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Abstract. Using Vaggione’s concept of central element in a double-pointed algebra,

we introduce the notion of Boolean-like variety as a generalisation of Boolean algebras
to an arbitrary similarity type. Appropriately relaxing the requirement that every

element be central in any member of the variety, we obtain the more general class

of semi-Boolean-like varieties, which still retain many of the pleasing properties of
Boolean algebras. We prove that a double-pointed variety is discriminator iff it is

semi-Boolean-like, idempotent, and 0-regular. This theorem yields a new Maltsev-

style characterisation of double-pointed discriminator varieties.

1. Introduction

Boolean algebras have an exceptionally rich and smooth structure theory,

of which Stone’s representation theorem is a prominent example. What is

so special about Boolean algebras that is responsible for this nice behaviour?

Given a similarity type ν, can we always find a class of algebras of type ν that

displays Boolean-like features? And what does it mean, for an algebra of a

given type ν that may not exhibit such desirable properties, to have at least

a subset of Boolean elements that behave well? To address these questions,

we use the concept, due to Vaggione [39], of a central element in a double-

pointed algebra, meaning an element which induces therein, in a specified

sense, a pair of complementary factor congruences. Roughly speaking, given a

similarity type ν including at least two constants but otherwise fully arbitrary,

we associate the presence of a “well-behaved Boolean core” in a ν-algebra

with the presence of a retract of central elements, and we identify Boolean

ν-algebras with ν -algebras where every element is central. In order to fully

appreciate what properties of Boolean algebras are responsible for the most

important results concerning this variety, however, the issue is best addressed

in a step-by-step fashion. Therefore, following [31], we will decompose the

property of centrality into several equational properties, trying to investigate

what happens when some of them are satisfied but other ones are dropped.

This approach will give rise to a few successive approximations to a full-fledged

notion of “Boolean algebra of arbitrary similarity type”.
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Our work ties nicely with at least three research streams that have received

considerable attention in universal algebra and in the investigation into the

mathematical foundations of computer science:

• (Weak) Boolean product representations. It has been known for a long

time that Stone’s representation theorem, perhaps the most distinctive

result characterising Boolean algebras (or Boolean rings), can be gener-

alised to a much larger class of algebras. The appropriate tool to attain

this goal is the technique of Boolean products, which can be loosened to

the notion of weak Boolean product to take care of somewhat less man-

ageable cases (see e.g. [24]). Pierce [36] proved that every commutative

ring with unit is representable as a weak Boolean product of directly in-

decomposable rings; Stone’s representation theorem follows as a corollary

by observing that the 2-element ring of truth values is the unique directly

indecomposable Boolean ring. The technique of Boolean products under-

went remarkable developments over the subsequent years (see e.g. [13, Ch.

4.8]), giving rise to further generalisations of Stone’s theorem by Comer

(covering the case of algebras with Boolean factor congruences [16]) and

Vaggione [39].

• Discriminator varieties and noncommutative lattice theory. Discriminator

varieties [41] are referred to by Burris and Sankappanavar as

the most successful generalization of Boolean algebras to date,

successful because we obtain Boolean product representations

(which can be used to provide a deep insight into algebraic and

logical properties) [13, p. 186].

One of the most elegant characterisations of discriminator varieties in the

pointed case was obtained by Bignall and Leech [7], who linked them to a

noncommutative generalisation of Boolean algebras called left handed skew

Boolean ∩-algebras. More precisely, Bignall and Leech proved that: (i)

the variety of type (3, 0) generated by the class of all pointed discriminator

algebras A =(A; t, 0), where t is the discriminator function on A and 0 is

a constant, is term equivalent to the variety of left handed skew Boolean

∩-algebras; (ii) every pointed discriminator variety is term equivalent to a

variety of left handed skew Boolean ∩-algebras with additional compatible

operations. This result can be easily adapted to the double-pointed case1,

which is particularly significant in that the variety of Boolean algebras is

double-pointed [10]. Some more steps in this direction are taken in what

follows.

• Algebraic investigation of the if-then-else construct. There is a thriving

literature on abstract treatments of the fundamental if-then-else construct

of computer science, starting with McCarthy’s seminal investigations [34].

On the algebraic side, one of the most influential approaches originated

1Following [10], we say that a class of similar algebras is double-pointed if its type has at
least two constants that realise distinct elements in any nontrivial member of the class.
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with a paper by Bergman [6]. Bergman modelled the if-then-else by con-

sidering Boolean algebras acting on sets: if the Boolean algebra of actions

is the 2-element algebra, one simply sets 1(a, b) = a and 0(a, b) = b (see

e.g. [22] for details). Alternative perspectives make recourse to dynamic

algebras [37] or Kleene algebras with tests [27]. The approach followed in

this paper originates with Dicker’s axiomatisation of Boolean algebras in

the type (3, 0, 0) [18], and differs from Bergman’s in that the if-then-else

is treated as a proper algebraic ternary operation q on a double-pointed

algebra A, having the property that for every a, b ∈ A, q(1, a, b) = a and

q(0, a, b) = b. The resulting variety of Church algebras is investigated in

[30, 31, 32, 33] and is one of the fundamental notions in the present work

as well.

In greater detail, our paper is structured as follows. In Section 2 we will

dispatch some necessary preliminaries. In Section 3 we recall from [31] the

definition of Church algebra, introducing the concept of central element and

providing an equational characterisation thereof. In a generic Church alge-

bra, of course, there is no need for the set of central elements to comprise all

of the algebra. Church algebras where this is the case are (unimaginatively)

called Boolean-like, while the ones that miss the mark by possibly failing one

designated equation (in other words, where every element is semi-central) are

termed semi-Boolean-like. Both notions are the focus of Section 4. We pro-

vide a characterisation of Boolean-like varieties as discriminator varieties in

which the directly indecomposable members are two-element algebras. More-

over, we prove several properties of the pure semi-Boolean-like variety, e.g.

that it has no congruence identities. In Subsection 4.2, we give a purely alge-

braic characterisation of semi-Boolean-like varieties along the lines of the one

provided in [10] for discriminator varieties. In Section 5 we use the previous

concepts and results to provide several descriptions of double-pointed discrim-

inator varieties. With such an aim in mind, in Subsection 5.1 we consider

semi-Boolean-like algebras where a term definable meet-like binary operation

is idempotent. We prove that a double-pointed variety is discriminator iff it

is semi-Boolean-like, idempotent, and 0-regular. This theorem yields a new

Maltsev-style characterisation of double-pointed discriminator varieties.

Our notational and terminological conventions are the usual ones in univer-

sal algebra. Deviations from standard usage will be explicitly noted in what

follows.

2. Preliminaries

The present section reviews concepts and definitions needed to make the

present paper as self-contained as possible. Nonetheless, standard elementary

material, e.g. on Boolean algebras or discriminator varieties, is not covered

here. The interested reader may consult [20] or [13, Ch. 4].
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2.1. Weak Boolean products. Burris and Werner [14, 15] obtained Boolean

product representations for large classes of algebras, based on properties of

their congruence lattices; as mentioned in the introduction, important results

on Boolean products were proved by Comer [16] and Vaggione [39]. A good re-

cent account of (weak) Boolean products of lattice-ordered algebras is included

in [23]. The relevant definitions follow hereafter.

Definition 2.1. A weak Boolean product of a family (Ai)i∈I of algebras is

a subdirect product A ≤
∏
i∈I Ai, where I can be endowed with a Boolean

space topology such that: (i) the set {i ∈ I : ai = bi} is open for all a, b ∈ A,

and (ii) if a, b ∈ A and N ⊆ I is clopen, then the element c, defined by ci = ai
for i ∈ N and ci = bi for i ∈ I −N , belongs to A.

Definition 2.2. A Boolean product of a family (Ai)i∈I of algebras is a weak

Boolean product of such, with the property that the set {i ∈ I : ai = bi} is

clopen for all a, b ∈ A.

2.2. Subtractive and quasi-subtractive varieties. Subtractive varieties

were introduced by Ursini [38] to enucleate the common features of pointed

varieties with a good ideal theory, namely varieties of algebras — like groups,

rings or Boolean algebras — whose congruences can be replaced to all intents

and purposes by ideals of sorts. They were further investigated in [1, 2, 3].

Definition 2.3. A variety V whose type ν includes a term definable constant

1 is called 1-subtractive if there exists a binary term → of type ν (hereafter

written in infix notation) such that V satisfies the identities x → x ≈ 1 and

1 → x ≈ x. A variety of type ν which is 1-subtractive w.r.t. at least one

constant 1 of type ν is called subtractive tout court.

It is not hard to see that subtractivity is a congruence property: in fact, a

variety V is 1-subtractive just in case in each A ∈ V congruences permute at

1 (meaning that for all θ, ϕ in Con (A), 1/θ ◦ ϕ = 1/ϕ ◦ θ).
To show that subtractive varieties have a good ideal theory we need a work-

able general notion of ideal encompassing all the intended examples mentioned

above (normal subgroups of groups, two-sided ideals of rings, ideals or filters

of Boolean algebras). Ursini’s candidate for playing this role is defined below.

Definition 2.4. If K is a class of similar algebras whose type ν is as in Defini-

tion 2.3, a term p (x, y) of type ν is a K-ideal term in x if K�p (1, . . . , 1, y) ≈ 1.

A nonempty subset J of the universe of A ∈ K is a K-ideal of A (w.r.t.

1) if for any K-ideal term in x p (x, y) we have that pA
(
a, b
)
∈ J whenever

a ∈ J, b ∈ A.

Under the additional assumption of point regularity, one can show that

ideals can indeed replace congruences in members of subtractive varieties:

Theorem 2.5. If V is a 1-subtractive and 1-regular variety, then in every

A ∈ V, Con (A) is isomorphic to the lattice of V-ideals of A.
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Powerful and general as it may be, Theorem 2.5 does not subsume all the

known ideal-congruence isomorphism theorems known in the literature; in par-

ticular, there are varieties (e.g. pseudointerior algebras [11], or quasi-MV al-

gebras [28]) which fail to be subtractive but seem to have a good ideal theory

notwithstanding. In [26] the following generalisation of subtractive varieties

has been suggested:

Definition 2.6. A variety V whose type ν includes a term definable constant

1 and a term definable unary term � is called quasi-subtractive w.r.t. 1 and

� iff there is a binary term → of type ν (hereafter written in infix notation)

such that V satisfies the equations

(Q1) �x→ x ≈ 1 (Q2) 1→ x ≈ �x
(Q3) � (x→ y) ≈ x→ y (Q4) � (x→ y)→ (�x→ �y) ≈ 1

Clearly, subtractive varieties are in particular quasi-subtractive (just triv-

ialise � in the above definition). It is not known if quasi-subtractivity is a

congruence property; quasi-subtractive varieties are τ -permutable in the sense

of Blok and Raftery [12] (for τ = {�x ≈ 1}), but the converse need not hold.

The rôle played by ideals in the theory of subtractive varieties is played by

open filters in the suggested generalisation:

Definition 2.7. Let V be a variety whose type ν is as in Definition 2.6. A

V-open filter term in the variables x is an n + m-ary term p (x, y) of type ν

such that

{�xi ≈ 1 : i ≤ n} �V �p (x, y) ≈ 1.

A V-open filter of A ∈ V is a subset F ⊆ A with the following properties: (i) it

is closed w.r.t. all V-open filter terms p: whenever a1, . . . , an ∈ F, b1, . . . , bm ∈
A, p

(
a, b
)
∈ F ; (ii) for every a ∈ A, we have that a ∈ F iff �a ∈ F .

Remarkably enough, in every member of a quasi-subtractive variety the

lattice of open filters is modular.

Recall that τ -regular varieties [9] are a generalisation of point regular varieties

to the case of an arbitrary translation τ : a variety V is weakly τ -regular iff its

τ -assertional logic2 is strongly and finitely algebraisable, and τ -regular (tout

court) if, in addition, V is its equivalent variety semantics.

Under the additional assumption of weak {�x ≈ 1}-regularity, one can show

that open filters can indeed replace congruences with the appropriate quotients

in members of quasi-subtractive varieties.

Theorem 2.8. If V is quasi-subtractive and weakly {�x ≈ 1}-regular, and

V ′ is the equivalent variety semantics of the {�x ≈ 1}-assertional logic of V,

2If K is a class of algebras of type ν and τ (x) = {ti (x) ≈ si (x)}i∈I a translation (a

mapping from ν-terms to sets of ν-equations in a single variable), the τ -assertional logic of
K is the logic S (K) = (Tmν ,`), where

Γ ` t iff {τ (s) : s ∈ Γ} �V τ (t) .
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then in any A ∈ V, there is a lattice isomorphism between the lattice of all

congruences θ on A such that A/θ ∈ V ′and the lattice of V-open filters on A.

Clearly, this result specialises to a full isomorphism theorem between the

lattices of congruences and of open filters in case V is quasi-subtractive and

{�x ≈ 1}-regular.

3. Church algebras

The key observation motivating the introduction of Church algebras [30, 31,

32, 33] is that many algebras arising in completely different fields of mathemat-

ics — including Heyting algebras, rings with unit, or combinatory algebras —

have a term operation q satisfying the fundamental properties of the if-then-

else connective : q(1, x, y) ≈ x and q(0, x, y) ≈ y. As simple as they may

appear, these properties are enough to yield rather strong results.

Definition 3.1. An algebra A of type ν is a Church algebra if there are term

definable elements 0A, 1A ∈ A and a ternary term operation qA such that, for

all a, b ∈ A, qA(1A, a, b) = a and qA(0A, a, b) = b. A variety V of type ν is a

Church variety if every member of V is a Church algebra with respect to the

same term q(x, y, z) and the same constants 0, 1.

If A is a Church algebra, then A0 = (A; qA, 0A, 1A) is the pure reduct of

A. Henceforth, the superscript in qA will be dropped whenever the difference

between the operation and the operation symbol is clear from the context,

and the same policy will be followed in similar cases throughout the paper.

The following proposition, whose proof is left to the reader, provides some

examples of Church varieties.

Proposition 3.2. Let V be a double-pointed variety.

(1) If V is 1-subtractive with witness term →, and every A ∈ V has a term

reduct (A; ·, 1, 0) of type (2, 0, 0) satisfying

1 · x ≈ x ≈ x · 1; 0 · x ≈ 0,

then V is a Church variety w.r.t. q(x, y, z) = ((x → (x · z)) → z) · (x →
(x · y)).

(2) If V has a term reduct (A; +, ·,′ , 1, 0) of type (2, 2, 1, 0, 0) satisfying

1 · x ≈ x; 0 · x ≈ 0; x+ 0 ≈ x ≈ 0 + x; 0′ ≈ 1; 1′ ≈ 0,

then V is a Church variety w.r.t. q(x, y, z) = (x · y) + (x′ · z).

Moreover, the following are easily checked to be Church algebras:

Example 3.3. (1) Rings with unit: q(x, y, z) = xy + (1− x)z;

(2) FLew-algebras [19]: q(x, y, z) = (x ∨ z) ∧ ((x→ 0) ∨ y);

(3) Ortholattices [13, p. 29]: q(x, y, z) = (x ∨ z) ∧ (x′ ∨ y);
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(4) Combinatory algebras [5]: q(x, y, z) = (x · y) · z, 1 = k and 0 = s · k,

where k and s are the basic combinators.

Hereafter, we consider the following terms:

x ∧ y = q(x, y, 0); x ∨ y = q(x, 1, y);

x′ = q(x, 0, 1); c(x) = q(x, 1, 0);

x− y = y′ ∧ x.

Exploiting an idea by Vaggione [39], we also define:

Definition 3.4. An element e of a Church algebra A is called central if the

pair (θ(e, 0), θ(e, 1)) is a pair of complementary factor congruences of A. A

central element e is nontrivial if e /∈ {0, 1}. By Ce(A) we denote the set of

central elements of the algebra A.

With reference to Example 3.3, it is known that central elements coincide

with central idempotents in rings with unit, with complemented elements in

FLew-algebras, and with members of the centre in ortholattices. The next

characterisation of central elements in a Church algebra is extremely useful;

the proofs of Proposition 3.6, and Theorem 3.7 can be found in [32] for the

particular case of combinatory algebras. We start with a lemma.

Lemma 3.5. Let A be a Church algebra and e ∈ A. Then we have, for all

a, b ∈ A,

a θ(e, 1) q(e, a, b) θ(e, 0) b.

Proof. From 1 θ(e, 1) e θ(e, 0) 0 it follows that

q(1, a, b) θ(e, 1) q(e, a, b) θ(e, 0) q(0, a, b).

By applying the identities characterizing Church algebras we get the conclu-

sion. �

Factor congruences can be characterised in terms of certain algebra homo-

morphisms called decomposition operations (see e.g. [35, Def. 4.32] for more

details).

Proposition 3.6. If A is a Church algebra of type ν and e ∈ A, the following

conditions are equivalent:

(1) e is central;

(2) θ(e, 0) ∩ θ(e, 1) = ∆A;

(3) for all a, b ∈ A, the element q(e, a, b) is the unique c ∈ A such that

a θ(e, 1) c θ(e, 0) b;

(4) For all a, b, a, b ∈ A:

1. q(e, a, a) = a

2. q(e, q(e, a, b), c) = q(e, a, c) = q(e, a, q(e, b, c))

3. q(e, f(a), f(b)) = f(q(e, a1, b1), . . . , q(e, an, bn)) (for every f ∈ ν)

4. q(e, 1, 0) = e
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(5) The function fe(a, b) = q(e, a, b) is a decomposition operation on A such

that fe(1, 0) = e.

Proof. (1) ⇒ (3) (θ(e, 1), θ(e, 0)) is a pair of complementary factor congru-

ences; then by Lemma 3.5 c = q(e, a, b) is the unique element satisfying

a θ(e, 1) c θ(e, 0) b.

(3)⇒ (2) By a θ(e, 1) a θ(e, 0) a and by Lemma 3.5 we have that q(e, a, a) =

a. If a(θ(e, 0) ∩ θ(e, 1))b then a θ(e, 1) b θ(e, 0) a, so that b = q(e, a, a) = a.

(2) ⇒ (1) From Lemma 3.5 it follows that θ(e, 1) ◦ θ(e, 0) = ∇A.

(4) ⇔ (5) The identities of item (4) express that fe is a decomposition

operator with the required property.

(1) ⇒ (5) fe is a decomposition operator because (θ(e, 1), θ(e, 0)) is a pair

of complementary factor congruences and q(e, a, b) is the unique element sat-

isfying a θ(e, 1) q(e, a, b) θ(e, 0) b. Moreover, fe(1, 0) = q(e, 1, 0) = e follows

from 1 θ(e, 1) e θ(e, 0) 0.

(5) ⇒ (1) Let (φ, φ) be the pair of complementary factor congruences as-

sociated with fe. From fe(1, 0) = q(e, 1, 0) = e it follows that 1φ eφ 0, so

that θ(e, 1) ⊆ φ and θ(e, 0) ⊆ φ. For the opposite direction, let aφb, which is

equivalent to q(e, a, b) = b by definition of decomposition operator. Then by

1θ(e, 1)e we derive a = q(1, a, b)θ(e, 1)q(e, a, b) = b, that implies φ ⊆ θ(e, 1).

Similarly for φ. �

Observe that Church varieties are Pierce varieties, in the sense of [39].

Hence, as a consequence of [39, Theorem 5], every Church algebra has fac-

torable congruences and then by [8, Corollary 1.4] it has Boolean factor con-

gruences.

Theorem 3.7. Let A be a Church algebra. Then Ce(A) = (Ce(A);∨,∧,′ , 0, 1)

is a Boolean algebra which is isomorphic to the Boolean algebra of factor con-

gruences of A.

Proof. The map e 7→ θ(e, 0) is a bijective map from the set Ce (A) of central

elements onto the Boolean algebra of factor congruences. We show that, for

all central elements e and d, the elements e′, e ∧ d and e ∨ d are central

and are respectively associated with the factor congruences θ(e, 1) = θ(e′, 0),

θ(e, 0) ∩ θ(d, 0) and θ(e, 0) ∨ θ(d, 0).

We check the details for e ∨ d = q(e, 1, d). First of all, we show that

q(e, 1, d) = q(d, 1, e). By Proposition 3.6.3 we have that

1 θ(e, 1) q(e, 1, d) θ(e, 0) d,

while 1 θ(e, 1) q(d, 1, e) θ(e, 0) d can be obtained as follows:

1 =P. 3.6.4 q(d, 1, 1) θ(e, 1) q(d, 1, e) θ(e, 0) q(d, 1, 0) = d
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Then, by Proposition 3.6.3 we have the conclusion q(e, 1, d) = q(d, 1, e). We

now show that q(e, 1, d) is the central element associated with the factor con-

gruence θ(e, 0) ∨ θ(d, 0), that is,

1 (θ(e, 1) ∧ θ(d, 1)) q(e, 1, d) (θ(e, 0) ∨ θ(d, 0)) 0.

By q(e, 1, d) = q(d, 1, e) we have 1 θ(e, 1) q(e, 1, d) and 1 θ(d, 1) q(e, 1, d),

that is, 1 (θ(e, 1) ∧ θ(d, 1)) q(e, 1, d). Finally, by Proposition 3.6 we obtain:

q(e, 1, d) θ(e, 0) d = q(d, 1, 0) θ(d, 0) 0, that is, q(e, 1, d) (θ(e, 0)∨ θ(d, 0)) 0. A

similar reasoning works for e ∧ d and e′. �

We already recalled that discriminator varieties are a successful generali-

sation of Boolean algebras in that they retain several distinctive properties

thereof, including their being amenable to Boolean product representations

with simple stalks. A generic Church variety admits a weak Boolean product

representation, but falls short of this standard under several respects – for

one, in general, stalks need not even be directly indecomposable, as witnessed

by the case of rings with unit. The following theorems provide necessary and

sufficient conditions for this to be the case, as well as singling out cases where

the representation is actually a Boolean product representation.

The next theorem corrects a partly erroneous statement to be found in [32].

Item (1) follows from [16], because Church algebras have Boolean factor con-

gruences. Item (2) follows from [13, Theorem VI.8.12].

Theorem 3.8. Let A be a Church algebra, S be the Boolean space of maximal

ideals of Ce(A) and f : A→ ΠI∈SA/θI be the map defined by

f(a) = (a/θI : I ∈ S),

where θI =
⋃
e∈I θ(0, e). Then we have:

(1) f gives a weak Boolean representation of A.

(2) f provides a Boolean representation of A iff, for all a 6= b ∈ A, there exists

a least central element e such that q(e, a, b) = a, that is, (a, b) ∈ θ(0, e).

For the previous representation to be of some interest, we need to be in a

position to provide additional information on its stalks. The following theo-

rem is a consequence of [39, Theorem 8], because Church varieties are Pierce

varieties in the sense of [39]. Nonetheless, an alternative detailed proof of

Theorem 3.9 can be found in the Appendix.

Hereafter we denote by Tν(x) the set of ν-terms in one variable x.

Theorem 3.9. Let V be a Church variety of type ν. Then, the following

conditions are equivalent:

(1) For all A ∈ V, the stalks A/θI (I ∈ S maximal ideal) are directly inde-

composable.

(2) The class VDI of directly indecomposable members of V is a universal

class.
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(3) There exists a finite subset ν0 of ν and a finite subset Y of Tν0(x) such

that, for every A ∈ V and e ∈ A, e is central in A iff the following

conditions hold, for all unary ν0-terms t, t1, t2, u, v ∈ Y :

(a) q(e, t(e), t(e)) = t(e); q(e, 1, 0) = e

(b) q(e, q(e, t(e), t1(e)), t2(e)) = q(e, t(e), t2(e))

= q(e, t(e), q(e, t1(e), t2(e)))

(c) q(e, f(u(e)), f(v(e))) = f(q(e, u1(e), v1(e)), . . . , q(e, un(e), vn(e))) for

all f ∈ ν0.

Observe that, in general, you cannot do any better than this: varieties with

factorable congruences where every member has a Boolean product representa-

tion are necessarily discriminator varieties [40], while Church algebras, which

have factorable congruences [32], need not be discriminator.

4. Semi-Boolean-like algebras

In a generic Church algebra, of course, there is no need for the set of central

elements to comprise all of the algebra — not any more than an arbitrary

ortholattice needs to be a Boolean algebra, or a ring with unit a Boolean

ring. In this section, we define under the name of Boolean-like algebras those

Church algebras where this actually happens, and we define and investigate

under the name of semi-Boolean-like algebras those Church algebras that miss

the mark, so to speak, by a hair’s breadth: in other words, Church algebras

where every element satisfies all the conditions characterising central elements

except, possibly, e = q(e, 1, 0).

Definition 4.1. We say that a Church algebra A of type ν is a semi-Boolean-

like algebra (or a SBlA, for short) if it satisfies the following axioms, for all

e, a, a1, a2, b, c ∈ A:

Ax1. q(e, a, a) = a

Ax2. q(e, q(e, a1, a2), a) = q(e, a1, a) = q(e, a1, q(e, a2, a))

Ax3. q(e, g(b), g(c)) = g(q(e, b1, c1), . . . , q(e, bn, cn)), for every g ∈ ν.

If every element of A is central, that is if A satisfies Ax1-Ax3 plus

Ax4. q(e, 1, 0) = e

then we say that A is a Boolean-like algebra (or a BlA, for short).

The elements of a semi-Boolean-like algebra will be called semi-central. The

same terminology will be used in the more general context of Church algebras

to express the fact that an element e of a Church algebra A satisfies the

identities Ax1-Ax3 for all a, a1, a2, b, c ∈ A and all g ∈ ν.

Definition 4.2. A variety V of type ν is a (semi-)Boolean-like variety if every

member of V is a (semi-)Boolean-like algebra with respect to the same term

q(x, y, z) and the same constants 0, 1.
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While Boolean algebras and Boolean rings are easily seen to be BlAs, we

bet the reader will be curious to see examples of SBlAs which fail to be BlAs.

Observe that, in general, orthomodular lattices, FLew-algebras, Heyting alge-

bras or rings with unit are not even SBlAs; in fact, orthomodular lattices and

FLew-algebras fail to satisfy Ax1, rings with unit fail to satisfy Ax2, and Heyt-

ing algebras fail to satisfy Ax3 for g(x, y) = x→ y. The next two algebras, on

the other hand, qualify as pertinent examples.

Example 4.3. Let 3 = ({0, 1, 2}; q, 0, 1) be the Church algebra completely

specified by the stipulation that q(0, a, b) = q(2, a, b) for all a, b ∈ {0, 1, 2}. It

can be checked that 3 is semi-Boolean-like. However, c(2) = q(2, 1, 0) = 0 6= 2.

Moreover, 3 is a nonsimple subdirectly irreducible algebra, with the middle

congruence corresponding to the partition {{1}, {0, 2}}. Therefore V (3) is not

a discriminator variety.

Example 4.4. Let 3′ = ({0, 1, 2}; q, 0, 1) be the Church algebra completely

specified by the stipulation that q(1, a, b) = q(2, a, b) for all a, b ∈ {0, 1, 2}.
It can be checked analogously that 3′ is semi-Boolean-like and V (3′) is not a

discriminator variety.

It is interesting to observe that double-pointed discriminator varieties are

always semi-Boolean-like varieties:

Proposition 4.5. Any double-pointed discriminator variety V with switching

term s is a semi-Boolean-like variety with respect to the term q(e, x, y) =

s(e, 0, y, x).

A few elementary properties of SBlAs follow.

Lemma 4.6. Let A be a SBlA. Then for all e, a, b ∈ A:

(1) q(e, a, b) = q(c(e), a, b);

(2) c(e) = c(c(e));

(3) q(e′, a, b) = q(e, b, a);

(4) c(e) and e′ are central;

(5) a ∨ (c(b))′ = a ∨ b′.

Proof. (1) q(c(e), a, b) = q(q(e, 1, 0), a, b) =Ax1
q(q(e, 1, 0), q(e, a, a), q(e, b, b))

=Ax3
q(e, q(1, a, b), q(0, a, b)) = q(e, a, b).

(2) From (1), for a = 1, b = 0.

(3) q(e′, a, b) = q(q(e, 0, 1), a, b) =Ax1
q(q(e, 0, 1), q(e, a, a), q(e, b, b))

=Ax3 q(e, q(0, a, b), q(1, a, b)) = q(e, b, a).

(4) Since c(c(e)) = c(e) and c(e′) = q(e′, 1, 0) = q(e, 0, 1) = e′, we get our

conclusion.

(5) From item (1) of the present Lemma it follows that (c(b))′ = b′. �

4.1. Two characterisations. For the class of Boolean-like varieties the fol-

lowing result holds.
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Proposition 4.7. Let V be a double-pointed variety. Then the following con-

ditions are equivalent:

(1) V is a Boolean-like variety;

(2) V is a discriminator variety such that |A| = 2 for every s.i. member A

of V;

(3) V is a SBlA variety for which ∧ (resp. ∨) is commutative.

(4) V is a SBlA variety for which ∧ and ∨ are both idempotent.

Proof. (1)⇒ (2) V is a discriminator variety with switching term s(x, y, z, u) ≡
((x ⊕ y) ∧ u) ∨ ((x ⊕ y)′ ∧ z) (where ⊕ is symmetric difference). If A ∈ V is

s.i., then |A| = 2 because all its elements are central.

(2) ⇒ (3) By Proposition 4.5 V is a semi-Boolean-like variety. Moreover, V is

Boolean-like since every element in a s.i. member of V is either 0 or 1, and

therefore central. The meet ∧ (resp. join ∨) coincides with the commutative

meet (resp. join) of the Boolean algebra Ce(A).

(3) ⇒ (4) Since c(a) = q(a, 1, 0) = q(1, a, 0) = a, the conclusion follows.

(4)⇒ (1) a = a∨a = q(a, 1, a) = q(a, 1, a∧a) = q(a, 1, q(a, a, 0))) = q(a, 1, 0) =

c(a). Then every element is central. �

What is the relationships between semi-Boolean-like varieties and Church

varieties in which c(x) is central for every x? The next proposition shows that

the first concept is at least as strong, and the subsequent example demonstrates

that it is actually stronger.

Proposition 4.8. For a Church variety V (w.r.t. the term q), the following

are equivalent:

(1) V is semi-Boolean-like;

(2) V satisfies the conditions:

(i) for all a, b, c ∈ A ∈ V, q(a, b, c) = q(c(a), b, c)

(ii) for all a ∈ A ∈ V, c(a) is central.

(3) V satisfies the condition 2(i) and the following universal formula holds in

every subdirectly irreducible member of V:

c(0) ≈ 0 Z c(1) ≈ 1 Z ∀x(c(x) ≈ 0 Y c(x) ≈ 1)

Proof. (1) implies (2) by Lemma 4.6. (2) clearly implies (3). For the remaining

implication, in every s.i. A ∈ V, c(a) ∈ {0, 1} is central for all a and since

q(a, b, c) = q(c(a), b, c) for all b, c ∈ A, we conclude that a is semi-central. �

Example 4.9. Let A = ({0, 1, 2}; q, 0, 1) be the Church algebra completely

specified by the stipulation that q(2, 0, 0) = 1 and q(2, a, b) = 0 if either a 6= 0

or b 6= 0. It can be seen that c(a) is central for every a ∈ A, but A is not a

SBlA. In fact, q(c(2), 0, 0) = 0 6= 1 = q(2, 0, 0).

Corollary 4.10. Let V be a Church variety (w.r.t. the term q) such that c(a)

is central for all a ∈ A ∈ V. Then V is a semi-Boolean-like variety w.r.t. the

term q1(x, y, z) = q(c(x), y, z).
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4.2. A purely algebraic characterisation. One of the deepest results in

the theory of discriminator varieties gives the following purely algebraic char-

acterisation thereof: a variety is a discriminator variety iff it is congruence

permutable, semisimple, and has equationally definable principal congruences

(EDPC) [10]. One may wonder if a suitable analogue of this theorem holds

in the case under investigation. Before answering the question in the affirma-

tive, however, we need to enrich our toolbox with suitable adaptations of the

preceding concepts. We start with a common generalisation of the notions of

congruence permutability and τ -permutability [12], first introduced in [25].

Definition 4.11. Let V be a variety of type ν, and let t, s be at most unary

terms of the same type. V is (t, s)-permutable iff for every A ∈ V, every

θ, ψ ∈ Con(A) and every a, b ∈ A, (t(a), s(b)) ∈ θ ◦ψ iff (t(a), s(b)) ∈ ψ ◦ θ. In

case t = s, we call V t-permutable.

If we let t = s in the preceding definition be the identity, we get the standard

notion of congruence permutability, while if we let a, b be the same element

we recover Blok’s and Raftery’s concept of τ -permutability, at least for trans-

lations consisting of a single equation. A Maltsev-type characterisation of

(t, s)-permutability is readily available [29]:

Theorem 4.12. A variety V is (t, s)-permutable iff there exists a ternary term

p such that

V |= p(x, s(y), y) ≈ t(x) and V |= p(x, t(x), y) ≈ s(y).

Definition 4.13. Let A be Church algebra. θ ∈ Con(A) is called a B-

congruence if A/θ is a BlA.

We denote by θB(a, b) the smallest B-congruence collapsing a and b, and

by ConB(A) the complete lattice of B-congruences of A. Moreover, we denote

by ∆A
B the least B-congruence

∧
{θ : A/θ is a BlA}.

Lemma 4.14. Let A be a Church algebra. Then we have:

(1) ∆A
B ⊇ ker(cA);

(2) The following lattices are isomorphic: (i) ConB(A); (ii) The interval

sublattice [∆A
B , A×A] of Con(A); (iii) The congruence lattice Con(A/∆A

B )

of the BlA A/∆A
B .

Proof. (1) ∆A
B ⊇ ker(cA) since, if f is a homomorphism from A into a BlA

B, and c(a) = c(b), then f(a) = c(f(a)) = f(c(a)) = f(c(b)) = c(f(b)) = f(b).

(2) follows because ∆A
B is the least B-congruence. �

We need another ingredient: a notion of a variety whose subdirectly irre-

ducibles have no nontrivial B-congruence.

Definition 4.15. A Church variety V is B-semisimple iff in every s.i. member

A of V the only B-congruences are ∆A
B and ∇A.
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Theorem 4.16. Every semi-Boolean-like variety V is B-semisimple and c-

permutable.

Proof. Let A ∈ V. By Lemma 4.14 A/∆A
B is a Boolean-like algebra. Boolean-

like varieties are congruence permutable, as witnessed by the term (z ∧ (y′ ∨
x))∨ (x∧ (y′ ∨ z)), because they are discriminator varieties. It is easy to show

that the term

(c(z) ∧ (c(y)′ ∨ c(x))) ∨ (c(x) ∧ (c(y)′ ∨ c(z)))

is a Maltsev term witnessing c-permutability for A according to Theorem 4.12.

We now show that V is B-semisimple. Let A be a s.i. (hence directly

indecomposable) member of V, and let a, b be distinct members of A. By

Proposition 4.8 the elements 0 and 1 are the sole possible values for c(a) and

c(b). Then, by Lemma 4.14(1) θB(a, b) = ∆A
B if c(a) = c(b), while θB(a, b) =

∇A otherwise. �

To prove a converse to the preceding theorem, it is expedient to proceed as

in [10] and define an analogue of the concept of quaternary deduction (QD)

term, relativised to B-congruences.

Definition 4.17. Let V be a Church variety of type ν, and let t be a unary

term of the same type. A quaternary term p is called a t-quaternary deduction

( t-QD) term for A ∈ V iff for all a, b, d, f ∈ A,

p (a, b, d, f) =


d if t (a) = t (b)

f if d ≡θB(a,b) f and t (a) 6= t (b)

arbitrary otherwise

p is called a t-QD term for V iff it is a t-QD term for any A ∈ V.

Lemma 4.18. Let V be a Church variety. Then, for every A ∈ V, we have:

(1) The join semilattice CpB(A) of compact B-congruences is dually relatively

pseudocomplemented;

(2) The join semilattice CpB(A) of compact B-congruences, with ∆A adjoined

at the bottom, is dually relatively pseudocomplemented.

Proof. (1) follows from Lemma 4.14.2 and the fact that the BlA A/∆A
B has

EDPC. As regards (2), let us denote by ∗ the dual relative pseudocomple-

ment operation in the join semilattice of compact B-congruences of A. Let

us introduce on ConB(A) ∪ {∆A} a new binary operation ∗̂ by means of a

case-splitting definition:

θ∗̂ϕ =


θ ∗ ϕ if ϕ � θ and ϕ, θ ∈ ConB (A) ;

∆ if ϕ ≤ θ;
ϕ if θ = ∆.

It can be checked that this operation is well-defined and that for any θ, ϕ, ψ ∈
ConB(A) ∪ {∆A}, ϕ ≤ θ ∨ ψ iff θ∗̂ϕ ≤ ψ. �
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Theorem 4.19. If a Church variety V is c-permutable, then V has a c-QD

term p.

Proof. Let F be the 4-generated V-free algebra over free generators x, y, z, w.

By Lemma 4.18, θB(x, y) ∗̂ θB(z, w) and (θB(x, y) ∗̂ θB(z, w)2) = (θB(x, y) ∗̂
θB(z, w)) ∗̂ θB(z, w) both exist in the join semilattice of compact B-congru-

ences of F with ∆A adjoined at the bottom and by the theory of dually

relatively pseudocomplemented semilattices (z, w) ∈ (θB(x, y) ∗̂ θB(z, w)) ∨
(θB(x, y) ∗̂ θB(z, w)2). Since F is c-permutable and the preceding congruence

is a B-congruence, we have that (z, w) ∈ (θB(x, y) ∗̂ θB(z, w)) ◦ (θB(x, y) ∗̂
θB(z, w)2). Therefore there is a quaternary term p such that

w(θB(x, y) ∗̂ θB(z, w))p(x, y, z, w)(θB(x, y) ∗̂ θB(z, w)2)z.

Now, evaluate all this over an arbitrary algebra A ∈ V . If c(a) = c(b), then

(θB(a, b) ∗̂ θB(d, f)2) = (∆A
B ∗̂ θB(d, f)2) = θB(d, f) ∗̂ θB(d, f) = ∆A, whence

A satisfies p(a, b, d, f) = d. If (d, f) ∈ θB(a, b), then θB(a, b) ∗̂ θB(d, f) = ∆A

and so p(a, b, d, f) = f . �

Theorem 4.20. For V a Church variety the following are equivalent:

(1) V is a semi-Boolean-like variety;

(2) V is c-permutable and is B-semisimple.

Proof. (1) implies (2) because of Theorem 4.16. For the converse direction,

let V have the indicated properties. By Theorem 4.19 V has a c-QD term p.

Now, let A be a s.i. member of V. Then, if c(a) = c(b), p(a, b, d, f) = d. If

c(a) 6= c(b), then θB(a, b) = ∇A by Boolean semisimplicity and thus d ≡θB(a,b)

f , whence p(a, b, d, f) = f .

Let q1(x, y, z) = p(x, 0, z, y) and c1(x) = q1(x, 1, 0). From Proposition 4.8

it follows that V is a semi-Boolean-like variety w.r.t the term q1, if we observe

the following two facts:

(1) V |= q1(x, y, z) ≈ q1(c1(x), y, z) as this identity holds in all s.i. members

of V.

(2) For all a ∈ A, where A is s.i., c1(a) = p(a, 0, 0, 1) is equal either to 0 or

to 1. �

4.3. The pure variety SBlA0. We now turn our attention to the variety

SBlA0, consisting of all the pure term reducts of semi-Boolean-like algebras.

The variety SBlA0 is axiomatised by the two identities defining Church alge-

bras and by Ax1-Ax3 above. As a consequence of Proposition 4.7, the subvari-

ety BlA0 of SBlA0 consisting of pure Boolean-like algebras is term equivalent

to the variety BA of Boolean algebras.

If A is a member of SBlA0, we denote by c[A] the partial subalgebra of A

with universe {c(a) : a ∈ A}.

Proposition 4.21. Let A be a member of SBlA0. Then

(1) cA is an idempotent endomorphism of A;
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(2) c[A] is a Boolean-like algebra.

Proof. By Proposition 4.8 c(a) is central for every a ∈ A, so that c(c(a)) =

c(a). Then c[A] is a Boolean-like algebra if we show that cA : A → A is an

endomorphism:

c(q(a, b, d)) = q(q(a, b, d), 1, 0) =Ax3 q(a, c(b), c(d)) =L.4.6.1 q(c(a), c(b), c(d)).

�

The algebras 3 and 3′ of Examples 4.3 and 4.4 are not only semi-Boolean-

like algebras which fail to be Boolean-like, but they also jointly generate the

pure variety SBlA0.

Theorem 4.22. V ({3,3′}) = SBlA0.

Proof. Let A be a subdirectly irreducible member of SBlA0. First, observe

that, in the light of Proposition 4.21.2, the kernel ker(c) of the term opera-

tion cA determines a retract A/ ker(c) which is isomorphic to the 2-element

Boolean-like algebra by Proposition 4.8.3. Let now A be s.i. but not simple;

then there is an element a /∈ {0, 1} such that c(a) ∈ {0, 1}. We suppose ex

absurdo that there are two distinct such elements a, b, and go through a case-

splitting argument. If c(a) = c(b) = 1, consider the equivalence relations θ1
and θ2, which coincide with the diagonal except that 1θ1a and 1θ2b, respec-

tively. Taking into account that, q(a, y, z) =L.4.6.1 q(c(a), y, z) = q(1, y, z) = y

(for all y, z ∈ A) and similarly for b, an elementary check will ensure that both

θ1 and θ2 are congruences on A, such that θ1∧θ2 = ∆, against the hypothesis.

In the other three possible cases we argue analogously, replacing 1 by 0 in the

definition of congruences when necessary. Thus, a = b, that is A is either the

algebra 3, or the algebra 3′. �

From the point of view of its congruence properties, SBlA0 is anything but

well-behaved. In fact:

Theorem 4.23. SBlA0 has no congruence identities.

Proof. Consider the class K of all finite algebras in SBlA0 which satisfy the

condition x 6= 1 ⇒ q(x, y, z) ≈ z. This class is nonempty. More than that,

for every positive integer n there is a member of K with n elements: given

an arbitrary n-element set A, simply construct the table for q according to

the condition above and check that this does not conflict with the axioms of

SBlA0. Now let A ∈ K, and let θ be the equivalence on A corresponding

to the partition {{1}, A\{1}}. It can be checked that every subpartition of θ

corresponds to a congruence, which means that the lattice of congruences of

A coincides with the full lattice of partitions of A\{1}. This is enough to yield

the desired result. �

SBlA0, having no congruence identities in virtue of Theorem 4.23, fails

in particular to be congruence distributive or even congruence modular; it
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also lacks properties such as congruence permutability (or even congruence n-

permutability for any n) which are not expressible in the language of lattices

but are known to imply the existence of congruence identities of some sort

or another. On the other hand, 0-permutability or 1-permutability — which

respectively coincide, as we have seen, with 0-subtractivity and 1-subtractivity

— are not out of the question in principle. The next example, however, will

mercilessly dash our hopes.

Example 4.24. Let A = ({0, 1, 2, 3}; q, 0, 1) be the Church algebra completely

specified by the stipulation that q(1, a, b) = q(2, a, b) = q(3, a, b) for all a, b ∈
{0, 1, 2, 3}. It can be checked that A is a SBlA. However, the congruences

θ = {{0}, {1, 2}, {3}} and ψ = {{0}, {2, 3}, {1}} fail to permute at 1, for

(2, 1) ∈ θ and (2, 3) ∈ ψ, yet 1/ψ ∩ 3/θ = ∅. Therefore, A fails to be 1-

subtractive.

On the other hand, SBlA0 — and, more generally, every semi-Boolean-like

variety — is quasi-subtractive in the sense of Definition 2.6.

Lemma 4.25. Every semi-Boolean-like variety V is 1-quasi-subtractive with

witness terms x→ y = y ∨ x′ and �x = c (x).

Proof. We have to make sure that the equations Q1-Q4 in Definition 2.6 hold

true. We check them one by one. So, for the remainder of this proof let A be

a generic SBlA and let a, b ∈ A.

Q1. �a→ a = a ∨ (c(a))′ =L.4.6.5 a ∨ a′ = q(a, 1, q(a, 0, 1)) =Ax2
q(a, 1, 1)

=Ax1
1.

Q2. 1→ a = a ∨ 1′ = q (a, 1, q (1, 0, 1)) = q (a, 1, 0) = c(a) = �a.

Q3. � (a→ b) = c(q(b, 1, a′)) =P.4.21(i) q(c(b), c(1), c(a′)) =L.4.6 q(b, 1, a′) =

a→ b.

Q4. �(a → b) → (�a → �b) =Q3 ��(a → b) → (�a → �b) =P.4.21(i)

�(�a→ �b)→ (�a→ �b) =Q1 1.

�

What about regularity properties for SBlA0? Point regularity implies con-

gruence modularity [21] and can therefore be ruled out. Clearly, the stronger

property of τ -regularity, for τ = {c (x) ≈ 1}, fails to hold as well. Nonetheless,

a weaker but still somewhat pleasing result turns out to be true:

Proposition 4.26. SBlA0 is weakly {c (x) ≈ 1}-regular.

Proof. It suffices to prove that the {c (x) ≈ 1}-assertional logic of SBlA0 coin-

cides with the 1-assertional logic of the pure Boolean-like variety BlA0, which

is, by Proposition 4.7, the 1-assertional logic of a 1-regular variety and thus

is strongly and finitely algebraisable by results in [17]. Therefore, we want to

show that, given a set of terms Γ and a term t,

{c (s) ≈ 1 : s ∈ Γ} |=SBlA0
c (t) ≈ 1 iff {s ≈ 1 : s ∈ Γ} |=BlA0

t ≈ 1.
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Left to right. Let A ∈BlA0, a ∈ A and sA (a) = 1 for all s ∈ Γ. Then

cA
(
sA (a)

)
= 1 for all s ∈ Γ, and since Boolean-like algebras are in partic-

ular semi-Boolean-like, cA
(
tA (a)

)
= 1. However, as A ∈BlA0, this implies

tA (a) = 1.

Right to left. Let A ∈SBlA0, a ∈ A and cA
(
sA (a)

)
= 1 for all s ∈ Γ.

Now, by Proposition 4.21, sA
(
cA (a)

)
= cA

(
sA (a)

)
∈ c [A] ∈ BlA0, whence

tA
(
cA (a)

)
= 1 and, going backwards, cA

(
tA (a)

)
= 1. �

Let A be a member of SBlA0. As a consequence of Proposition 4.21(i),

ker(cA) is the least B-congruence of A (see Definition 4.13).

It follows therefore from Theorem 2.8, and from Lemma 4.14, Lemma 4.25

and Proposition 4.26 that:

Corollary 4.27. In every member A of SBlA0, the following lattices are

isomorphic:

(1) The lattice of SBlA0-open filters of A;

(2) The lattice of B-congruences of A;

(3) The congruence lattice of the BlA0 c[A].

This result is of limited usefulness unless we are in a position to characterise

SBlA0-open filters in an effective way. The next Proposition does the job.

First, observe that the variety of pure Boolean-like algebras is term equivalent

to the variety BA of Boolean algebras (cp. [18]).

Proposition 4.28. Let A ∈ SBlA0, and let F ⊆ A. Then t.f.a.e.:

(1) F = (cA)−1(H) for some Boolean filter H of the BlA0 c[A];

(2) F is a SBlA0-open filter of A;

(3) F satisfies the conditions (F1) 1 ∈ F ; (F2) a, b ∈ F ⇒ a ∧ b ∈ F ; (F3)

a ∈ F, b ∈ A⇒ a ∨ b, b ∨ a ∈ F ; (F4) c (a) ∈ F ⇒ a ∈ F ;

(4) F satisfies F1, F4, and (G1)

a, b ∈ F, d ∈ A⇒ q (a, b, d) ∈ F.

Proof. (1)⇒ (2) We must now show that: i) F is closed w.r.t. all open filter

terms; ii) F is close d w.r.t. the two-way necessitation rule. As regards ii),

c(a) ∈ F iff c(c(a)) = c(a) ∈ H iff a ∈ F . As regards i), let p(x1, . . . , xn, y)

be an open filter term in the variables x1, . . . , xn, and let a1, . . . , an ∈ F . The

Boolean filterH determines a congruence θH on c[A]. Since c(ai) ∈ H for every

i, c(ai)/θH = 1/θH , and then, as p is an open filter term, c(p(a, b))/θH = 1/θH ,

whence c(p(a, b))/θH ∈ H and so p(a, b) ∈ F .

(2) ⇒ (3) It suffices to check that (i) x ∧ y is a SBlA0-open filter term in

x, y; (ii) x∨y is a SBlA0-open filter term in x; (iii) x∨y is a SBlA0-open filter

term in y. These conditions are readily seen to hold by Proposition 4.21(i)

and by A ∈ SBlA0. The remaining conditions follow from the definition of

open filter.
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(3)⇒ (4) For a start, we claim that a, b ∈ F, d ∈ A⇒ q (a, b, c (d)) ∈ F . In

fact, let a, b ∈ F . Using F2 and F3, we get that

(a ∨ d) ∧ (a′ ∨ b) = q (q (a, 1, d) , q (a′, 1, b) , 0) ∈ F .

However, by Lemma 4.6.3, q (a′, 1, b) = q (a, b, 1). So

q (q (a, 1, d) , q (a, b, 1) , 0) = q (q (a, 1, d) , q (a, b, 1) , q (a, 0, 0)) ∈ F.

It follows that q (a, q (1, b, 0) , q (d, 1, 0)) ∈ F , whence q (a, b, c (d)) ∈ F . Hav-

ing established our claim, we proceed to prove our main conclusion. If a, b ∈
F , by F1 and F2 we have c (a) , c (b) ∈ F . Our claim then implies that

q (c (a) , c (b) , c (d)) = c (q (a, b, d)) ∈ F , and we have our conclusion by F4.

(4 ⇒ 1) By F1, F4 and G1 (for b = 1, d = 0) the set F is closed w.r.t.

the two-way necessitation rule. Let H = {c(a) : a ∈ F}. Then F ⊇ H and

F = (cA)−1(H). To show that H is a Boolean filter, we use two times G1 for

d = 0 and for b = 1. �

5. Double-pointed discriminator varieties

One of the most interesting applications of the concepts defined hereto

arises when studying discriminator varieties in the double-pointed case. These

notions appear from the very beginning as intimately related, and the aim of

this section is making the nature of this relationship as clear as possible.

5.1. Idempotent semi-Boolean-like algebras. Whereas idempotency of

both join and meet is enough to enforce a Boolean-like behaviour ina SBlA,

idempotency of join alone (or meet alone) is not: the algebras 3 and 3′ of

Examples 4.3 and 4.4 are respective counterexamples. Therefore, we may look

for some middle ground between these concepts by adding either one of the

idempotency identities.

Definition 5.1. A SBlA is meet-idempotent if it satisfies the following iden-

tity:

(Ax5) x ∧ x ≈ x.

Henceforth, we will use the abbreviation idempotent in place of the more

cumbersome meet-idempotent. The next theorem characterises idempotent

semi-Boolean-like varieties in the context of semi-Boolean-like varieties.

Theorem 5.2. Let V be a semi-Boolean-like variety. Then the following con-

ditions are equivalent:

(1) V is idempotent;

(2) V is a unary discriminator variety3 w.r.t. c;

3Recall that the unary discriminator on a double-pointed set A (with constants 0, 1) is

a unary function u on A such that u(0) = 0 and u(a) = 1 for a 6= 0. A variety V of type

ν is a unary discriminator variety iff there is a unary term of type ν realising the unary
discriminator in all s.i. members of V.
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(3) The identity x ∨ x ≈ c(x) holds in V;

(4) V is 0-subtractive with witness term x− y.

Proof. (1) ⇒ (2) Let A ∈ V be subdirectly irreducible and let a 6= 0 ∈ A.

Assume, by contraposition, that c(a) = 0. Then we have: a = a ∧ a =

q(a, a, 0) =L.4.6.1 q(c(a), a, 0) = q(0, a, 0) = 0. This contradicts the assumption

a 6= 0.

(2) ⇒ (3) Let A ∈ V be s.i. and a ∈ A. If a 6= 0 then a ∨ a =

q(a, 1, a) =L.4.6.1 q(c(a), 1, a) = q(1, 1, a) = 1 = c(a). If a = 0 then 0 ∨ 0 =

q(0, 1, 0) = 0 = c(0).

(3)⇒ (4) Let A ∈ V be s.i. and a ∈ A. We distinguish two cases. If c(a) = 1

then a − a = q(a′, a, 0) =L.4.6.3 q(a, 0, a) =L.4.6.1 q(c(a), 0, a) = q(1, 0, a) = 0.

If c(a) = 0 the conclusion easily follows if we show a = 0. In fact, 0 = c(a) =

a ∨ a = q(a, 1, a) =L.4.6.1 q(c(a), 1, a) = q(0, 1, a) = a.

(4)⇒ (1) a ∧ a = q(a, a, 0) = q(a, a, a− a) = q(a, a, a′ ∧ a) =

q(a, a, q(a, 0, a)) = q(a, a, a) = a. �

The pure idempotent semi-Boolean-like variety ISBlA0, consisting of all

the pure term reducts of idempotent SBlAs, is of course axiomatised by the

two identities characterising Church algebras and by Ax1-Ax3 plus Ax5. The

proof of Theorem 4.22 immediately implies that:

Theorem 5.3. V (3′) = ISBlA0.

5.2. Some characterisations of double-pointed discriminator vari-

eties. If a double-pointed variety V is a discriminator variety with switching

term s, we already know from Proposition 4.5 that V is a semi-Boolean-like va-

riety with respect to the term q(e, x, y) = s(e, 0, y, x). It is moreover immediate

to check that:

Proposition 5.4. If V is a discriminator variety with switching term s, then

• V is a variety of idempotent SBlAs.

• A ∈ V is simple iff A satisfies ∀x(c(x) ≈ 0 Y c(x) ≈ 1), where c(x) =

s(x, 0, 0, 1).

A series of different characterisations of double-pointed discriminator vari-

eties follows next.

Lemma 5.5. Let V be a double-pointed variety. Then, V is discriminator if,

and only if, the following conditions hold:

(1) V is 0-regular with a witness binary term d(x, y);

(2) V has a unary discriminator u(x);

(3) There is a binary term x+ y such that 0 + y ≈ y + 0 ≈ y holds in V;

(4) There is a binary term x · y such that 0 · y ≈ 0 and 1 · y ≈ y hold in V;

(5) There is a unary term x′ such that 0′ ≈ 1 and 1′ ≈ 0 hold in V.
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Proof. (⇐) The term t(x, y, z) = (u(d(x, y)) ·x)+((u(d(x, y)))′ ·z) is a ternary

discriminator term.

(⇒) if V is discriminator with switching term s, define

(1) d(x, y) = s(x, y, 0, 1)

(2) u(x) = s(x, 0, 0, 1)

(3) x+ y = s(x, 0, y, x)

(4) x · y = s(x, 0, 0, y)

(5) x′ = s(x, 0, 1, 0).

�

Theorem 5.6. Let V be a double-pointed variety. Then V is discriminator if,

and only if, V is 0-regular and idempotent semi-Boolean-like.

Proof. (⇒) By Lemma 5.5 and Proposition 5.4.

(⇐) Let q(x, y, z) be the Church term for the variety V. Since V is 0-regular

there exist binary terms d1(x, y), . . . , dn(x, y) such that V satisfies di(x, x) ≈ 0

(i = 1, . . . , n) and the following implication:

d1(x, y) ≈ 0, . . . , dn(x, y) ≈ 0 ⇒ x ≈ y.

Since V is semi-Boolean-like the term operation x∨y = q(x, 1, y) is associative.

We define:

(1) d(x, y) = d1(x, y) ∨ d2(x, y) ∨ · · · ∨ dn(x, y)

(2) u(x) = q(x, 1, 0)

(3) x+ y = q(x, x, y)

(4) x · y = q(x, y, 0)

(5) x′ = q(x, 0, 1).

We now show that the above term operations satisfy items (1)–(5) of Lemma

5.5. We confine ourselves to the nontrivial items. First, x + 0 = q(x, x, 0) =

x∧x = x. Moreover, by Theorem 5.2 V is a unary discriminator variety w.r.t.

u(x). We now show that V is 0-regular with witness term d(x, y). Let A ∈ V,

a 6= b ∈ A and i be the least index such that di(a, b) 6= 0. We distinguish two

cases.

(i) A is subdirectly irreducible. Any element x ∨ y is different from 0

whenever x 6= 0: q(x, 1, y) = q(c(x), 1, y) = q(1, 1, y) = 1. Then from di(a, b) 6=
0 it follows that d(a, b) 6= 0.

(ii) A is not subdirectly irreducible. Then A is isomorphic to a subdirect

product of subdirectly irreducible algebras Ai ∈ V (i ∈ I). Then d(a, b) = 0

in A iff d(ai, bi) = 0 in each member Ai of the subdirect product iff ai = bi,

for all i ∈ I, iff a = b in A. �

Corollary 5.7. A double-pointed variety of type ν is a discriminator variety

if, and only if, for suitable terms q(x, y, z), w(x, y, z) and d(x, y), it satisfies

the following identities:

• x ≈ q(1, x, y) ≈ q(0, y, x) ≈ q(y, x, x) ≈ q(x, x, 0);

• q(x, q(x, y1, y2), z) ≈ q(x, y1, z) ≈ q(x, y1, q(x, y2, z));
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• q(x, g(y), g(z)) ≈ g(q(x, y1, z1), . . . , q(x, yn, zn)), for every g ∈ ν;

• d(x, x) ≈ 0;

• x ≈ w(x, y, 0) ≈ w(y, x, d(y, x)).

Proof. Immediate from the preceding theorem, taking into account Fichtner’s

Maltsev-type characterisation of point regular varieties, see [4]. �

Theorem 5.8. Let V be a double-pointed variety. Then V is a discriminator

variety if, and only if, V is an idempotent semi-Boolean-like variety and there

exists a binary term u(x, y) such that the identity u(x, x) ≈ 0 holds in V and

the implication x 6= y ⇒ u(x, y) ≈ x holds in every subdirectly irreducible

member of V.

Proof. (⇒) Define q(x, y, z) = s(x, 0, z, y) and u(x, y) = t(x, y, 0), where s and

t are respectively the switching term and the ternary discriminator term for

V.

(⇐) By Theorem 5.6 it is sufficient to define d(x, y) as follows

d(x, y) = u(x, y) ∨ u(y, x).

Assume that A ∈ V is subdirectly irreducible and a 6= b ∈ A. Then d(a, b) =

u(a, b) ∨ u(b, a) = a ∨ b. Since either a or b is different from 0, then we have

that d(a, b) = a ∨ b 6= 0. If A is not subdirectly irreducible, then we argue as

in the proof of Theorem 5.6. �
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Appendix

In this appendix we present a proof of Theorem 3.9. First, since Church

algebras are Pierce algebras, from [39, Theorem 5(e)] we obtain

Lemma 5.9. Let A and Bi (i ∈ I) be Church algebras. If A ≤ Πi∈IBi is a

subdirect product and e = (ei : i ∈ I) ∈ A, then e is central in A iff e is central

in Πi∈IBi iff ei is central in each Bi.

Proof of Theorem 3.9. (1) ⇒ (2) follows from [8, Proposition 3.4].

(2) ⇒ (3) Let e ∈ A ∈ V, and B be the subalgebra of A generated by

e, where B = {tA(e) : t ∈ Tν(x)}. We show that e is central in A iff it is

central in B. Suppose, by way of contradiction, that e is central in B but

not central in A. By Birkhoff’s theorem A is a subdirect product Πi∈JA/θi
of s.i. algebras A/θi. Since e is not central in A, then by Lemma 5.9 there

exists j ∈ J such that e/θj is not central in the s.i. algebra A/θj . Since

B/θj is a subalgebra of the s.i. A/θj , then by hypothesis B/θj is directly

indecomposable. As e is central in B, then e/θj is central in B/θj , and either

e ≡θj 0 or e ≡θj 1/θj . This contradicts the fact that e/θj is not central in

A/θj . Then e is central in A and to check this it is sufficient to check that e

is central in B = {tA(e) : t ∈ Tν(x)}. It follows that e is central in A if, and

only if, the identities of Theorem 3.9(iii) are satisfied with t, t1, t2, u, v ranging

over the full set Tν(x) and with the function symbol f ranging over the full

signature ν. We denote by Π(x) = {q(x, t(x), t(x)) = t(x), . . . } the set of these

identities.

We now prove that central elements can be defined by a finite subset of

Π(x). Let ∆ be the first-order formulas axiomatizing VDI . We consider a new

similarity type ν′ = ν ∪ {m} by adding to ν a new constant m. Let

K = {C : C = (A,mC) with A ∈ V and mC ∈ A is a central element of A}.

K is a variety of type ν′ because it is axiomatized by the identities Eq(V)

axiomatizing V plus the identities Π(m) axiomatizing that m is central. More-

over, C = (A,mC) ∈ K is directly indecomposable iff A is directly indecom-

posable in V. It follows that KDI is axiomatized, relative to K, by ∆. We

have

∆ ∪Π(m) |= m ≈ 0 Ym ≈ 1.

By compactness there exists a finite subset Π0(m) of Π(m) such that

∆ ∪Π0(m) |= m ≈ 0 Ym ≈ 1.
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Assume now that an algebra C = (A,m) |= Π0(m) with A ∈ V, butm is not

central in A. Since A can be represented as subdirect product of s.i. algebras,

then by Lemma 5.9 there exists a s.i. algebra A/θ such that m/θ is not central

in A/θ. From (A,m) |= Π0(m) it follows that (A/θ,m/θ) |= Π0(m). Since

A/θ is also directly indecomposable, we have that (A/θ,m/θ) |= ∆ ∪ Π0(m)

that implies (A/θ,m/θ) |= m/θ ≈ 0/θ Ym/θ ≈ 1/θ. Contradiction. It follows

that, if (A,m) |= Π0(m) with A ∈ V, then m is central in A. In other

words, for every algebra A ∈ V, m is central in A iff (A,m) |= Π0(m). Since

Π0(m) ⊆ Π(m) is finite, then we get (3).

(3) ⇒ (1) Assume, by way of contradiction, that A/θI is not directly inde-

composable. Then there exists a nontrivial central element a/θI ∈ A/θI . Con-

sider the finite set Π of identities t(x) ≈ u(x) defining centrality in the variety

V. As A/θI |= t(a/θI) = u(a/θI) for every t ≈ u ∈ Π and θI =
⋃
e∈I θ(e, 0),

then there exists a central element e ∈ I such that t(a) θ(e, 0) u(a) for ev-

ery t ≈ u ∈ Π. Define φ = θ(e, 0), φ = θ(e, 1), ψ = θ(a/φ, 0/φ) and

ψ = θ(a/φ, 1/φ). Then a/φ is central in A/φ. Since A = A/φ × A/φ and

A/φ = (A/φ)/ψ × (A/φ)/ψ, then we get the following decomposition of A:

A = (A/φ)/ψ × [(A/φ)/ψ ×A/φ].

Therefore, there exists a central element d ∈ A such that (A/φ)/ψ = A/θ(d, 0).

From φ = θ(e, 0) ⊆ θ(d, 0) it follows that e ≤ d, so that θ(d, 0) ∈ I. More-

over, by the definition of ψ = θ(a/φ, 0/φ) we obtain that a θ(d, 0) 0 and then

a/θI = 0/θI . A contradiction.
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