmaani, Dixmaank, Curly20, obtained respectively at the outer iteration 134, 59, 17 and
200 of the preconditiond Truncated Newton method proposed in [12]. The number of unknowns n for
the sample functions is respectively 1000, 1500, 1500 and 1000.
We remark that in the outer iterations considered for the samples, a standard preconditioned Conjugate
Gradient method was used, to build the matrix Th in (2.3). The latter choice was motivated since the
sample problems above did not show regions of non convexity.
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Figure 4.3: Plot of ξ7 vs. δ2 for the CUTEst function Dixmaani, where α and β are computed as in
(4.23), at outer iteration 59 of the Truncated Newton method described in [12]. The values of δ are

such that δ2 ∈
[

0.5
β , 1.5β

]

.

5 Conclusions

We have given theoretical results for a new class of preconditioners, namely the AINVK class, which
is parameter dependent. The preconditioners can be built by using any Krylov-subspace method for
the indefinite linear system (2.1), as well as L-BFGS updates, provided that the general conditions
(2.2)-(2.3) in Assumption 2.1 are satisfied. In particular, in many problems using a relatively small
value of the index h, a significant information on the system matrix A can be captured.

On this guideline our proposal seems tailored also for those cases where a sequence of linear systems
of the form

Akx = bk, k = 1, 2, . . . (5.1)

requires a solution (e.g., see also [9, 21] for details), where Ak slightly changes with the index k. In

the latter case, the preconditioners M ♯
h(a,Wh,D) in (3.4)-(3.5) can be computed applying the Krylov-

subspace method to the first linear system A1x = b1. Then, the resulting preconditioners can be used
to efficiently solve (5.1) for k = 2, 3, . . .

A full investigation was also included, where we studied the spectral condition number of the pre-
conditioned matrix. On this guideline, observe that in the proof of Proposition 4.2, the considerations
from Figure 4.1 and relations (4.15)-(4.16) are quite conservative; indeed, possibly an alternative esti-
mation of the bounds λ̃1 and λ̃h+1 can be provided. In particular, the calculation of the four points A,
B, C, D in Figure 4.1 could provide a more practical (say ‘on average’) bound for κ(M ♯

h(a,Wh,D)A)
in (4.18).

Acknowledgments. G.Fasano thanks the Italian Flagship Project RITMARE, coordinated by the
Italian National Research Council and funded by the Italian Ministry of Education, within the National
Research Program 2011-2013.
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Figure 4.4: Plot of ξ7 vs. δ2 for the CUTEst function Dixmaank, where α and β are computed as in
(4.23), at outer iteration 17 of the Truncated Newton method described in [12]. The values of δ are

such that δ2 ∈
[

0.5
β , 1.5β

]

.
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