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e consider a team of agents with limited problem-solving ability facing a disjunctive task over a large
solution space. We provide sufficient conditions for the following four statements. First, two heads are

better than one: a team of two agents will solve the problem even if neither agent alone would be able to. Second,
teaming up does not guarantee success: if the agents are not sufficiently creative, even a team of arbitrary size
may fail to solve the problem. Third, defendit numerus: when the agent’s problem-solving ability is adversely
affected by the complexity of the solution space, the solution of the problem requires only a mild increase in the
size of the team. Fourth, groupthink impairs the power of diversity: if agents’ abilities are positively correlated,

a larger team is necessary to solve the problem.
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1. Introduction

Diversity is a word loaded with multiple connota-

tions. We inquire about the value of bringing a diverse

toolbox to a difficult problem. This is well captured in

an amusing story by Feynman, a famous and eccen-

tric physicist:
It turns out that [differentiation under the integral
sign] is not taught very much in the universities; they
don’t emphasize it. But I caught on how to use that
method, and I used that one damn tool again and
again. .. The result was, when guys at MIT or Prince-
ton had trouble doing a certain integral, it was because
they couldn’t do it with the standard methods they had
learned in school...Then I come along, and try differ-
entiating under the integral sign, and often it worked.
So I got a great reputation for doing integrals, only
because my box of tools was different from everybody
else’s... . (Feynman and Leighton 1985, pp. 49-50)

Taking a managerial point of view, it is natural
to expect that a team working on a problem bene-
fits both from the sheer ability of its members and
from the diversity of their toolboxes. For instance,
upon being honored for excellence in diversity, Dalip
Raheja, president and chief executive officer of the
Mpower Group, states explicitly that the added value
of this consulting firm is in providing diversity of
thought: “We want the client to have the benefit of
getting all different types of thinking applied to their
problem” (Kornik 2008).
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More explicitly, here is how Paul Biirkner, president
and chief executive officer of the Boston Consulting
Group, describes the power of diversity in problem
solving:

When we’re faced with what looks at first like

an unsolvable problem, a team with what I call

‘spikes’ of different talents will come up with a better

solution than a team whose members have similar

strengths. One person makes an oddball suggestion,
the next person misunderstands it but in a fruit-
ful way, and together they end up devising a novel
solution. The process can be slow and uncomfort-
able; spikiness often hurts. But it can yield spectacular
results. (Dowling 2007)

The power of diversity in problem solving, recently
popularized in Page (2007), has been long recog-
nized by the psychological literature (Michaelsen et al.
1989). The consensus over the available evidence dis-
tinguishes between intellective and judgmental tasks
(Hill 1982). The former requires the group to achieve
a correct answer, and the latter strives for consensus
(Laughlin 1999). It is apparent that groups tend to
perform better than individuals on intellective tasks
(Hastie 1986, Levine and Moreland 1998). This effect
is particularly evident when, as in Feynman’s feats,
the intellective task is demonstrable and the correct
solution (once found) is easily recognizable by the
other members of the team (Davis 1992, Laughlin
et al. 2002).
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Some recent literature in experimental economics
focuses on intellective tasks. Blinder and Morgan
(2005) observe that many important decisions, most
notably in monetary policy, are made by commit-
tees rather than individuals. Comparing two labora-
tory experiments based on a demonstrable intellective
task, they reach three conclusions: groups make bet-
ter decisions than individuals; they require less infor-
mation to act; and the quality of their decision is not
affected by whether decisions are made by major-
ity or unanimity. In a follow-up study, Blinder and
Morgan (2008) provide evidence that designating the
ablest individual as team leader has no discernible
effects on performance. A different strand has worked
on game-theoretic intellective tasks, reaching the gen-
eral conclusion that initially teams may not perform
better than individuals but they learn faster to adopt
and use strategic reasoning, from which they gain a
substantial payoff advantage; see the beauty contest
in Kocher and Sutter (2005), the limit pricing game in
Cooper and Kagel (2005), and the centipede game in
Bornstein et al. (2004).

More generally, the literature on organizational and
management science shares the insight that functional
diversity with a group tends to improve its per-
formance (Krishnan et al. 1997, Simons et al. 1999,
Jackson et al. 2003). At the same time, much effort has
gone into factoring out a variety of details that pro-
mote or hinder the performance of a team (Pelled et al.
1999, Mannix and Neale 2005). For instance, Dahlin
et al. (2005) argue that educational diversity favors
information use although the social categorizations
cued by national differences impair it. Reagans
et al. (2004) show that the heterogeneity of the social
networks associated with its members is an important
predictor of team performance.

Finally, even the ecological literature has recently
turned its attention to experiments providing evidence
that groups may perform better than individuals; see
Conradt and List (2009) for a wide-ranging survey.
Liker and Bokony (2009) show that larger groups of
house sparrows exhibit a faster and greater forag-
ing performance; their superiority is not only due to
a higher number of attempts but to a greater effec-
tiveness in problem solving. Burns and Dyer (2008)
argue for the evolutionary advantage of maintaining
a diverse set of foraging strategies in a bumblebee
colony. Ward et al. (2011) point out that both speed
and accuracy of decision making increase with group
size in fish shoals under predation threat.

The aim of this paper is to study the impact of diver-
sity over individual problem-solving abilities when
a team faces a demonstrable intellective task over
a large solution space. We assume that the solution
must be found in a very large solution space and that
agents’ abilities are constrained to explore only limited

regions of such space. We exhibit sufficient conditions
under which a team of two or more agents succeeds
in solving a difficult problem with a large solution
space: even though no agent is sure to crack it, pool-
ing their diverse abilities achieves the goal. In other
words, we prove when it takes (at least) two to solve a
problem. We also provide sufficient conditions under
which teaming up does not always guarantee success
because agents are not sufficiently creative.

Moreover, we also consider situations in which the
problem-solving ability of agents is adversely affected
by the dimension of the solution space. We prove
how a small increase in the size of the group can be
highly effective to overcome the negative effects on
agents’ abilities. A second negative effect is associ-
ated with groupthink, when the members of a team
tend to align their perspectives. We show that increas-
ing groupthink induces progressively greater losses
in the group performance, but that these can to a
large extent be compensated by substantially stronger
increases in team size.

The organization of this paper is as follows. Sec-
tion 2 describes the main model, accompanied by an
illustrative example. Section 3 shows that a team of at
least two agents may be always successful whereas a
single agent would not. Section 4 discusses the equiv-
alence of our model with the one used in Hong and
Page (2004), highlighting the differences in our per-
spective. Section 5 considers a model where teaming
up may fail to ensure success, regardless of the size
of the team. Section 6 deals with the assumption that
problem-solving abilities are inversely related to the
size of the solution space and §7 with the effects of
groupthink. Section 8 offers a commentary. Proofs are
relegated to the appendix.

2. The Model, Illustrated
by an Example

There is a team T of m problem-solving agents of
limited ability who attempt to maximize an objective
function V that maps a finite set X of n solutions into
real numbers. The function V: X — R is one-to-one; in
particular, it has a unique maximizer at x*. The task
of the team is locating x*. Following Marschak and
Radner (1972), we assume that the agents in the team
share the same objective and there are no frictions due
to the difficulties of communication among people.

As a simple running example, consider Figure 1: It
depicts a solution space X with six elements. We iden-
tify each point x with its value V (x) topping it; hence,
the maximizer x* =6 is the bottom-left element asso-
ciated with a value of 6.

Locating the maximizer is a demonstrable intellec-
tive task that can be carried out disjunctively: If one
of the agents finds x*, he can show its value to his
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Figure1 A Solution Space with Six Elements When two or more agents work together, they can
| 3 pool their abilities and expand their search spaces.

o L4 Following the general framework developed in Hong

and Page (2001), it is not necessary to specify the

3 4 minute details of their interaction because there are

® ° many alternative procedures that lead to the same

outcome. However, for the sake of clarity, we describe

g 2 a specific procedure inspired by sequential search.

teammates and the task is accomplished (Gerchak and
He 2004). However, because of their limited ability,
each of the agents in the team may fail to discover x*.

We represent the limited problem-solving ability of
each agent i by a partition 1I; of X; see Rubinstein
(1993) for a related approach. We momentarily sup-
press subscripts and consider one agent. The mutually
disjoint and exhaustive classes constituting the parti-
tion II are called blocks. The agent can find the best
solution within the block he is working on, but he is
impervious to the other blocks unless his attention is
redirected there by someone else. The auvailability map
I1: X — 2X\@ describes the search space of the agent:
for each x € X, Il(x) is the set of solutions that he can
explore when he is aware of a candidate solution x.
The availability map is consistent: x is in II(x) for all
x in X; that is, the search space of an agent always
contains the candidate solution.

We assume that each agent correctly identifies
and compares the values of V for each solution he
examines. Therefore, given a candidate solution x,
he explores the search space II(x) € X and finds x, =
argmax, ., V(y): Because V(x,) > V(x), the search is
always (weakly) improving. More generally, when the
agent has access to an initial subset S € X of candi-
date solutions, he explores I1(S) = |,.s I1(x) and finds
the solution x, = argmax, ;5 V(y)-

Continuing our running example, Figure 2 depicts a
partition for a (male) agent who thinks “horizontally”:
Working over the top (respectively, middle or bottom)
block of possible solutions, the best solution he can
find is 2 (respectively, 4 or 6). However, by himself,
the agent lacks the ability to move from one block to
another. Unless he happens to begin his search in the
bottom block, he cannot find x* = 6.

Figure 2 The Partition of an Agent

Sl

Number agents from 1 to m. Agent 1 works on the
task from an initial set S, of candidate solutions.
He discovers a set S; =11,(S5;) 2 S, of possible solu-
tions that he hands over to agent 2. She then explores
the search space S, =11,(S;) 2 S;. In each stage, the
tentative solution is x7 = argmax{V (x): x € II;(5;_1)};
clearly, V(x7) > V(x7 ;) and the search is (weakly)
improving. The process continues, cycling over all
permutations of the agents, until no one can find fur-
ther improvements; then the search stops and the ten-
tative solution becomes final. If, along the process,
no agent ever gets to explore the block in his partition
that contains x*, the optimal solution is not found and
the team fails (although it may succeed in discovering
a very good local optimum).

Continuing with our illustrative example, suppose
that there is a second (female) agent with the “ver-
tical” partition shown in the center of Figure 3. She
teams up with the first agent, whose partition from
Figure 2 is reproduced on the left of Figure 3. The male
agent starts with Sy = {1} and discovers the set of solu-
tions S; = 11,(Sy) = {1, 2} in his top block. He hands
this information to the female agent, who can explore
S, =11,(5) =11, 2,3} and thus finds x = 3. Exchang-
ing information, she passes her insight back to her
teammate. As S; = I1,(S,) = {1, 2, 3, 4}, this unlocks
his access to x =4. When the male agent returns this
new piece of information, this opens her eyes on her
bottom-right block. She finds out x =5 and commu-
nicates it to the male agent, leading him to finally
discover x* =6.

We formalize the problem-solving ability of a team
T={1,2,..., m} as follows. Each agent i in T is asso-
ciated with a partition II; that represents his ability
to explore the search space. Starting with an initial
set S of candidate solutions, each agent i explores
I1;(S); analogously, any team of two agents i =1,2
explore II;(Il;_;(S)); and, more generally, the team

Figure 3 The Partitions of Two Agents and Their Meet
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Figure 4 The Partitions of Two Other Agents and Their Meet
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jointly explores the union of all subsets representable
as l"[,»k(l'[,»ki1 ... (IT; (s))) € S for any k and any sequence
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When X is finite, there is a simple characterization
of the set of solutions that are jointly explored by a
team. The finest common coarsening of the partitions
(I1;,i € T) is another partition M called their meet.
Then, from an initial subset S of candidate solutions,
the team explores M(S). In other words, the meet
describes the problem-solving abilities jointly attained
by the team.

For instance, the meet of the partitions of the two
agents used in our example is represented on the right
of Figure 3. This is the trivial partition: Regardless
of its starting point, the team can access the entire
space of solutions and thus it is always successful.
On the other hand, things may not work as smoothly.
For instance, switch her right blocks and suppose that
the second agent comes with the partition given at
the center of Figure 4. If the two agents work on any
subset of S ={1,2, 3,4}, they are jointly unable to
access any point x > 5 and will not find x* = 6. The
meet of their partitions is shown on the right of Fig-
ure 4: It reveals that the team, albeit more powerful
than each of its members alone, still exhibits limited
problem-solving abilities.

The next short subsection conveniently collects a
few technicalities used in this paper.

2.1. Technicalities

We assume that X is a finite set with n elements;
when useful, we write it as X, to make the num-
ber of elements evident. We label the elements of X,
with the integers {1, ..., n}. Following custom, we list
the blocks of a partition of X in increasing order of
their least elements and the elements of each block
in increasing order. For instance, the blocks of the
partition {3, 4, 5}, {6, 1}, {2} of a set with six elements
are listed {1, 6}, {2}, {3, 4, 5}. For brevity, we simplify
notation and write the partition as 16 |2 | 345.

We write I1 < II' to denote that II is coarser than
IT'. Clearly, an agent endowed with partition II has
a higher problem-solving ability than another agent
endowed with II'. The trivial partition 11, that has X
as its unique block satisfies the property I, <II for
any partition II; therefore, an agent endowed with the

trivial partition has the highest problem-solving abil-
ity of all and, indeed, will find the global optimum
from any starting point. The set of all the partitions of
X partially ordered by the refinement relation < is a
lattice. In particular, the notation Il; AIl, denotes the
finest coarsening of II, and Il,; analogously, 11, v 11,
stands for their coarsest refinement. The meet of
(I, ieT)is M= A I1,.

The number of partitions for a (finite) set X, of n
elements is given by the Bell number B,. As an exam-
ple, consider X; = {1, 2, 3}. The set of all its partitions,
denoted by P2(X;), is P(X;) = {123, 1|23, 2|13, 3|12,
1|2|3} and thus B; = |2(X;)| = 5. The first few
Bell numbers are B,=1,B,=1,B,=2,B;=5, B, =15,
B; =52, and B; = 203. The Bell numbers satisfy the
recursive formula:

" /n
Bn+1 = Z (k>Bk1

k=0

as well as the Dobinsky’s formula:

B=y k(&

-~z (%)

according to which B, is the nth moment of a Poisson
distribution with expected value of 1.

We are to study spaces of solutions when 7 is large.
Clearly, the number B, of possible partitions is much
larger than 7. Some intuition for its rate of growth
can be gathered considering that B, =115,975; By, &
4.7585 x 10"%; and B; 5, ~2.9899 x 10"°¥. An asymp-
totic formula for the Bell numbers as n 1 +oo is

1
B. ~ rn+1/Zer—n—1’

! n
where r is defined as the root of re" = n; see
Pitman (2006). Recently, Berend and Tassa (2010) have
proved a convenient upper bound,

0.792n \"
By < <1n<n+1)> ’ @

that holds for all .

3. Two Heads Are Better Than One
This section studies the performance of a randomly
chosen team of problem solvers. We fix both the num-
ber n of solution in X, and the size m of the team
T,.. A team is always successful if it can find the opti-
mal solution in X, from any starting point; that is, if
the meet of the partitions of its agents is the trivial
partition. We assume that the agents in the team are
randomly chosen so that the composition of the team
is stochastic and we ask what is the probability that
the team is always successful.
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Table 1 When the Meet of Two Partitions Is the Trivial Partition
No difficulty Difficulty

123 1123 2|31 3|12 1)2|3 1123 2131 3|12 1)2|3
123 X X X X X
1123 x X X 1123 X X
2131 x X X 2|31 X X
312 x X X 312 x X
11213 x 112|3

Because a problem solver is represented by a par-
tition, we need to construct a model of how agents
are randomly drawn from the set of partitions of X,,.
To stack the deck against success, we borrow from
Hong and Page (2004) the assumption that no single
agent can find the optimum alone.

AssumPTION 1 (Dr1rrrcuLty). No agent in the team is
endowed with the trivial partition.

The simplest way to build a random model for the
problem-solving abilities of the members of a team is
to assume that they are independently chosen accord-
ing to the uniform distribution over all partitions. For-
mally, let 2(X,,) denote the set of all partitions of X,,.
The number of elements of %(X,) is the Bell num-
ber B,. The uniform distribution on %(X,) assigns
probability B! to each partition. We call this the uni-
form model. To satisfy the difficulty assumption, it suf-
fices to attach zero probability to the trivial partition
and update the uniform model by giving probability
(B,—1)"" to every nontrivial partition. We call this the
uniform model with difficulty and study it in this sec-
tion. Sections 5 and 6 consider two alternative models.

It is intuitively clear that the size n of the set X,
of solutions is going to affect how easy it is for a
team to always be successful. The main focus of this
paper is over the case when n is large. However, to
build up intuition, we look first at the case where n
is quite small.

Consider two agents and three elements, so that
m=2 and n =23 with X ={1, 2, 3}. There are B;=5
possible partitions, namely, 123, 1|23, 2|31, 3|12, 1|2|3.
Each of these five partitions has identical probability
1/5 and each pair of partitions (one for each agent)
has identical probability 1/25 of occurring. Denoting
by x the event that the meet of two partitions is the
trivial coarse partition, we obtain the left-hand side
of Table 1 where it is easy to check that there are
15 favorable events out of 25 possible ones. Because

the joint probability distribution is uniform, the prob-
ability that a team of two agents is always successful
under the uniform model is 15/25 = 0.6.

Under the difficulty assumption, the probability
that an agent is endowed with the trivial partition 123
is zero, so we delete the first row and the first column
and get the right-hand side of Table 1. Now, there are
six favorable events out of 16. Thus, under the uni-
form model with difficulty, the probability that a team
of two agents is always successful is 6/16 =0.375.
Introducing difficulty reduces the probability of suc-
cess from 0.6 to 0.375; as expected, it is harder to find
the optimal solution.

Using a similar reasoning, we have computed the
probability that a team of m = 2 agents is always
successful under the uniform model with difficulty
for n=2,4,5 as well. The results are summarized
in the first row of Table 2, whereas the second row
reports the same probabilities without the difficulty
assumption.

We make a few observations. The probability that a
team is always successful is definitely smaller than 1,
regardless of whether or not we assume difficulty.
Under the uniform model, a team of two person may
fail to solve the problem even if the solution space is
very small. This provides an important baseline for
appreciating the result we are going to prove below;
namely, as the size n of the solution space X, grows,
the probability that a team of two people is always
successful approaches 1. That is, for a fixed team size,
expanding the solution space makes the team much
better at problem solving.

A hint of this surprising result shows up in
Table 2 if we look at the first row from left to right.
As n increases, the ability of the team of always solv-
ing the problem under difficulty increases from 0
to 0.477. What is going on? The basic idea is that a
larger solution space makes it easier for new ideas or
novel approaches to emerge. Given the current set S, of
candidate solutions, the team can make progress only
if the search space 1I,(S;) accessible by some agent i
contains some element x that is new with respect
to S,. Because agents can transfer their insights to
teammates, such an additional element x expands the
team’s solution space from S, to S, U {x} and leads to
a (weak) improvement. Each fresh insight x may sug-
gest a new approach and open up new possibilities.
When the search space grows large, there are more
items that can be discovered: each of them can be a

Table 2 Probability That a Team of Two Agents Is Always Successful

n=2 n=3 n=4 n=>5
Difficulty 0 6/16 =0.375 90/196 = 0.459 1,240/2,601 ~ 0.477
No difficulty  3/4=0.750 15/25=0.600 119,225~ 0.529  1,343/2,704 ~ 0.497
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Table 3 Probability That a Team of Two Agents Is Always
Successful (Estimates)
n=25 n=>50 n=75 n=100
No difficulty 0.679 0.797 0.847 0.871

stepping stone or a bridge to a better solution. Creativ-
ity is fostered by tossing around many alternatives.

One last technical observation compares the values
in Table 2 column by column. The difference between
the probability that a team is always successful is
decreasing in the size n of the solution space X,,.
In other words, as the solution space expands, the
impact of the difficulty assumption on the ability of
the team to solve the problem tends to be negligible.
Indeed, it turns out that it is asymptotically irrelevant.

We are ready to consider what is the probability
that a team of m people is always successful under
the uniform model when the space X, of solutions
grows large and n 1 co. We find that this probabil-
ity approaches one for any m > 2, with or without
difficulty. On the other hand, the probability that an
agent is always successful is zero under the difficulty
assumption, whereas it goes down to zero as 1/B,
without it. This is a sharp difference: when the space
of solutions is sufficiently large, we are almost sure
that no single agent is able to solve it but a team of
just two (or more) people will. Tossing many solu-
tions around unclenches the power of diversity.

THEOREM 1. Under the uniform model, the probability
that a team of at least m > 2 people is always successful
tends to 1 as n increases.

For n large, an exact computation of the probabil-
ity is prohibitive because of the size of the Bell num-
bers involved. However, Equation (7) in the appendix
provides an asymptotic estimate for the rate at which
this probability approaches 1. Moreover, as suggested
by one referee, we have estimated the probabilities
(assuming no difficulty) for a few different values of n
over 10,000 rounds of simulations using a plain Monte
Carlo approach. These are reported in Table 3.

4. A Comparison with Hong and Page
The seminal reference for the power of diversity is the
work of Hong and Page (2001, 2004), recently pop-
ularized in Page (2007). This section shows that the
model used in Hong and Page (2004) for the lim-
ited problem-solving ability of an agent is equiva-
lent to ours and that we abide by the same three
main assumptions (Difficulty, Diversity, and Unique-
ness) made there. However, our perspective is novel
in two important respects.

First, from a methodological point of view, we
introduce partitions as an effective tool to repre-
sent the limitations in problem-solving ability. Sec-
ond, from a substantial point of view, the main result

in Hong and Page (2004) assumes that the number
m of agents is sufficiently large but the solution space
X, has a fixed size n. We take the opposite point of
view and let n grow large while keeping fixed the
cardinality of the team of problem solvers who are
in charge of tackling it. They are interested in large
teams; we study large solution spaces. So we view the
two papers as complementary with regard to explor-
ing the power of diversity.

We also argue that proving the power of diversity
over a large solution space X, is more challenging
than establishing it for a large team of m agents. If we
assemble a larger team to work over a fixed solution
space, it stands to reason that it should have a better
chance to succeed. On the other hand, consider a team
of fixed size working on an ever larger solution space.
It is far less obvious that the team should always be
successful. A simple example may help to ground this
intuition.

Table 4 exhibits the probability that a team of
m=2,4,8,16 agents is always successful for n=3 or
n =4 under the uniform model with difficulty.

All values are rounded to the closest fifth decimal
digit, and we write 1~ when the probability is within
107° from one. Assuming ever larger teams over a
given solution space X, corresponds to reading a row
in the table from left to right: as expected, for small
values of n, the probability that a team of m agents
is always successful is rapidly approaching one. Our
paper, on the other hand, is concerned with what hap-
pens when we descend a column in the table.

The general framework in Hong and Page (2001)
describes the problem-solving ability of an agent as
the pairing of his perspective with a set of heuris-
tics. The perspective is the agent’s internal representa-
tion of a problem; the heuristics are the algorithms he
applies to locate solutions. To facilitate the mathemat-
ical study of disjunctive tasks, Hong and Page (2004)
suppress their own distinction between perspectives
and heuristics and characterize each agent i by a map-
ping ¢;: X — X and a probability distribution v on X.
The initial distribution » has full support and it is the
same for all agents: it is used to randomly generate
the starting point of the search process; without loss
of generality, let v be the uniform distribution on X.

For each x, ¢;(x) denotes the local solution found by
agent i when he starts his search at x. Assumption 0
in Hong and Page (2004) states two properties valid

Table 4 Probability That a Team of m Agents Is Always Successful
over X,
m=2 m=4 m=38 m=16
n=3 0.37500 0.82031 0.98831 0.99995
n=4 0.45918 0.91977 0.99881 1-
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for any mapping ¢; and encapsulates the hypothesis
that each agent i is intelligent:

(0.a) V(g;(x)) = V(x) for all x in X;

(0.b) ¢;(¢;(x)) = ¢;(x) for all x in X.

Assumption (0.a) is the obvious requirement that the
agent never finds a local solution worse than his
starting point. Assumption (0.b) states that the
local solution found starting at x cannot be further
improved upon by the agent and that the final point
of his search is unique. This is natural if we take the
point of view that agent 7 tries his best given his set
of heuristics.

Under Assumption 0, it takes a simple change
of perspective (pun intended) to derive the equiv-
alence between our partitional model and the
p-representation. Suppressing subscripts momentar-
ily, consider an agent associated with the mapping ¢
and the equivalence relation x ~y on X x X defined
by ¢(x) = ¢(y). When x ~ y, the agent starting his
search at either point ends up discovering the same
local optimum. With respect to the objective of max-
imizing V, he is indifferent between x and y because
they both lead to an identical result. Hence, ~ defines
an indifference relation that partitions X into equiva-
lence classes such that each starting point in the same
class leads to the same local maximum.

Clearly, the problem-solving ability of an agent rep-
resented by ¢ is uniquely identified with the partition
IT induced by ¢. In this respect, it is worth not-
ing that Assumption (0.b) implies x ~ ¢(x) for any x
and thus plays the important role of ensuring that ¢
induces a partition Il that is consistent in the sense
defined in §2.

Vice versa, any partition Il of X uniquely defines
a problem-solving mapping ¢ by the following con-
struction. Let ~ be the equivalence relation on X x X
defined by x ~ y if and only if y € II(x), where
II(x) denotes the block of the partition II that con-
tains x. Then, for each x in X, the mapping ¢(x) =
argmax,., V(y) characterizes the problem-solving
ability of the agent endowed with the partition II.
This establishes a formal equivalence between the
mapping ¢ and the partition I as models of limited
problem solving for an agent.

This formal equivalence allows us to rephrase
results from one perspective to the other. For instance,
Hong and Page (2004) note that the image ¢(X) of the
mapping is the set of local optima discoverable by the
agent. Because the elements in ¢(X) are in a one-to-
one correspondence with the blocks in the partition
I1, the cardinality of ¢(X) is the same as the num-
ber of blocks in II. More generally, in the Hong and
Page (2004) model, an agent is more creative if he has
more heuristics (or possibly more perspectives) and
thus can generate more points in the search space; in

our model, this naturally translates into having a par-
tition made of larger blocks.

In a similar vein, it is easy to check that our
paper satisfies the three main assumptions (Diffi-
culty, Diversity, and Uniqueness) made by Hong and
Page (2004). For instance, consider Difficulty. We use
O={p;:ieT}or P»={Il;: i e T} to denote the team
of agents in either perspective. Hong and Page (2004)
state that, for any ¢ in ®, there exists a solution x such
that ¢(x) # x*. That is, for each agent, there exists at
least one starting point from which the global opti-
mum x* is not available; any problem solver has a
nut he cannot crack. Hence, the problem is difficult
because no agent alone is sure to be always success-
ful. Our Assumption 1 that no agent is endowed with
the trivial partition is logically equivalent.

5. Teaming Up Does Not

Ensure Success

The power of diversity demonstrated in §3 depends
crucially on our assumptions about the model that
describes how the problem-solving abilities of the
members forming a team are drawn. Clearly, one can-
not claim that Theorem 1 holds in any situation. This
section demonstrates a different model under which
the opposite conclusion is reached: the probability
that a team (regardless of its size) is always successful
at solving a problem is zero. At the end of this section,
we compare the two models and gain insight in what
drivers enable the formation of successful teams.

The uniform model studied in §3 assumes that
agents are independently chosen according to the
uniform distribution over all partitions. This section
works with what we call the urn model after the fol-
lowing intuitive description. (A formal definition is
given immediately after.) There are n numbered balls
and 7 urns. One by one, each ball is tossed into a urn
independently chosen with equal probability. At the
end of the process, some balls end up in the same urn
and some urns remain empty. Each ball represents a
solution in X, and each nonempty urn a block in the
agent’s partition. The procedure is repeated afresh for
each agent.

For instance, suppose 1 =3 so that there are three
balls to be distributed in three urns. This can be done
in 3° =27 possible ways. When the three balls end
up in the same urn, we generate the trivial parti-
tion. Because there are three urns, the trivial partition
is generated three times and, under the assumption
that a ball is equally likely to end up in any urn,
the probability of the trivial partition is 3/27 =1/9.
Similarly, there are six possible ways to generate each
of the other four possible partitions 1|23, 2|13, 3|12,
and 1/2|3. Hence, the urn model assigns probability
6/27 =2/9 to each of these partitions.



LiCalzi and Surucu: The Power of Diversity over Large Solution Spaces

Management Science 58(7), pp. 1408-1421, ©2012 INFORMS

1415

Table 5 Probability of the Trivial Partition Under the Urn Model
No difficulty Difficulty

123 123 2|31 3|12 1123 1123 2|31 3|12 11213
123 1/81 2/81 2/81 2/81 2/81 1/9
1]23 2/81 4/81 4/81 2/9 1123 1/16 116 1/4
2|31 2/81 4/81 4/81 2/9 2|31 116 116 1/4
3|12 2/81 4/81 4/81 2/9 3|12 1/16 1/16 1/4
12|13 2/81 2/9 112|3 1/4

1/9 2/9 2/9 2/9 2/9 1/4 1/4 1/4 1/4 1/4

The formal definition is as follows. For a given
mapping f: X, — X,, the sets {x € X: f(x) =y} form a
partition I1; of X;,. If f is chosen uniformly at random
from the set of all n" mappings then II; is random,
but not uniform. For instance, consider the trivial par-
tition. Under the uniform model without difficulty,
the probability to draw this partition over a set X,
is 1/B,; under the urn model without difficulty, it is
1/n""'. Using (1), it is easy to check that B, < n"™!
for any n > 2, so the trivial partition is more likely to
occur under the uniform model.

Similarly to §3, we build up intuition for the urn
model by looking first at the case where n is quite
small. Consider two agents and three elements, so
that m =2 and n =3 with X ={1,2,3}. There are
B; =5 possible partitions. As discussed above, the urn
model generates the trivial partition with probability
1/9, and each of the other four with probability 2/9.

To compute the probability that a team of two
agents always discovers the global maximum, we
apply these marginal probabilities to Table 1 and
obtain Table 5. Its two panels are arranged as in
Table 1: on the left, the case without difficulty; on
the right, the case with difficulty. Adding up the joint
probabilities, we find that the probability that a team
of m =2 agents is always successful is 41/81 ~ 0.506
without difficulty and 3/8 = 0.375 with difficulty.

Table 6 reports the probability that the team of
m=2 agents is always successful for n =2,3,4,5
under the urn model with (and without) difficulty.
Contrary to the uniform model with difficulty, this
probability is now decreasing in n—exception made
for the special case at n = 2. When the size of the
solution space grows, a team seems to become less
and less effective in finding the optimal solution. The-
orem 2 confirms this conjecture by proving that this
probability actually goes to zero when 7 1 co.

THEOREM 2. Under the urn model, the probability that
a team of at least m > 2 people is always successful tends
to 0 as n increases.

It is worth noting that the proof works unchanged
for m =1 as well, so that the conclusion of Theorem 2
actually applies for any m > 1. Moreover, similarly to
Theorem 1, it holds regardless of whether or not dif-
ficulty is assumed.

Why is there such a stark difference between
the uniform model and the urn model? It can be
shown that, when # is large, the expected number of
blocks in a random partition for the uniform model
is n/logn and it is (1 — e ')n for the urn model
(Sachkov 1997). Intuitively, the uniform model tends
to generate fewer blocks than the urn model. Because
the total number of solutions to partition among the
available blocks is the same under both models, this
implies that the average number of solutions per
block is higher under the uniform model. Hence, this
latter model tends to produce partitions that on aver-
age offer more bridges to a better solution. Differ-
ently put, given an arbitrary solution x, an agent with
problem-solving ability drawn according to the uni-
form model has on average a larger set II(x) of solu-
tions available; that is, he is more imaginative.

6. Defendit Numerus

It is a reasonable assumption that the size of the
solution space should adversely affect the ability of
an agent to solve the problem. When n grows large,
an agent should be less apt to discover the opti-
mal solution. Our analysis for the uniform model
and the urn model sidesteps an explicit discussion
of this issue. This section introduces and studies a
third model that formalizes this effect in a simple and
attractive way.

Table 6 Probability That a Team of Two Agents Is Always Successful Under the Urn Model

n=2 n=3 n=4 n=>5
Difficulty 0 6/16 =0.375 138/441~0.313 5,400/24,336 ~ 0.222
No difficulty 3/4=0.750 41/81=10.506 1,369/4,096 ~ 0.334 87,649/390,625 ~ 0.224
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Roughly speaking, the model is based on the fol-
lowing idea. Recall that the problem-solving ability of
an agent is represented by a partition II of the solu-
tion space X. This partition describes the search space
of the agent: For each x € X, II(x) is the set of solu-
tions that he can explore when he is given a candidate
solution x. An alternative representation is by means
of an undirected graph G. Let X be the set of nodes
in G. Two nodes x and y in G are linked by an edge
if and only if they belong to the same block in II or,
equivalently, if and only if x € II(y). Then, each block
of the partition Il corresponds to a connected com-
ponent of the associated graph G. Intuitively, if one
thinks of an edge as a mental shortcut linking a solu-
tion x to y, two nodes are in the same block if an
agent contemplating x can think of y as well.

More generally, if we start with an arbitrary (undi-
rected) graph G, over n nodes, we can define the par-
tition I1 formed by the connected components of G,,.
This second construction is more general, because it
assumes that two nodes belong to the same block if
there is a path connecting them (but not necessarily a
direct link). Intuitively, if each edge represents a link
from x to y, then x and y belong to the same block
when an agent can reach and explore solution y when
starting at x, through a chain of (possibly multiple)
intermediate steps z, w, ... .

This insight allows the tools of graph theory to bear
on the modeling of the problem-solving abilities of an
agent. Formally speaking, we view a partition II of
X, as a graph G,, with n nodes, where each block of 11
is a maximally connected subgraph of G,. Within this
setting, for instance, the trivial partition I1; formed by
the unique block X,, corresponds to the property that
G, is a connected graph.

The model studied in this section is based on
the theory of random graphs and thus will be
called the random graph model. A random graph is
obtained by starting with a set of n vertices and
adding edges between them at random. A celebrated
approach to the generation of random graphs is due
to Erd6s-Rényi. Given the set X, each of the (}) possi-
ble edges between distinct nodes from X, is indepen-
dently added with the same probability p. We denote
the random graph by I'(n, p) to highlight the number
n of nodes and the probability p of adding an edge.

Clearly, the structure of the partition II associated
with the random graph I'(n,p) depends on p: The
larger p, the lower the expected number of blocks
in II. For instance, for p = 0 all nodes are isolated
and we get the finest partition, and for p =1 the
graph is fully connected and we obtain the trivial
partition Il;. Thus, higher values of p correspond to
higher problem-solving ability. Consistently with the
objectives of this section, we assume that the size of

the solution space X, adversely affects the problem-
solving abilities of an agent and therefore that p is a
decreasing function of n; when useful, we write p,, to
remark the dependence on n.

The random graph model postulates that the
problem-solving abilities of each member of the team
are represented by the partitions generated by ii.d.
draws of I'(n, p,). For simplicity, we assume the same
function p, for each agent. Diversity still matters,
because each agent is associated with a different
random graph. Therefore, two nodes x and y may
be linked by an edge (and be available from each
other) for one agent but not for another. This leads
to the key observation that uncovers the power of a
diverse team.

Given two nodes x and y, the probability that a sin-
gle agent connects them is p. However, it is enough
that one of the agents has an edge between two nodes
to make them available to the entire team. The prob-
ability that at least one of m teammates connects x
and y is 1 — (1 —p)". Thus, we can build the random
graph representing the team’s problem-solving abil-
ity by assuming that each edge between two nodes is
independently present with probability 1 — (1 —p)™.
Formally speaking, when the partition of each of the
m agents in a team is represented by a random graph
I'(n, p), the meet is described by the random graph
I'(n,1—(1—p)"). When this graph is connected, the
meet is the trivial partition and the team has access to
the whole solution space, making sure that the solu-
tion is always found.

As usual, our main object of interest is the proba-
bility that a team is always successful when 7 is large.
Therefore, we need to consider the probability that
I'(n,1— (1 —p)") is connected. An important result
from random graph theory provides a powerful suf-
ficient condition. If (eventually) p, > (1+ &) Inn/n for
some ¢ > 0, the probability that I'(n, p,) is connected
tends to 1 as n 1 oo; and vice versa, if (eventually) p, <
(1—¢)Inn/n, then this probability tends to 0; see The-
orem 2.8.1 in Durrett (2007). This result states that the
connectedness of the graph undergoes a phase tran-
sition around the sharp threshold provided by Inn/n.
Given a team of m agents whose meet is described by
the random graph I'(n, 1 — (1 —p,)"), this implies the
following result.

TueEOREM 3. Under the random graph model, the prob-

ability that a team of at least m > 1 people is always suc-
cessful tends to 1 as n increases if

1
1= (1=p)" = (1+e) @
for all sufficiently large n, and tends to O if
Inn
1-(1-p)"=(1-)—" @)

for all sufficiently large n.
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Table 7 Minimum Size m for an (Almost) Always
Successful Team as a Function of n

n Py Inn/n 1—(1=p,)" m
10 0.111111 0.230259 0.297668 3
102 0.010101 0.046052 0.046052 5
103 0.001001 0.006908 0.006986 7
10 0.000100  0.000921 0.001000 10
10°  0.000010  0.000115 0.000120 12
106 0.000001 0.000014 0.000014 14

This sufficient condition extends easily to the case
where we remove the simplifying assumption that the
random graph for each agent in the team is drawn
independently according to the same model I'(n, p,,).
In fact, suppose that the partition for each agent i is
drawn according to a different model I'(11, p'). Define
p, =min; p’, and substitute it for p, in (2). Similarly, it
would suffice to replace p, = max;p’, in (3).

Theorem 3 formalizes an important trade-off, that
we illustrate by means of an example. Suppose that
p, =1/(n—1) for each agent in the team. Fix n and an
arbitrary node x. Because there are other n — 1 nodes
besides it, node x can have at most n — 1 incident
edges. Each of these edges has probability p, of being
present, so the expected number of edges incident to
x (a.k.a. degree of x) follows a binomial distribution
B(n—1,p,). Hence, p, =1/(n — 1) corresponds to the
special case where each node has an expected degree
of (n—1)p, =1 or each agent has access on average
to only another solution from any node x. This makes
his availability map pretty limited and, indeed, apply-
ing (3) shows the probability that a single agent is
always successful, for large n must be close to zero.

However, if we put together a sufficiently large
number m of agents, we can make the probability that
they will be jointly successful very close to one as
far as (2) holds. Table 7 shows the minimum size of
a team that is necessary to pass the threshold Inn/n
and make the team very likely to be always success-
ful for n =10, 10%,10%, 10*, 10°, 10° and p, =1/(n—1).
All values are approximated to the sixth decimal digit.

As it is easy to see, the minimum number of mem-
bers necessary to make the team very likely to be
always successful increases very slowly with respect
to the size of the solution space. This is not a coin-
cidence.! Because p, is very small, we can use the
Taylor’s approximation 1 —(1—p,)" ~ mp, and rewrite
(2) as mp, =Inn/n, so that m~[(n — 1)/n]lnn~Inn.
In other words, the minimum size for an always suc-
cessful team increases logarithmically with respect to
the size of the solution space. The power of diver-
sity is apparent. Each agent in the team has an

! Laughlin et al. (2006) provide empirical evidence that the marginal
contribution from the size of the team is decreasing.

expected degree of one so his problem-solving abil-
ity is severely limited. However, even a small team
can span a huge search space because the number
of possible combinations across the perspectives of
its agents increases exponentially. There is power in
(even small) numbers or, for short, defendit numerus.

The intuition that a small increase in a team makes
it more effective at finding the solution is also true
for the uniform and for the urn model. However,
because these models exhibit no phase transition, the
limit of the probability that a team is always success-
ful as n 1 oo is the same, regardless of the number of
its members. That is, the size of the team affects the
speed of convergence but not the value of the limit.
The phase transition exhibited by the random graph
model, instead, implies that the size of the team may
radically change the limit value from zero to one.

Nonetheless, Collevecchio and LiCalzi (2011) prove
that, if the number of urns may be different from the
number of balls, the urn model can be nested in a
more general scheme that exhibits a phase transition.
Reinterpreted in our framework, their result implies
that the probability that a team is always successful
goes to zero or one depending both on the number
and on the cognitive ability of the agents.

7. Groupthink Impairs the

Power of Diversity

Groupthink is a situation where the members of a
team align their thinking. Originally coined by Whyte
(1952), the term entered the academic literature in
Janis (1972), where it was argued that the search for
consensus in the decision-making team had adversely
affected the quality of some important policy deci-
sions. In the psychological literature, groupthink car-
ries a pejorative connotation and it is sometimes
offered as a possible explanation for why individu-
als might make better decisions than groups. Within
this paper, we take a neutral stance over the causes
and effects of groupthink except for its impact on the
ability of a team to find the optimal solution.

To study how groupthink affects team performance,
we enrich the random graph model introduced in the
previous section with the assumption that the proba-
bility p, that an agent has an edge between two nodes
x and y is positively dependent among agents. Intu-
itively, the higher the groupthink, the higher the cor-
relation. Consider first the two extreme cases. Under
independence, the probability that a team of m agents
has an edge between two nodes is 1 — (1 —p,)", as
discussed in the previous section. Under complete
dependence, all agents think exactly alike so the prob-
ability that an edge is present is p,, independently of
the number of agents in the team.

To study the intermediate cases, we model the
dependence across agents as a convex combination
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of the two extreme cases. Suppose that each agent
has the same marginal probability p, to have an edge
between any two nodes. Then the joint probability
that the edge is present for a team of m agents is

op, + (1 =8)[1—=(1—p,)"], )

where 6 in [0,1] is a dependence parameter that
describes the alignment between agents’ partitions.
We call this the random graph model with dependence.
For 6 =0, we obtain the random graph model with
independence among agents; for 6 = 1, we obtain
the random graph model with complete dependence.
Clearly, there are many alternative ways to introduce
dependence in the random graph model; however, our
choice is the simplest one that suffices to capture the
features in which we are interested. See the B11 copula
in Joe (1997) for its properties. The next result follows
immediately from (4) and the techniques of §6.

THEOREM 4. Under the random graph model with
dependence, the probability that a team of at least m > 1
people is always successful tends to 1 as n increases if

p, (1=~ (1-p) 121+ (5)

for all sufficiently large n, and tends to 0 if

1
S+ (1=3)1-(1-p)"I=(1=5)—"  (6)

for all sufficiently large n.

Theorem 4 can be used to compare how more
groupthink (represented by a higher value of §)
affects the performance of a team over a large solu-
tion space. The following example illustrates how.
As in §6, suppose that p, =1/(n — 1) so that each
node has an expected degree of one. Under indepen-
dence, for § =0, we have seen that a single agent
may fail to find the optimal solution; however, we can
assemble a sufficiently large team to ensure success.
Table 8 reports the minimum size m of a team neces-
sary to satisfy (5) for a given value of n (and a suffi-
ciently small & > 0) to make the team almost sure to
be always successful for 6 =0, 0.25,0.50,0.75,1 and

Table 8 Minimum Size m for an (Almost) Always Successful Team
Under Groupthink
m
n Dy Inn/n 6=0 6=025 6=050 &§=0.75 =1

10  0.111111 0.230259 3 3 4 8 )
10> 0.010101 0.046052 5 6 9 17 0o
10° 0.001001 0.006908 7 9 13 25 00
10 0.000100 0.000921 10 12 18 34 0o
10° 0.000010 0.000115 12 15 22 43 00
10® 0.000001 0.000014 14 18 26 51 00

n=10,10%,10%,10%, 10%, 10°. The first four columns
(up to 6 =0) are the same as in Table 7.

The focus of interest is the relationship between m
and &. It is easy to see that m is increasing in &: The
greater the extent of groupthink, the larger the num-
ber of agents for a successful team. When groupthink
is extreme and 6 =1, any team is as good as a single
agent, so no size is sufficiently large to ensure suc-
cess. More interestingly, if we treat m as a continuous
variable for the sake of convenience, it is easy to see
that the relationship is also convex. When & increases
from 0 to 0.25, a modest upward adjustment in m suf-
fices to preserve the performance of the team. How-
ever, when & goes from 0.50 to 0.75, a much larger
adjustment is necessary.

An approximate but effective estimate of the phe-
nomenon can be obtained as follows. Use the Taylor’s
approximation 1 — (1 — p,)" ~ mp, and substitute in
(5) to obtain op, + (1 — 8)mp, > Inn/n, or

Inn/n—op,

(1 - 6)P n

For n large, p, -n~1 and Inn > 6 so the right-
hand side approximates to Inn/(1 — 6). Under no
groupthink, when 6 = 0, we know already that the
minimum size for a successful team increases loga-
rithmically in the dimension of the solution space.
However, under groupthink, this logarithmic growth
is magnified by the 1/(1 — 6) multiplicative factor.
As 6 11, the necessary size increases without bounds.
This shows clearly the countervailing effect of group-
think on diversity: the more likely the agents are to
have the same perspective on a problem, the greater
is the number of agents required to cooperate before
the optimal solution can be found.

Although it is plausible to expect that correlations
exist among the perspectives used by teammates, it
is important that they should not be so high to wipe
out the advantages brought by the diversity in per-
spectives (Lazear 1999). Clearly, this intuition carries
over to other models, as long as we view groupthink
as a form of positive dependence among agents’ par-
titions. Nonetheless, it is an open problem to find a
simple and tractable way to formalize positive depen-
dence in the uniform or in the urn models.

8. Closing Comments
This paper studies the power of diversity in a model
where a team of agents with limited problem-solving
ability faces a disjunctive task over a large solution
space. From a managerial viewpoint, the overarching
conclusion is that firms searching solutions over dif-
ficult intellective problems need to tap people with
different toolboxes.

From a modeling perspective, it is important to
assess the reach of our model. We formalize the
limitations in agents’ abilities using partitions and the
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variability in their perspectives as randomness over
the partitions. As discussed in §4, this is formally
equivalent to a setup (Hong and Page 2001) where
agents draw heuristics from their toolbox. However,
the assumption that agents” partitions are indepen-
dently drawn from the same distribution is a crude
approximation and cannot capture the degree with
which agents’ toolboxes overlap in different organi-
zations, making them more or less apt to problem
solving. It may be appropriate to qualify this special
case as a form of “idiosyncratic” search, where each
agent’s toolbox is independent from his teammates’.

A useful benchmark is the compact summary in
Lazear (1999) of three main factors driving the suc-
cess of a diverse team working on an intellective
task: (a) how disjoint are the agents’ information sets;
(b) how relevant they are; and (c) the quality of the
communication processes. Our model implicitly rec-
ognizes and takes into account the first two items,
but assumes away any negative effect from the third
one. Communication is advantageous because it may
unstuck a team from a bad solution. However, many
different biases may adversely affect knowledge trans-
fer among agents (Argote et al. 2000). Diversity pro-
motes both improved knowledge sharing (Cummings
2004) and more misunderstandings (Postrel 2002).

A different line of research with important analo-
gies to our model is the study of groups engaged
in idea generation, where performance is defined
as the quality of the best ideas identified (Girotra
et al. 2010). These processes can exhibit several inef-
ficiencies (Paulus and Yang 2000). In particular, when
search is carried out in parallel, they are subject to
redundancies that may become very expensive over
large spaces (Kornish and Ulrich 2011). Our model
will benefit when adequate formalizations for the
effects of communication and for the process of idea
sharing shall be available.
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Appendix

ProoF oF THEOREM 1. As discussed above, the probabil-
ity that a team is always successful is equal to the probabil-
ity that the meet of their partitions is the trivial partition. Let
P,,, denote the probability that the meet of m > 2 partitions
of X, chosen under the uniform model with difficulty is the
trivial partition. It suffices to show that P,,, — 1 as n 1 oo.

Denote by P, the probability that the meet is the trivial
partition under the uniform model without difficulty. The-
orem 5 in Pittel (2000) shows that

1 m+1
Pr/nnzl_o<0g7n> (7)

nm—l

from which it follows immediately that lim,,., P, = 1. We
establish the claim by proving that (1- P, ,)/(1—-P,,) — 1
as n 1 oo.

The difficulty assumption removes the trivial partition
from the set of possible partitions of each agent. This
decreases by one the number of equally likely partitions
for each agent, from B, to B, — 1. On the other hand, this
removal does not affect the total number of m-tuples of par-
titions whose meet is not the trivial partition. Denote this
number by W,. Then

1_Pr/nn _ Wn/(Bn)m _ (Bn_1>m_

lim =1.
B

oo 1 — pmn B Wn/(Bn - 1)m B

n

Note also that P;,, — 1 by Pittel’s (2000) result, so The-
orem 1 holds for the uniform model regardless of whether

or not difficulty is assumed. O

Proor oF THEOREM 2. Let P;,, denote the probability that
the meet is the trivial partition under the urn model with-
out difficulty. Because P;,, > P,,, it suffices to show that
P, — 0 and the theorem holds regardless of whether or
not we assume difficulty. The strategy of the proof is the
following.

We say that a solution j is isolated for an agent i when {j}
is a singleton block for his partition. Analogously, a solu-
tion j is isolated for the team if it is isolated for each agent.
Let A and A; denote the event that the jth solution is iso-
lated for agent i and for the team, respectively. When the
meet of the agents’ partitions is the trivial partition, no solu-
tion j can be isolated for the team. Therefore,

n
P, <1- P(U A]-).
j=1

We are going to show that P(L_J]'-’=1 Aj)—>Tlasntoo.

We begin with a few preliminary observations. Given a
set X, of n possible solutions, A;. corresponds to the event
that the jth ball ends up alone in one of the n urns; thus,

P(A}) = mn =) (1 - 1>H.

nn" n

Analogously, for j, < j,--- < ji, the probability that k <n
solutions in X,, are isolated for agent i is

rkj . ﬁ 1 n—s
p( Al ) - (1 - 7> .
w1 B n—s+1

To see why, use the following inductive argument. The
probability that the j; th solution is isolated (or, equivalently,
the j;th ball ends up alone) is (1 —1/n)"~Y. Conditional on
this event, the other n — 1 balls are distributed uniformly
in the remaining n — 1 urns. Hence, the probability that the
joth solution is isolated (or, equivalently, the j,th ball ends
up alone) is (1 —1/(n—1))""?. And so on.
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Finally, because all agents’ partitions are identically and
independently distributed,

P(A;) =[] P(A) = (P(A))"
i=1

and thus, for j, <j,--- < ji, the probability that k < solu-
tions in X,, are isolated for the team is
m(n—s)
) - ®

Note that, for any fixed k, P(N_, A;)—e "™ as n oo

We are now ready for the main argument. Given ¢ > 0,
choose a sufficiently large integer M so that (1—e ™M <.
By the inclusion—-exclusion formula, we have

o) -r(Biy)-110-

i=1s=1 s=1 n—s+1

S P NA

12j <=M

+(—1)M“P<ﬁ Aj>].

j=1

P(C_AJIA/-) = [iP(Aj) -

Taking limits on both sides,

M
limP(U A]->

j=1

S (er=-E(e
B (e (e

1-(1—e™>1-¢,

where the last step follows from our choice of M. This con-
cludes the proof. O
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