
Electronic Notes in Theoretical Computer Science 44 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume44.html 22 pages

A graphical approach to relational reasoning 1

Andrea Formisano 2

Dipartimento di Matematica e Informatica, Università di Perugia

Eugenio G. Omodeo 3

Dipartimento di Matematica e Pura ed Applicata, Università di L’Aquila

Marta Simeoni 4

Dipartimento di Informatica, Università Ca’ Foscari di Venezia

Abstract

Relational reasoning is concerned with relations over an unspecified domain of dis-
course. Two limitations to which it is customarily subject are: only dyadic relations
are taken into account; all formulas are equations, having the same expressive power
as first-order sentences in three variables. The relational formalism inherits from
the Peirce-Schröder tradition, through contributions of Tarski and many others.

Algebraic manipulation of relational expressions (equations in particular) is much
less natural than developing inferences in first-order logic; it may in fact appear to
be overly machine-oriented for direct hand-based exploitation.

The situation radically changes when one resorts to a convenient representation of
relations based on labeled graphs. The paper provides details of this representation,
which abstracts w.r.t. inessential features of expressions.

Formal techniques illustrating three uses of the graph representation of relations
are discussed: one technique deals with translating first-order specifications into
the calculus of relations; another one, with inferring equalities within this calculus
with the aid of convenient diagram-rewriting rules; a third one with checking, in
the specialized framework of set theory, the definability of particular set operations.
Examples of use of these techniques are produced; moreover, a promising approach
to mechanization of graphical relational reasoning is outlined.

Key words: Formalized reasoning, algebra of dyadic relations, labeled multi-
graphs, Peircean existential diagrams, graph transformation.

c©2003 Published by Elsevier Science B. V.

153

Formisano, Omodeo, and Simeoni

1 Background

The graphs, he wrote, “put before us moving pictures of thought.” They render
the structure “literally visible before one’s very eyes.” In doing this they free the
structure from all the “puerilities about words” with which so many English logical
works are strewn. “Often not merely strewn with them,” he adds, “but buried so
deep in them, as by a great snowstorm, as to obstruct the reader’s passage and
render it fatiguing in the extreme.” (From [20], 5 p.56)

Refined designs of the arithmetic of dyadic relations and related research,
constitute the most traditional and lasting effort to bridge first-order predicate
reasoning with purely equational reasoning [39,41].

Several axiomatizations of the algebra of relations are available (see, among
others, [9,28,36,35,38]); our own, shown in Fig. 1, is conceived with the aim
of providing support to theorem-proving activities based on a state-of-the-art
proof assistant. These axioms will be left ‘behind the scene’ after this section,
because the authors envision a diagrammatic approach to relational reasoning
in place of a merely logical or algebraic symbolic manipulation system. 6

The equalities in the fixed initial endowment of axioms, describing the full
variety of dyadic relations over a generic domain U of discourse, are called
logical axioms.

Further axioms, added to the logical ones, lead to algebraic characteriza-
tions of specific domains and data structures: at varying degrees of mathemat-
ical abstraction, one has general classes and sets, hereditarily finite sets, trees,
nested or flat lists, lines subjected to editing, etc.—cf. [6,18]. These, which
are called proper axioms, state the properties of context-specific relations, e.g.,
car and cdr in the case of lists, and membership, ∈, in the case of sets. Typ-
ically, proper axioms are ground, i.e. devoid of the variables that occur in the
logical axioms; 7 usually they involve, in addition to the standard constructs
of relation algebra, the symbol(s) characteristic of the application, e.g. ∈.

The intended meaning of the axioms in Fig. 1 is as follows: one refers to
a nonempty domain U , and thinks that the variables (P,Q, and R) occurring

1 This research was partially funded by the Italian CNR (coordinated project log(SETA));
by MURST PGR-2000; by the EC TMR Network GETGRATS; and by Esprit Working
Group APPLIGRAPH.
2 Email:formis@dipmat.unipg.it
3 Email:omodeo@univaq.it
4 Email:simeoni@dsi.unive.it
5 The author quoted by Martin Gardner is the American philosopher Charles Sanders
Peirce (1839–1914), whose work on existential graphs (cf. [26,24]) is likely to have a kinship
with ours, presented in this paper and in [6,8].
6 Due to space limitations, the authors had to indulge to ‘puerilities about words’ much
more in drawing up the article than in the paper-and-pencil preparatory work.
7 A non-ground axiom could be the algebraic rendering of what would be an axiom scheme
in a specification based on first-order predicate logic.

154

Formisano, Omodeo, and Simeoni

symbol : = ⊆ � � � ∈ ∩ � ;
� − ∪

degree : 2 2 0 0 0 0 2 2 2 1 1 2 2

priority : 1 1 5 3 6 7 2 2

P ∪Q ≡Def (P �Q)� (P ∩Q) P − Q ≡Def P � (P ∩Q)

�P ≡Def P ≡Def P � � P ⊆ Q ≡Def P ∩Q = P

funcPart(P) ≡Def P − (P ; �) tot(P) ≡Def P � P ; �

Func(P) ≡Def funcPart(P) = P Total(P) ≡Def P ;� = �

P ∩Q = Q∩P

(P ∩ (Q�R))� (P ∩Q) = P ∩R

(P �1 Q) �1 R = P �1 (Q �1 R)

� ; P = P

P�� = P

(P �2 Q)� = Q� �2 P�

(P ∪Q) ; R = (Q ; R) ∪ (P ; R)

(P�
; (R −(P ;Q)))∩Q = �

P ⊆ �

�1 ∈ {�,∩, ;} and �2 ∈ {∩, ;}

Figure 1. Operators and axioms for relation algebras.

in the axioms range over all subsets of the Cartesian square U 2 =Def U × U .
The following designation rules recursively extend an interpretation � from
the immediate subexpressions of a given expression to the expression itself:

�� =Def ∅, �� =Def U2, �� =Def {[a, a] : a in U};
(Q∩R)� =Def { [a, b] in U2 : aQ� b and aR� b };
(Q�R)� =Def { [a, b] in U2 : aQ� b if and only if not aR� b };
(Q;R)� =Def { [a, b] in U2 : there exist cs in U for which aQ� c and c R� b };
(Q�)� =Def { [b, a] in U2 : aQ� b} .

Any non-logical symbol, such as ∈, in the language of the algebra of rela-
tions, is not constrained in the least by the above rules. One must hence assign
explicitly an interpretation to each such symbol (e.g., a value ∈� ⊆ U2, in
short ∈, must be given to the sign ∈), before the relation on U that corresponds
to each ground expression of the language becomes uniquely determined.

The proper axioms that one adds to the logical axioms are to reflect one’s
conception of the meaning of the non-logical symbols (e.g., in the case of ∈

155

Formisano, Omodeo, and Simeoni

they must state that U is a hierarchy of nested sets over which ∈ behaves as
membership).

Remark 1.1 The law, 8 . P�
; (R�R∩P ;Q)∩Q = �, is closely related to

the law P�
; P ;Q∪Q = Q known from the work of Peirce and Schröder (see,

for instance, [36,41]). Our adoption of a different set of primitive constructs
motivated the introduction of this law which, moreover, permits a concise
characterization of the constant � by means of a single axiom.

2 A graphical representation for dyadic relations

It is useful (cf. [5]) to represent a relational expression P , an identity P = �

or, more generally, an existentially quantified conjunction ϕ of literals, by a
so-called existential graph, which is a directed multi-graph whose edges are
labeled by expressions of the algebra of relations. To see the most immediate
way of doing this, let us assume that ϕ is composed by atoms of the form
xPy, where x and y are individual variables (ranging over the domain U of
discourse), and P is a relation of the kind discussed in Sec. 1. (Equality atoms
Q=R have been rewritten already in the form x�;(Q�R);�y, negative lit-
erals in the form xQy; moreover, free variables may occur in ϕ intermixed with
existentially quantified variables.) A directed multi-graph Gϕ representing ϕ
is built up so that:

1) Gϕ has a node νx for each distinct variable x occurring in ϕ;

2) for each literal xPy in the conjunction ϕ, there is a labeled edge [νx, P, νy]
leading from node νx to node νy; and

3) the nodes of Gϕ are subdivided into two sets: the ones that correspond to
the existential variables in ϕ, called bound nodes, and all remaining nodes.

A chain of transformations can then be applied to any graph obtained in
this standard fashion, by the following rules, which manifestly preserve the
meaning of the graph (these rules are graphically shown in Fig. 2 where we
used black circles to represent bound nodes, and white circles to represent the
remaining ones):

(1) An edge [ν, �, ν ′] can be removed or created between nodes ν, ν ′.

(2) An edge [ν, P, ν ′] can be converted into [ν ′, Q, ν] where either P ≡ Q� or
Q ≡ P� or P ≡ Q ≡ �. 9

8 We are now getting rid of redundant parentheses by exploiting the conventions on priority
introduced in Fig. 1. The priorities we adopt for the Boolean constructs reflect the (abstract)
algebraic traditional approach, where � and ∩ act as additive and multiplicative operators
of Boolean algebras, respectively (cf. [27], pp.208–211). On the other hand, w.r.t. Peircean
constructs, we inherit the well established convention adopted, for instance, in [21]
9 Primarily, this ‘conversion’ is intended as an edge-replacement rule; however, it could
also be intended in the sense that [ν ′, Q, ν] is added to the graph without [ν, P, ν ′] being
removed.

156

Formisano, Omodeo, and Simeoni

(3) Two edges [ν, P, ν ′] and [ν,Q, ν ′] can be replaced by the single edge [ν, P∩Q, ν ′],
and conversely.

(4) If [ν, P, ν ′] and [ν ′, Q, ν ′′] are the only edges involving the bound node ν ′,
then they can be replaced by the single edge [ν, P ;Q, ν ′′]; conversely, an edge
[ν, P ;Q, ν ′′] can be replaced by two edges [ν, P, ν ′] and [ν ′, Q, ν ′′] where ν ′ is
a new bound node.

(5) An edge [ν, �, ν ′], where either ν ′ is a bound node with degree 1, 10 or ν ′ ≡ ν,
can be deleted; conversely, an edge [ν, �, ν ′] where either ν ′ is a new bound
node or ν ′ ≡ ν can be created.

(6) An edge [ν ′, Q, ν] (respectively, [ν,Q, ν ′]) can be replaced by an edge [ν ′, Q, ν ′′]
(resp., [ν ′′, Q, ν ′]) when there is an edge [ν, �, ν ′′] distinct from [ν ′, Q, ν]
(resp., from [ν,Q, ν ′]).

(7) An isolated bound node can be deleted or created.

��

�� �� �

� �� �

�� �� �

�� �� �

� � �

� � �

� 	 �

� � �

�

�

�

�

� �� � �� � � � �� � � � � �� � � � � � � �� � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � �
� �� � � � � � � �� � � � � �� � � � � � � �� � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � �� � � � � � � �� � � � � � � � � � � � � �� �

�� �� �� �

�� �� �

�� �

�
�

� � �

� � � � �

� � �

�

� �

� �

� �

� �

Figure 2. Some simple rewriting rules

These basic actions can be packaged into relatively complex transformation
rules, tactics, and even algorithms of some sophistication, which preserve the
meaning of the representation. At the lowest level one may place, e.g.: a
rule that shifts, in a single move, several edges attached to one extreme of an
edge labeled P∩� to the other extreme; a rule that converts [ν, P∩�, ν] (resp.,
[ν, P ;�, ν ′]) into [ν, P, ν] (resp., [ν, P, ν ′]); one that converts [ν, P ;Q�, ν] into
[ν, P∩Q, ν ′] where ν ′ is new and bound; etc.

At a slightly higher level, one can eliminate multiple labeled edges [ν, P, ν ′]
sharing the same two endpoints ν, ν ′, through systematic use of action 3,
thus reducing the multi-graph to a graph proper. At the same level, one can
eliminate all loop-edges [ν, P, ν] by introducing, for each of them, a new bound
node ν ′ along with an edge [ν, P∩�, ν ′].

Example 2.1 Consider the following graphs:

10 As usual, the degree of a node is the number of edges incident on it.

157

Formisano, Omodeo, and Simeoni

❦ ✲r � ✲s ❦❘
z

✒t

(a)

❦ ✲r � ✲s ❦

✲z∩ � �

✒t

(b)

❦ ✲r � ✲s∩ t ❦

✲z∩ � �

(c)

The graph (a) can be transformed first into the loop-free multi-graph (b) and
then into the graph (c). ✷

A further level up, one has an algorithm for associating a planar (multi-)graph
G to a given expression P of the calculus of relations. Two designated nodes
s0 and s1, named source and sink, will represent the two arguments of P , and
every node distinct from these two will be regarded as being bound.

Algorithm. (Graph fattening)Given P , one proceeds non-deterministically
to construct G, s0, s1, as follows: either

• G consists of a single edge, labeled P , leading from s0 to s1; or

• P has the form Q�, and G, s1, s0 (with source and sink interchanged) rep-
resents Q; or

• P is of the form Q;R, the disjoint graphs G′, s0, s
′
2 and G′′, s′′2, s1 represent

Q and R respectively, and one obtains G by combination of G′ with G′′ by
‘gluing’ s′′2 onto s′2 to form a single node; or

• P is of the form Q∩R, the disjoint graphs G′, s′0, s
′
1 and G′′, s′′0, s

′′
1 represent

Q and R respectively, and one obtains G from G′ and G′′ by gluing s′′0 onto
s′0 to form s0 and by gluing s′′1 onto s′1 to form s1.

(The name of this algorithm refers to the possible choice of resorting to the
first alternative only when no other alternative is viable, so that the ‘fattest’
possible graph is obtained.) ✷

As an additional convention related to this algorithm, one can either 11

∀∀: label both s0 and s1 by ∀, to convert a representation G, s0, s1 of P into a
representation of the equality P = � (which corresponds to the first-order
sentence (∀x)(∀y)(xPy)); or

∀∃: label the source by ∀ and the sink by ∃, to represent the statement
Total(P), which is a short for P ;� = � (i.e., (∀x)(∃y)(xPy)); or

∃∃: label both s0 and s1 by ∃, to represent the inequality P �= �, which is a
short for the equality Total(�;P) (i.e., (∃x)(∃y)(xPy)); or

¬∃∃: label the source by ¬∃ and the sink by ∃, to represent the equality
P = � (i.e., ¬(∃x)(∃y)(xPy)).

11 Graphs with source and sink labeled ∃ and ∀ respectively will not be treated, and they
do not seem to fit well in our framework. Currently, we see them as unstable structures
that immediately decay into ∀∃-graphs (by interchange of the source with the sink), with
considerable loss of information.

158

Formisano, Omodeo, and Simeoni

Thus, for example, the following graph states that f fulfills both � ⊆ f ;f and
f∩� = �:

❦∀ ✲� � ✲� ∩ f ❦∃

�

✏✏✏✏✏✶f ������
f

As the example shows, we represent bound nodes by black circles. An edge
is usually represented in drawings by a solid arrow, with the label written next
to it. When the arrow is dotted, the associated label P is denoted simply as P .
Simple graph-rewriting rules related to this convention are:

�� �� �

�� �� �� � �

� � � �

� 	

	

 	

	

� �

�� � �

� �

Remark 2.2 Obvious rules enabling one to displace source and sink are:

– In a graph of type ∃∃ or ¬∃∃, the roles of source and sink can indifferently
be played by any two distinct nodes;

– in a graph of type ∀∀, source and sink can swap their roles;

– in a graph of type ∀∃, the role of sink can be played by any node distinct
from the source, e.g.,

❦∀ � ❦∃✲ ✲
✒

R

P Q
�� ❦∀ ❦∃ �✲ ✲

✒
R

P Q

✷

The above discussion does not address issues related to the operators �
and ∪. Concerning these constructs, we only marginally mention two rules to
which it will at times useful to resort (perhaps tacitly):

(8) Suppose there is an edge [ν, P, ν ′]. Then any edge [ν, P, ν ′′] with ν ′
≡ ν ′′

can be replaced by [ν, tot(P), ν ′′], i.e. by [ν, P�P ;�, ν ′′], and conversely.

(9) If [ν ′, P∪Q, ν], [ν,R, ν ′′] are the only edges involving the bound node ν, they
can be replaced by an edge [ν ′, P ;R∪Q;R, ν ′′]; and conversely.

3 Translating first-order logic into the calculus of rela-
tions

As is well known (cf. [41]), a sentence α of dyadic first-order logic can be trans-
lated into a ground (relational) equation if and only if α is logically equivalent
to a sentence involving at most three distinct variables. This characteriza-
tion of translatable sentences is, alas, not very useful in practice: establishing
whether a given α belongs to this collection is in fact an undecidable problem
(cf. [33]). Notwithstanding, conservative translation techniques can be de-

159

Formisano, Omodeo, and Simeoni

vised to partially solve the problem. One such technique, originally described
in [18], is recalled here for ease of the reader:

Algorithm. (Graph thinning) An existentially quantified conjunction ϕ of
literals of the form xPy is given (cf. Sec. 2). The goal is to find a quantifier-free
conjunction —or simply an atom, if there are at most two free variables in ϕ—
equivalent to ϕ. Initially, a directed and labeled multi-graph Gϕ representing
ϕ by the usual conventions is built up, then it is normalized by elimination
of loop-edges, and finally it is rendered a graph by fusion of multiple edges
between the same nodes (cf. Example 2.1).

This Gϕ and its labels will be manipulated as stated below, with the aim
of eliminating as many bound nodes as possible. This elimination (which
represents the elimination of existential quantifiers from ϕ) is performed by
repeatedly applying two graph-transformation rules (see also Fig. 3):

bypass rule. Let ν be a bound node with degree 2 and let [ν ′, P, ν] and [ν,Q, ν ′′]
be the edges adjacent to it, suitably re-oriented (by rule 2. of Sec. 2) so that
the former enters and the latter leaves ν. Then the node ν and its edges
are removed, and a new labeled edge, [ν ′, P ;Q, ν ′′], takes their place in the
graph. If an edge with endpoints ν ′, ν ′′ existed already, then, after being
re-oriented to comply with the orientation [ν ′, ν ′′], it gets fused with the
new edge by the rule 3 of Sec. 2.

bigamy rule. The rule applies to a bound node ν having just one adjacent
edge. Let ν, ν ′ be the endpoints of this edge, and assume there exist a node
ν ′′
≡ ν and an edge with endpoints ν ′, ν ′′. Then, the bigamy rule behaves as
if there were an edge [ν, �, ν ′′] labeled �, performing bypass of the node ν.

�� � �� �

�� �� �� �� ��� �� �� � �� � � � �� � � � � �� � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� �� � � � � � � � �� � � � � � � � �� �� � � � � � � � � � �� �� � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � � �� �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � � � � � � � � �
�

�

 � � � � � � � � � " � %

��� �� �� �� � �� � � � �� � � � � �� � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � � �� �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � � � � � �� �& �

& � � �
�

 � � � � * � + + � " � %

Figure 3. The bypass rule and the bigamy rule

The process ends when no further applications of the above rules can be
carried out. If the resulting graph has no bound nodes of degree greater than
1, the sought conjunction can be directly read off the graph, else we have a
failure. ✷

It has been proved that this algorithm has complexity O(|Nϕ| log |Nϕ|)

160

Formisano, Omodeo, and Simeoni

(where Nϕ is the set of all nodes of Gϕ), and that a crucial confluence prop-
erty holds: the order in which bypass and bigamy actions are performed is
immaterial [6].

In Sec. 6 we will briefly report on a ‘graphical’ implementation of this
algorithm.

Let us see through two examples how the above-outlined algorithm works:

• the first example will refer to the theory of natural numbers with successor
operation s (cf. [15,18]).

• the other example will refer to a theory of nested sets.

Example 3.1 Rules for evaluating 2U = V and 2 U = V in the theory of
successor are:

twoTo(0, s 0)

twice(s X, s s Y) ← twice(X, Y)

twice(0, 0)

twoTo(s X, V) ← twoTo(X, Z), twice(Z, V)

We begin by rectifying (cf. [42]) these Horn clauses into

U twoTo V ← U z W, U s V

U twoTo V ← X s U, X twoTo Z, Z twice V

U twice V ← U z V

U twice V ← X s U, Y s W, W s V, X twice Y

where z represents the predicate {[0, 0]}.

Through graph-thinning, one easily obtains corresponding inclusions:

z ; � ∩ s ⊆ twoTo, z ⊆ twice,

s�
; twoTo ; twice ⊆ twoTo, s�

; twice ; s ; s ⊆ twice,

Fig. 4 zooms in on the details of the translation of the two clauses regarding
twoTo.

Then we can condense the inclusions into equalities:

twoTo = z ; � ∩ s � s�
; twoTo ; twice;

twice = z � s�
; twice ; s ; s.

(We are replacing, e.g., the inclusion z ; � ∩ s ∪ s�
; twoTo ; twice ⊆ twoTo by

the former equality by the closed-world assumption [40] and by virtue of the
disjointness of the operands of ∪.) ✷

Example 3.2 In set theory, the possibility to build the pair
{Y \ {X}, Y ∪ {X}}

161

Formisano, Omodeo, and Simeoni

� � � � � 	 �
 � � � � � � � �
� �
 � � � ! #
 % � � �) *+)

*, -

� � . � � � � � 1 # 	
 1 � %
 � 5

 1
� � � � 1 � � : �) *+)<

, =
�

� : � � % � � B B � � 	 1 E
% 	 E � � � � � � � �) *, =

� I +)

J K L M N O P R S T V W X P Y Z
T [R S V K] ^ R _ Y N W ` a b d ef g h j h d ef g k m n `

J _ L M _ W K q q V W O r s
_ W q K ^ ^ T t O S R ` eb v w f g h j h d ef g k m n `

` eb v w f g h j h w f g k m n `

Figure 4. Steps of the translation of the clauses defining twoTo (cf. Example 3.1)

out of given sets X and Y can be formulated by the sentence

∃ d
(

Y ∈d∧∀u (u = X↔∃ v ∃w (u∈v∈d∧u�∈w∈d))
)

.(1)

This statement is rendered by the graph

❦∀ � ❦∀✲� ; toggles ✛ ∈
✒toggles

inside which one has the following ‘grafting’ of toggles:

❦ ❦
�

�

✲

✲

�
✶

∈

∈

∈

∈
Here the expressions on the dotted edges must be complemented, so that two
bypass actions give us that toggles ≡Def ∈;∈∩�∈;∈. Then the translation
of (1) turns out to be (toggles − � ; toggles) ; ∈� = �. ✷

4 Inferring equalities within the calculus of relations

Deriving new equalities from proper axioms, and from laws already known,
can to a large extent be viewed as a graph-rewriting activity. W.l.o.g. (cf.
Fig. 5(1),(2)), let us assume momentarily that only existential graphs of the
two types ∀∀ and ¬∃∃, respectively called positive and negative graphs, are
exploited to represent premises and conclusions, known laws, theses, etc.

From this perspective, inference mechanisms are seen as graph-rewriting
rules and techniques: in forward reasoning, they are used to transform premises
into conclusions; in backward reasoning, to reduce theses —‘goals’, as they are
often called— into simpler goals and, ultimately, into known and perhaps ob-

162

Formisano, Omodeo, and Simeoni

vious facts.

As a basic principle, it is legitimate to replace a positive goal by a more
demanding one, and a negative goal by one less demanding. E.g., new labeled
edges can be added at will to a positive goal, whereas edges can be removed
from a negative goal. Solving the new goal, although not necessarily equivalent
to solving the previous goal, will in fact suffice for the purpose. Quite often a
negative premise represents an inclusion P ⊆ Q; therefore, if a subgraph of a
positive goal matches the part of the premise which represents Q, then it can
be replaced by the part representing P ; in a negative goal, on the opposite, Q
may replace P (cf. Fig. 5(6)).

The following rule is conceived of in the same frame of mind:

• Let a ∀∀-premise G be fully decomposable into subgraphs G0, G1 such that
the source ν is an articulation node between the two, and the sink ν ′ belongs
to G1. Then one can infer any ∀∃-graph obtained from G by gluing the sink
ν ′ onto any node of G0 (even onto ν), and by choosing as new sink any node
distinct from the source (cf., e.g., Fig. 5(5)).

Without entering into further detail on such generalities, we limit ourselves
to specifying a few inference rules in the form of graph-rewriting rules in Fig. 5
(cf. also Figures 6 and 7).

Example 4.1 The authors assessed the power of the above-proposed ap-
proach by means of a thorough set-theoretic case-study (cf. [7]): under weak
set-theoretic axioms, including (1) of Example 3.2 and the extensionality ax-

iom ∈�
; �∈− �∈�

;∈ ⊆ � (stating that ‘sets are the same whose elements are the
same’), they proved that specific relations λ,ρ designate conjugated ‘quasi-
projections’, in the sense which will be clarified in Sec. 5. The proof was
certified by an automated (first-order) theorem-prover whose autonomy was
not so high as to exempt the authors from providing many hints. The graph-
ical approach was consistently and quite effectively exploited to obtain the
proof outline needed to guide the prover. As a matter of fact, heuristic insight
in devising proofs within the calculus of relations played a crucial role. ✷

5 Defining operations over sets

Set-abstraction terms are, by common usage, expressions of the form { t |ϕ },
where t and ϕ are a term and a formula in a first-order language suitable for
the formalization of set theories. To simplify matters, let us assume here that
t be a variable u, and that at most one variable x distinct from u may occur
free in ϕ.

Suppose the only basic constructs available (in addition to the standard
first-order endowment of logical symbols, inclusive of =) are the membership
relator ∈ and two monadic function symbols λ,ρ. At the very least, the
set-theoretic axioms must to ensure that the four laws

163

Formisano, Omodeo, and Simeoni

� � � � � � �
� �
 � � � � �

�
�

� � � � � � �
� �
 � � � � � �

�
�

�

� � � � � � �
� �
 �� � � �
�

� � � � � � �
� � � � �
� �
 � � � �� ��
�

� � � � � � � �� �� �
 � � � �� ��
�

� � � �� � � �� ��
�

" ########$
########%

&

'########(########)

� � �
*

*
* * � �� � +
 � � �
*

*
* * � �� � +

�� � � �� �� +
� + �� � �

*
*
* * � �� � +
 �� � �

*
*
* * � �� � +

Figure 5. Graphic representation of various inference macros

(Pair) λ
�
;ρ= �, Func(λ), Func(ρ), ∈;�= �.

hold, where � ≡Def ∈�. (We may summarize (Pair)1,2,3 by saying that λ,ρ
are conjugated quasi-projections.) Further axioms of the Zermelo-Fraenkel
theory ZF (cf. [32]), such as extensionality (cf. Example 4.1), will be brought
into play as the opportunity will arise.

The meaning of {u|ϕ} is conveyed by the double implication u∈{u|ϕ} ↔
ϕ, generalizable into s∈{u|ϕ} ↔ ϕ[s/u]. One cannot admit that {u |ϕ} al-
ways designates a set; e.g., by assuming that {u|u�∈u} exists, one would incur
the well-known Russell’s antinomy

{u|u�∈u}∈{u|u�∈u} ↔ {u|u�∈u}�∈{u|u�∈u}.
On the other hand, one can peacefully assume that {u|u∈x∧ψ} always des-
ignates a set.

The issue which will be addressed in this section is: given a formula ϕ
(within which x generally occurs free, along with u) how can one recognize
that an abstraction term {u|ϕ} designates a set, for every x? Otherwise
stated: how can one establish, for such a given ϕ, the totality of the relation
holding between x and y iff ∀u(ϕ ↔ u∈y)? When this relation is total, then
by extensionality there will be exactly one y corresponding to each x, and
hence the ‘abstractor’ {u|ϕ} will define an operation over the universe of all
sets: this is why the question we have raised deserves some interest (see also
[22], and [2]).

We find it comfortable to address the question in the framework of our
calculus, where the role of abstraction terms will be played by relational ex-
pressions of the form

F(P) ≡Def ∂(P) − P ;∈,

164

Formisano, Omodeo, and Simeoni

in which ∂(P) ≡Def P ; �∈.

Thus we have

x F(P) y ↔ (∀u (xP u → u∈y) ∧ ∀u (u∈y → xP u))

↔ {u | xP u }=y.

Tricks to prove the totality of relations

By studying numerous cases, we have discovered the following fundamental
tactic rules to obtain equalities of the form Total(T), i.e. T ;� = �, from the
axioms of Fig. 1 enhanced by the split rule 12 P = � ∨ �;P ;� = � and by
proper axioms—set-theoretic axioms in our privileged scenario of case-studies.

T0: tot(T), i.e. T�T ;�, is total for any relational expression T .

T1: If there is a Q such that both Q−T = � and Total(Q) are derivable,
then Total(T) holds.

T2: If there is a Q such that Total(T ;Q) is derivable, then Total(T) holds.

T3: If there are P,Q,R0, R1 such that T = P ;R0∩Q;R1, Total(P), Total(Q),
and R0;R�

1 = � are derivable, one can conclude that Total(T).

T4: It can be assumed that either Total(P) or Total(�;P�) holds, for any
relational expression P . ✷

These rules, depicted in Fig. 6, with the aid of similar ones related to inclusion
—see Fig. 7—, easily yield additional tactic rules, e.g.,

T0′: Both � and � are total.

T3′: By singling out P,R such that T = P ;R, Total(P), and Total(R) are
derivable, one can conclude that Total(T).

T4′: Either Total(Q) or Total(Q�) can be assumed, for any relational expres-
sion Q.

T5′: When T∩T� = � is known to hold, one can conclude that Total(T).
✷

� � � �� � � �	

�

�
�
 � ��

� � �
 � ��
�

� � � �
 � � �� �
� � � �
 � ��

�

� � �

�
 � ��
� �
 � ��

�

�
 � �
� �
� � � �

� �

�

�
� �

	

	

� � �

� � �

Figure 6. Inference rules for totality of relations

12 Although inessential, the split rule plays at times a useful technical role.

165

Formisano, Omodeo, and Simeoni

Examples 5.1

(i) To obtain Total(∈) from (Pair), we reduce it to Total(∈;�) through
T2, then to Total(∈;�) through T1, in view of the obvious equality
∈;�−∈;� = �. Since ∈;�= � holds by (Pair)4, we conclude as desired
with T0′.

(ii) To obtain Total(∂(P∪Q)) from Func(P), Func(Q), and ∈;�= �, we
reduce it to Total(tot(P);∈∩ tot(Q);∈) through T1, after verifying the
inclusion tot(P);∈∩tot(Q);∈−∂(P∪Q) = �. Since both Total(tot(P))
and Total(tot(Q)) hold by T0, the desired goal is reached through T4,
by ∈;�= �. As a special case, we get Total(∂(λ∪ρ)) from (Pair)2,3,4.

(iii) To derive Total(∂(λ;�∪ρ)) from (Pair) taken along with the sum-set
axiom of ZF, which is statable as Total(∂(�;�)) (cf. [17]), we reduce it
to Total((tot(λ);∈∩tot(ρ);∈;∈);∂(�;�)) through T1, after verifying
the inclusion (tot(λ);∈∩tot(ρ);∈;∈) ;∂(�;�)−∂(λ;�∪ρ) = �. Since
Total(tot(λ)) and Total(tot(ρ)) hold by T0, and Total(∈) holds (by
(1) above), we get Total(tot(ρ);∈) by T3′, and hence

Total(tot(λ);∈∩tot(ρ);∈;∈),
thanks to T3 and to ∈;�= �. We can conclude as desired, by T3′.

(iv) If we assume P and F(T) to be total, then from the axiom (Pair)1 we get
the totality of (P ;λ

�∩ρ�);F(T) by exploiting the known fact ρ� = �;ρ�

and resorting to T0′, T3, and T3′.

(v) To see how T4′ is derived from earlier tactics, we can proceed as follows.

We know from T4 that either Total(Q) or Total
(

�;Q
�)

holds. If it is

the latter alternative that holds, then �;Q
�

holds by T1, thanks to the

easily verified inclusion �;R−�;R= �. Since �;Q
�
=Q

�
=Q� =Q�, we

conclude with T4′.

(vi) To see how T5′ is derived from earlier tactics, notice that either Total(T)
or Total(T�) holds by T4′. If it is the latter alternative that holds,
the tactic T1 gives us the totality of T anyhow, from the assumption
T∩T� = � which yields T�−T = �. As a special case, we get the to-
tality of �∈ in ZF, by the consequence ∈∩�= � of the postulated well-
foundedness of membership. ✷

A strategy to define operations on sets

Let us now focus on the following subset axioms (also known as ‘separation’
axiom scheme) of ZF:

(S) Total(F(λ;�∩ρ;S)).

This states that for every ordered pair x = 〈x0, x1〉 there exists a set
{u∈x0 | x1 S u }. We will discuss in the ongoing a versatile proof strategy for
verifying theses of the form Total(F(R)). The strategy consists in singling

166

Formisano, Omodeo, and Simeoni

�� � � �� ��
�

�� � � �� ��
�

�� � � �� ��
� 	

�

�� � � �� �� 	
�

�
	 �

�� �

� �
�

�
�� �

�

� � �

� � �

� � �

� � �

�� � � �� ��
� �

�� � � �� ��
�

�� � � ����
�

�� � � �� ��
� �

�� � � �� ��
�

�� � � ����
�

�� � � �� �� "
� " �

�� �

� �
�

��� � "
� 	 � "

�� � � ����
�

�� � � �� �� "
� " �

�� � � ��$ �� � "
� % � "

Figure 7. Five axioms and four inference rules for inclusion of relations

out relational expressions P , Q such that both of
Total(P) and F(R) = (P ;λ

�∩ρ�) ; F(λ;�∩ρ;Q)
are equalities easily derivable from the axioms. Graphically, the decomposition
of F(R) together of the totality thesis involved in it, can be rendered as
follows:

❦∀ ✛ ρ � ✲F(λ;�∩ρ;Q) ❦∃

�

✏✏✏✏✏✶P
�����✐ λ

︸ ︷︷ ︸
F(R)

The soundness of this strategy under (S) ensues from the analysis carried out
in Example 5.1(iv).

For the choice of Q, in tuning the strategy to different situations, we will
adopt one of the tactic rules below. One of them (the most obvious, and first
in the list that follows) turns out to work in the totality of cases; the others
—when applicable— are syntactically simpler:

Q∞ : Put Q ≡ R.

Q1: If R ≡ T0∩T1, and P is fixed so as to fulfill P ;�−T0 = �, put Q ≡ T1.

Q2: If R ≡ T0;�∩T1, and a P of the form tot(T0) is taken, put Q ≡ T0;�∩T1.
✷

When no specific indication is given on the tactic for choosing Q, the choice
Q∞ is understood.

Let us now come to tactic rules for choosing P in our proof strategy re-

167

Formisano, Omodeo, and Simeoni

garding ‘equalities’ of the form Total(F(R)).

P1: Single out a (total) P such that the equality P∩R; �∈= �, or (equiva-
lently) R∩P ; ��= � is derivable.

P2: Single out a P and a T such that the equalities Total(P), P−∂(T) = �

and R−T = � are derivable.
(The explanation why this works is that Total(∂(T)), and hence that
∂(T)∩R; �∈= �, follows from Total(P); thus we fall under the tactic P1).

Specializations of the latter tactic, simply consist in either

P2.a: taking a P ≡ ∂(T) such that the equalities Total(∂(T)) and R−T = �

both are derivable; or

P2.b: taking a P ≡ F(T) such that the equalities Total(F(T)) and R−T = �

both are derivable.

Examples 5.2

(i) The existence of the null set (i.e., devoid of elements) can be stated as
Total(F(�)). This can be proved without any particular strategy—
indeed, (S) with S ≡ � directly supplies the desired thesis.

(ii) The totality, Total(F(�)), of the operation x �→ {x}, can be proved by
taking P ≡ ∈ (cf. Example 5.1(i)) by the tactic P1: in fact ∈∩�; �∈= �

obviously holds.

(iii) In order to prove that Total(F(funcPart(Z);�∩T)) holds, it suffices
to exploit the tactic Q2 by taking P ≡ tot(funcPart(Z)) and Q ≡
funcPart(Z);�∩T .

(iv) Let us postulate that both Total(∂(�;�)) and Total(∂(��;∈)) hold.
These are weak formulations of the sum-set axiom and of the power-set
axiom. By virtue of (S), their stronger versions can be proved by the tac-
tic P2.a (by taking T ≡ �;� and T ≡ ��;∈) which yields Total(F(�;�))
and Total(F(��;∈)), respectively.

Clearly, this argument can be applied whenever it is the case that
Total(∂(R)) holds and we want to prove that Total(F(R)) holds too.

(v) Any attempt to prove that Total(F(�)), i.e., the existence of a set com-
prising every set as a member, must fail. In fact, from the existence of
this omnicomprehensive set, the existence of the antinomic Russell’s set
would follow: the latter could, in fact, be decomposed as

F(�(�−�)) = (F(�);λ
�∩ρ�) ; F(λ;�∩�;(�−�)) ,

where the totality of the third F(·) ensues from the example in (3) above.
✷

168

Formisano, Omodeo, and Simeoni

Figure 8. The AGG user-interface displaying the ‘graph thinning’ grammar

6 Towards a graphical relational reasoner

In this section we outline current activity aimed at putting to trial simple
graphical techniques for relational reasoning. A more detailed description of
this approach is provided in [19] by means of a number of worked examples.

The main goal of ours is implementing the graphical techniques described
so far on top of an automated tool for algebraic transformation developed
at the TU Berlin, namely AGG (Attributed Graph Grammar, see [16] for a
detailed description).

Applications based on graph-transformations are described by Agg graph-
grammars; the latter consist of a start graph (initializing the system) and a
set of graph-rewriting rules describing the transformations which can be per-
formed. The Agg environment supports visual manipulation of such graphs
and rules. The start graph, as well as the graphs of the rules, may be at-
tributed by Java objects (i.e., instances of Java classes, either loaded from
standard libraries or user-defined) and expressions which are evaluated during
rule applications. This allows for a powerful combination of visual and textual
programming.

Agg has a formal foundation based on the single-pushout approach to
graph transformation as introduced in [34]. The approach owes its name to
the algebraic construction used to define the basic derivation step, which is
modeled by a pushout in the category of graphs and partial graph morphisms
(cf. [14]).

The user interacts with the Agg environment through a graphical user
interface which provides several visual editors, and an interpreter: the graph-
transformation machine. Fig. 8 shows the main window of the Agg user-
interface. On the left, the current graph-grammar is visualized: the user can

169

Formisano, Omodeo, and Simeoni

browse and inspect the rules and the start graph. The selected graph or rule
is shown in the corresponding editor window, on the right: the upper editor
displays the left- and right-hand sides of the rule, while the lower one displays
the graph. A special attribute editor pops up whenever an object is selected
for attribution.

Once a graph grammar has been formalized, Agg allows one to apply
the graph transformation rules by providing two basic mechanisms: a) the
user can select and apply one-by-one the rules; or b) Agg itself can perform
automatically a complete run of transformations. In the latter case, the rules
are selected following their order in the grammar; each single rule is repeatedly
applied to the current graph, as much as possible, before the next one is taken
into consideration.

The graph thinning algorithm has been implemented on top of Agg by
specifying the graph grammar described in Sec. 3. In particular, Fig. 8 shows
the Agg formalization of the bypass rule (cf. Fig. 3) and the start graph
corresponding to the graph (0) in Fig. 4. The status of being a bound node is
rendered in Agg by means of an attribute of the nodes (here, B=1 means that
the corresponding node is bound). Attribution of arcs is exploited to manage
labeling by relational expressions (the name of the attribute is Esp, in Fig. 8,
while expressions are represented by Java strings).

Consider the left-hand side of the displayed rule. Whenever the value
of an attribute has to be accessed for further use —e.g. to perform further
elaboration in order to instantiate the attributes of the right-hand side during
rule application— a variable is employed (in our example the variables are
varX, varY, P, Q, and R). Notice that the value of Esp in the right-hand side
of the bypass rule is obtained by calling a suitable Java method.

Our implementation of the graph thinning algorithm works well in practice.
Actually, the translations described in Sec. 3 were among those obtained by
exploiting Agg.

At the present time, Agg can be employed profitably as a proof-assistant
or just as a semi-automated theorem prover for graphical reasoning. This is
so because the default strategy provided for rule selection/application does
not permit easy implementation of the standard search methods commonly
exploited in theorem proving. As a matter of fact, the realization of a depth-
first iterative deepening strategy combined with a best-first heuristic search
(see [31]) is one of the challenging goals of our current research.

We plan to accomplish this intent also in collaboration with the research
group that developed Agg, which is currently implementing a parser for Agg

graph grammars.

170

Formisano, Omodeo, and Simeoni

7 Related work

Several approaches to the automation of relational reasoning have been pro-
posed. Various tools supporting algebraic logic exist already. We would like to
mention, at least, RALF, Libra, and RELVIEW. RALF is basically a graphical
interactive proof assistant and proof checker: it allows the user to manipulate
relation-algebraic formulas mainly by using substitution of equals for equals,
weakening and strengthening (cf. [25]). The RELVIEW system (cf. [1]) offers
a support for relational computation: assuming finiteness of domains and rela-
tions, it offers explicit and extensional representation of concrete relations and
provides efficient implementation of the basic relational constructs. The Libra
language (Lazy Interpreter of Binary Relational Algebra [13]) is a general-
purpose programming language based on the algebra of dyadic relations that
offers immediate support to program specification.

A few graphical approaches to relational calculus have been proposed too.
For instance, relational methods are exploited in [3,4] to tame the problem of
circuit design. This goal is achieved by developing a pictorial representation of
relational terms and by providing a (relational) semantics for pictures. High-
level operations on pictures/circuits are rendered by transformation rules that
ultimately correspond to the axioms/laws of the calculus.

In [12,23], a graphical representation by means of diagrams is proposed
for all term-expressions of an equational theory of dyadic relations which does
not involve complementation. A notion of reduction is given in terms of mor-
phisms between diagrams. Normalization and decidability properties for this
graphical framework are also provided.

Another graphical calculus for representation of and visual reasoning on
mathematical formulas is proposed in [11]. In this approach the treatment
of ∩ and ; essentially coincides with ours; moreover, [11] introduces a set of
graphical tranformation rules which turns out to have a large overlap with the
rules exploited in our Graph-fattening algorithm; however, [11] does not deal
explicitly with complementation and adopts a different treatment of inclusion.

The work of Kahl (cf. [29,30]) provides a more general approach to the
graphical calculi of relations introduced by [3] and [11], by resorting to alge-
braic graph-rewriting techniques and concepts [10,14,34].

Acknowledgments

We are grateful to Olga Runge, Gabriele Taentzer, and Thorsten Schultzke for
useful discussions and suggestions about the Agg system. We would like to
thank Andrea Corradini, Wolfram Kahl, James Lipton, and Antonino Salibra
for giving us many suggestions and useful references.

171

Formisano, Omodeo, and Simeoni

References

[1] Behnke, R., R. Berghammer and P. Schneider, Machine support of relational
computations: The Kiel RELVIEW system, Tech. Rep. Bericht Nr. 9711, Institut
für Informatik und Praktische Mathematik, Christian-Albrechts-Universität
Kiel, Kiel, Germany (1997).

[2] Belinfante, J. G. F., Computer proofs in Gödel’s class theory with equational
definitions for composite and cross, Journal of Automated Reasoning 22 (1999),
pp. 311–339.

[3] Brown, C. and G. Hutton, Categories, allegories and circuit design, in:
Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science,
IEEE Computer Society Press, Paris, France, 1994, pp. 372–381.

[4] Brown, C. and A. Jeffrey, Allegories of circuits, in: Proc. Logic For Computer
Science (1994), pp. 56–68.

[5] Cantone, D., A. Cavarra and E. G. Omodeo, On existentially quantified
conjunctions of atomic formulae of L+, in: M. P. Bonacina and U. Furbach,
editors, Proceedings of the FTP97 International workshop on first-order theorem
proving, 1997, pp. 45–52, RISC-Linz Report Series No.97-50.

[6] Cantone, D., A. Formisano, E. G. Omodeo and C. G. Zarba, Compiling dyadic
first-order specifications into map algebra, in: Proceedings, of the 16th Twente
Workshop on Language Technology—2nd AMAST Workshop Algebraic Methods
in Language Processing (AMILP 2000), TWLT 16, University of Twente, 2000.

[7] Chiacchiaretta, A., A. Formisano and E. G. Omodeo, Benchmark #1 for
equational set theory, in: Giornata “Analisi Sperimentale di Algoritmi per
l’Intelligenza Artificiale”, Roma, 1999.

[8] Chiacchiaretta, A., A. Formisano and E. G. Omodeo, Map reasoning through
existential multigraphs, Tech. Rep. 05/00, Dipartimento di Matematica Pura ed
Applicata, Università di L’Aquila (2000).

[9] Chin, L. H. and A. Tarski, Distributive and modular laws in relation algebras,
University of California Publications in Mathematics 1 (1951), pp. 341–384,
new series.

[10] Corradini, A., U. Montanari, F. Rossi, H. Ehrig, R. Heckel and M. Löwe,
Algebraic approaches to graph transformation I: Basic concepts and double
pushout approach, in: Rozenberg [37] pp. 163–246.

[11] Curtis, S. and G. Lowe, Proofs with graphs, Science of Computer Programming
26 (1996), pp. 197–216, mathematics of program construction, Kloster Irsee,
1995.

[12] Dougherty, D. and C. Gutiérrez, Normal forms and reduction for theories
of binary relations, in: L. Bachmair, editor, Rewriting Techniques and
Applications, 11th International Conference, RTA2000, Norwich, UK, July
2000, Proc., LNCS 1833 (2000), pp. 95–109.

172

Formisano, Omodeo, and Simeoni

[13] Dwyer, B., LIBRA: a Lazy Interpreter of Binary Relational Algebra, Tech.
Rep. 95-10, Department of Computer Science University of Adelaide, (1995).

[14] Ehrig, H., R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner and
A. Corradini, Algebraic approaches to graph transformation II: Single pushout
approach and comparison with double pushout approach, in: Rozenberg [37]
pp. 247–312.

[15] Enderton, H. B., “A Mathematical Introduction to Logic,” Academic Press,
New York and London, 1972.

[16] Ermel, C., M. Rudolf and G. Taentzer, The agg approach: Language and
environment, in: H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2:
Applications, Languages and Tools, World Scientific, Singapore, 1999 .

[17] Formisano, A. and E. G. Omodeo, An equational re-engineering of set theories,
in: R. Caferra and G. Salzer, editors, Automated Deduction in Classical and
Non-Classical Logics, LNCS 1761 (LNAI) (2000), pp. 175–190.

[18] Formisano, A., E. G. Omodeo and M. Temperini, Goals and benchmarks for
automated map reasoning, Journal of Symbolic Computation 29 (2000), special
issue. M.-P. Bonacina and U. Furbach, editors.

[19] Formisano, A. and M. Simeoni, Graphs and maps: rewriting techniques at work,
Tech. Rep. TU-Berlin 2001-01, Technische Universität Berlin, (2001).

[20] Gardner, M., “Logic machines and diagrams,” The Harvester Press, 1982,
2nd edition edition.

[21] Givant, S., Tarski’s Development of Logic and Mathematics based on the
Calculus of Relations, in H. Andréka, J. D. Monk, and I. Németi editors,
Algebraic Logic, Colloquia Mathematica Societatis János Bolyai, vol. 54,
pp. 189-216, North Holland, 1991.

[22] Gödel, K., “The Consistency of the Axiom of Choice and of the Generalized
Continuum-Hypothesis with the Axioms of Set Theory,” Princeton University
Press, Princeton, New Jersey, 1940.

[23] Gutiérrez, C., “The arithmetic and geometry of allegories,” Ph.D. thesis,
Wesleyan University, Middletown, CT (1999).

[24] Hammer, E. M., Peirce’s Logic (1999), in: E. N. Zalta, C. Allen,
and U. Nodelman, editors, Stanford Encyclopedia of Philosophy, Stanford
University, World Wide Web URL: http://plato.stanford.edu/.

[25] Hattensperger, C., R. Berghammer and G. Schmidt, RALF - A relation-
algebraic formula manipulation system and proof checker. Notes to a system
demonstration, in: M. Nivat, C. Rattray, T. Rus and G. Scollo, editors,
AMAST ’93, Workshops in Computing (1994), pp. 405–406.

[26] Houser, N., D. D. Roberts and J. V. Evra, editors, “Studies in the Logic of
Charles Sanders Peirce,” Indiana University Press, 1997.

173

Formisano, Omodeo, and Simeoni

[27] Jacobson, N., “Lectures in abstract algebra: I. basic concepts,” The University
series in Higher Mathematics, Van Nostrand, 1951.

[28] Jónsson, B., Varieties of relation algebras, Algebra Universalis 15 (1982),
pp. 273–298.

[29] Kahl, W., Algebraic graph derivations for graphical calculi, in: F. d’Amore, P. G.
Franciosa and A. Marchetti-Spaccamela, editors, Graph Theoretic Concepts in
Computer Science, WG ’96, LNCS 1197 (1997), pp. 224–238.

[30] Kahl, W., Relational matching for graphical calculi of relations, Information
Sciences 119 (1999), pp. 253–273.

[31] Korf, R. E., Depth-first iterative-deepening: An optimal admissible tree search,
Artificial Intelligence 27 (1985), pp. 97–109.

[32] Krivine, J.-L., “Introduction to axiomatic set theory,” Reidel, Dordrecht.
Holland, 1971.

[33] Kwatinetz, M. K., “Problems of expressibility in finite languages,” Ph.D. thesis,
University of California, Berkeley (1981).

[34] Löwe, M., Algebraic approach to single-pushout graph transformation,
Theoretical Computer Science 109 (1993), pp. 181–224.

[35] Maddux, R. D., The origin of relation algebras in the development and
axiomatization of the calculus of relations, Studia Logica 50 (1991),
pp. 421–455.

[36] Maddux, R. D., Relation-algebraic semantics, Theoretical Computer Science
160 (1996), pp. 1–85.

[37] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by
Graph Transformation. vol. I: Foundations,” World Scientific, 1997.

[38] Schmidt, G. and T. Ströhlein, “Relations and graphs,” Monographs on
Theoretical Computer Science, Springer-Verlag, Berlin, 1993.

[39] Schröder, E., “Vorlesungen über die Algebra der Logik (exakte Logik), vol.1–3”
B. Teubner, Leipzig, 1891–95, [Reprinted by Chelsea Publishing Co., New York,
1966.].

[40] Shepherdson, J. C., Negation as failure: A comparison of Clark’s completed data
base and Reiter’s closed world assumption, Journal of Logic Programming 1
(1984), pp. 51–79.

[41] Tarski, A. and S. Givant, “A formalization of Set Theory without variables,”
Colloquium Publications 41, American Mathematical Society, 1987.

[42] Ullman, J. D., “Database and Knowledge-base Systems, vol.1,” Principles of
Computer Science 49, Computer Science Press, Stanford University, 1988.

174

