
DOI: 10.1126/science.1151185 
, 1111 (2008); 319Science

  et al.Davide Marchiori,
Regret-Driven Neural Networks
Predicting Human Interactive Learning by

 www.sciencemag.org (this information is current as of February 21, 2008 ):
The following resources related to this article are available online at

 http://www.sciencemag.org/cgi/content/full/319/5866/1111
version of this article at: 

 including high-resolution figures, can be found in the onlineUpdated information and services,

 http://www.sciencemag.org/cgi/content/full/319/5866/1111/DC1
 can be found at: Supporting Online Material

 http://www.sciencemag.org/cgi/content/full/319/5866/1111#otherarticles
, 4 of which can be accessed for free: cites 24 articlesThis article 

 http://www.sciencemag.org/cgi/collection/psychology
Psychology 

: subject collectionsThis article appears in the following 

 http://www.sciencemag.org/about/permissions.dtl
 in whole or in part can be found at: this article

permission to reproduce of this article or about obtaining reprintsInformation about obtaining 

registered trademark of AAAS. 
 is aScience2008 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
 (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience

 o
n 

F
eb

ru
ar

y 
21

, 2
00

8 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/cgi/content/full/319/5866/1111
http://www.sciencemag.org/cgi/content/full/319/5866/1111/DC1
http://www.sciencemag.org/cgi/content/full/319/5866/1111#otherarticles
http://www.sciencemag.org/cgi/collection/psychology
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org


afferents (30), which is one possible readout
mechanism for a latency code. Cortical neurons
themselves carry substantial sensory information
in their response latencies (6, 7, 31). Thus, it is
conceivable that early aspects of sensory pro-
cessing operate on the basis of the classification
of spike latency patterns.
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Predicting Human Interactive Learning
by Regret-Driven Neural Networks
Davide Marchiori1 and Massimo Warglien2*
Much of human learning in a social context has an interactive nature: What an individual learns
is affected by what other individuals are learning at the same time. Games represent a widely
accepted paradigm for representing interactive decision-making. We explored the potential
value of neural networks for modeling and predicting human interactive learning in repeated
games. We found that even very simple learning networks, driven by regret-based feedback,
accurately predict observed human behavior in different experiments on 21 games with unique
equilibria in mixed strategies. Introducing regret in the feedback dramatically improved the
performance of the neural network. We show that regret-based models provide better
predictions of learning than established economic models.

The surge of interest in the neural bases of
economic behavior (1–3) prompts the
question of how well neural networks can

model human interactive decision-making (4).
This question implies two issues: the choice of the
network architecture and the selection of input
information to the network that has to be both
economically and neurophysiologicallymotivated.

Interactive learning differs from individual
learning in that, given n agents, each agent adapts
to behaviors that are modified by the concurrent
learning of the other n–1 agents. It has an obvious
relevance in economic contexts, but (more gen-
erally) much of human learning that occurs in
social contexts has an interactive nature. Exper-
imental game theory has provided a large set of

laboratory data on human interactive learning in
repeated games (5), often contradicting the pre-
dictions of standard game theory. The need for
models of interactive learning in games arises
from the difficulties of ordinary game-solution
concepts to explain both the trajectories and the
long-run stationary state of experimentally ob-
served human behavior in repeated games.
Games with unique equilibria in mixed strategies
are an especially interesting case, because Nash
equilibrium not only fails to approximate behav-
ior in early rounds but also is often a poor
predictor of the stable behavior emerging in the
long run.

Until now, twomainmodeling strategies have
been used with some success in trying to fit and
predict how humans learn in repeated games in a
laboratory setting. Onemodeling strategy extends
a classical paradigm of learning theory (i.e., rein-

Fig. 4. Responses of a fast OFF ganglion cell to a flashed natural image. (For results from other cell types,
see fig. S9.) (A) Photograph of a swimming salamander larva projected on the retina. The ellipse in the
upper right corner shows a sample 1-SD outline of a ganglion cell receptive field. In each of 1000
presentations, the image was shifted slightly, and the grid of dots marks the resulting centers of the
receptive field. Presentations were separated by gray illumination at the mean intensity of the photo-
graph. The image onset produced luminance changes at most locations. (B) Spike trains of the ganglion
cell for receptive-field locations along the column marked by the arrows in (A). (C) Gray-scale plot of the
differential spike latency on single-trial presentations at the locations marked with dots in (A). The
reference latency was chosen as the average value at all locations (10). (D) Corresponding gray-scale plot
of the spike counts.
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forcement learning) (6–8) to games. The second
strategy builds hybrid models that blend rein-
forcement learning with modeling the evolution
of a player’s beliefs about other players’ moves:
The relative weight of both learning processes
depends on parameters that can be tuned, in turn,
by experience (9, 10). More recently, a model
emphasizing post-decision regret for foregone
payoffs as the driver of learning has also been
proposed (11). Interest in neuroeconomics sug-
gests that a different modeling strategy might be
explored, with the use of neural networks as
models of human interactive behavior. We chose
to keep the model as simple as possible, using
(despite itswell-known computational limitations)
one of themost elementary learning neural network
architectures: the simple (one-layered) analog per-
ceptron (12, 13). At the same time, we modified
the feedback process to take into account some
elementary economic considerations (in accord-
ance with both theoretical insights and empirical
evidence). Our basic assumption was that learn-
ing is driven by a sort of “ex-post” rationalizing
process (14): Individuals modify their behavior
by looking backward to what might have been
their best move, once they know what the other
individual’s move was. They adjust in the direc-
tion of such an ex-post best response. Further-
more, we hypothesized that the intensity of such
directional change is proportional to a measure
of regret: how much they have missed by not
playing such move (15, 16). This is consistent
with recent neuroscience research on individual
decision-making, showing that regret affects learn-
ing and that both neurophysiological and behav-
ioral responses to the experience of regret are
correlated to its amplitude (17, 18).

Our model maps the structure of a strategic
game onto a neural network in a very straight-
forward way, by having an input node xj corre-
sponding to each payoff in the game matrix and
by also including the opponent’s payoffs and an
output node yi for each action available to a
player k (Fig. 1). The input information is coded
by having each input node take the value of the
corresponding payoff in the current game; the
output node activation is computed by summing
up inputs to each output node weighted by the
value of the incoming connections wij and trans-
forming the summation via the hyperbolic
tangent (tanh) activation function

yi ¼ tanhðb � ∑
j

w
ij
x
jÞ ð1Þ

where b is the parameter tuning the steepness
of the tanh function.

The activation values of the output nodes can
be interpreted as propensities to play an action
and are transformed into actual probabilities of
play by normalization.

Thus far, this model is a very conventional,
simple analog perceptron, where learning is mod-
eled, as usual, as adaptive updating of the con-
nections’ weights. We adopted a variant of the

Hopfield update rule (12, 13), which provides a
more direct probabilistic interpretation of the clas-
sical perceptron learning procedure

wt
ij ¼ wt−1

ij þ Dwij ð2Þ

given the action m chosen by player k, akm

Dwij ¼ l2�½tiða−kÞ − yi�� Rkðakm; a−kÞ� xj ð3Þ

where tiða−kÞ is the ex-post best response of
player k to the other players actions a−k ; yi is its
propensity to play action i; Rkð⋅Þ is the regret
given the action akm and other players’ actions
a−k ; xj is the strength of the input to the node and
can be interpreted as payoff saliency; and l is the
learning rate. Regret is computed as the differ-

ence between the actual payoff received by a
player k and the maximum payoff obtainable,
given other players’ actions. Thus, the psycho-
logical intuition underlying Eq. 3 is that connec-
tion weight adjustment is driven by a series of
factors that can be summarized as adjustment =
learning rate × distance from ex-post best re-
sponse × regret × input saliency.

As compared with Hopfield’s perceptron rule,
the main difference of this variant is that the error
feedback is multiplied by the regret size. One ver-
sion of the model (henceforth PB1) squeezes the
number of parameters to one by equating b to l.
This choice is justified because the effects of both
parameters on the adjustment process are highly
correlated (computer simulations have confirmed
that this parameter trimming implies no substantial
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B3

A4

B4

action 1

action 2

action 1

action 2

Row Player (A)

action 1

Column Player (B)

action 2

Fig. 1. The agent architecture. The payoff matrix
is mapped into neural net input nodes. Each action
is represented by an output node.
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Fig. 2. Results. The first and second columns indicate average MSD and average AICc scores, respectively,
over all 21 games. The third column and bottom row indicate model names. Cells in the remaining
columns contain two sets of paired values: The top pair indicates the number of tasks for which the MSD
score of the “row” model was significantly better or worse (the first and second numbers in each pair,
respectively) than that of the “column” model, and the bottom pair shows those relationships for AICc
scores. As a result of ties, the sums of each pair in a cell may be less than 21.
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losses in descriptive and predictive performances).
We also introduced a second model (PB0), which
has no free parameters as a result of a simple formof
meta-learning (10, 19), allowing the endogenous
determination of the learning rate l. Once more,
regret plays a central role: We assumed that the
learning rate is tuned by a cumulative regret function
that increases l as the current ratio of experienced
regret to the maximum possible regret exceeds the
average and decreases l in the opposite case

lkt ¼
∑
t
Rk
t

∑
t
maxðRk

t Þ
ð4Þ

where t is the number of iterations, Rk
t is the regret

that is actually experienced by player k at round t,
and maxðRk

t Þ is the maximum possible regret that
player k could experience at time t (of course, in a
repeated game, such value is constant).

To test the descriptive and predictive accuracy
of our model, we considered experiments on 21
different games with unique equilibria in mixed
strategies (8, 20–25). Over more than 50 years,
these experiments have been conducted by re-
searchers other than the authors of this paper. The
games have several actions, which range from
two to five, that are available to each player. Of
those games, 17 are constant sum games, whereas
the remaining 4 are games in which players have
no incentive to favor the other player: In other
words, in each experiment, players had to learn
strategies of conflict. In order to let learning pro-
cesses unfold, we selected experiments with the
constraint that there should be a minimum of 100
iterations of the stage game.

Our focus on such a class of games was
motivated by multiple considerations. Because
such games have unique equilibria, game the-
ory lends a unique prediction of agents’ be-
havior, providing a nonequivocal benchmark.
Furthermore, all the 21 games that we consid-
ered have nondegenerate solutions: In equilib-
rium, subjects have to randomize their behavior.
This is a source of cognitive complexity, de-
spite the apparent simplicity of the game struc-
tures. Nash equilibrium turns out to be a poor
predictor of observed behavior in such games
(in many of them, it performs even worse
than a “random behavior” prediction). Final-
ly, this is the class of games on which the
largest set of experiments with sufficient it-
erations is available.

We compared our model with different breeds
of models (7): in particular, we took the Nash
equilibrium, blind random behavior, and three of
the most established learning models in the be-
havioral game-theory literature [i.e., the Basic
Reinforcement Learning (BR) model (7), the Re-
inforcement Learning (REL)model by Erev et al.
(8), and the self-tuning Experience-Weighted At-
traction (stEWA) model (10)] as competitors, as
well as the recent Normalized Fictitious Play
(NFP) model (8, 11). To single out the value
added by introducing a regret term in the percep-

tron feedback, we further compared our model
with the corresponding one-layer analog percep-
tron (NNET2) that uses the ordinary error feed-
back measure (dropping the regret term from Eq.
3) and has independent l and b free parameters.

Given the availability of 21 different experi-
mental conditions, it is appropriate to use—for
each single condition (game)—the other 20
games to calibrate free parameters and predict
behavior in the given condition (6, 7, 26). This
provides 21 different predictions: one for each
game. We used Mean Square Deviation (MSD)
as a measure of goodness-of-fit for calibration
and prediction (27). Although PB0 has no free
parameters to estimate, PB1, reinforcement learn-
ing, and stEWA have one free parameter to esti-
mate, and the RELmodel and NFP have two free
parameters: Thus, the models to be compared
differ both in functional form and in the number
of free parameters. Among generally accepted
criteria for comparingmodels with different com-
plexity, we used the corrected Akaike’s Informa-
tion Criterion (AICc) (adjusted for sample size),
which is the method according the lowest penalty
to excess parameters.

Figure 2 shows the results of our analysis.
The regret-based perceptrons PB1 and PB0 had
the second- and third-best average MSD scores
on all 21 prediction tasks, and in most conditions,
were predicting better than other models, with the
only exception of the other regret-based model,
NFP (which was the best performer in terms of
MSD). Notably, the no-parameter PB0 preserved
much of the one-parameter PB1 performance,
with average MSD scores much smaller not only
than other nonparametric models but also than
the parametric ones, with the obvious exception
of PB1 and NFP. Once the number of free
parameters was taken into account, however, the
no-parameter perceptron PB0 had the lowest
AICc score and compared favorably to all other
models in most of the games. Thus, no matter
how one measures performance, regret-based
models always fared better than the other models,
although PB0 gained an advantage from its great
parsimony (28).

Furthermore, the PB0 and PB1 models clear-
ly outperform the traditional NNET2 analog per-
ceptron, demonstrating the determinant role played
by the introduction of regret as a source of feed-
back for learning.

Another important advantage for models such
as PB1 and PB0 comes from the nature of the
learning tasks that can be modeled. Most human
interactive learning happens in contexts where
tasks do not repeat themselves identically over
time, as in the experiments considered here. Gen-
eralization from examples and the learning of
conditional behavior (different responses to dif-
ferent inputs) are natural features of human be-
havior. Standard models of economic learning
(including the recent NFP) do not capture such
features, because there is no way that they can
model dependence of behavior from the percep-
tion of different game structures. On the contrary,

even simple neural networks, such as those in-
vestigated here, can easily model generalization
and conditional behavior and thus are open to the
investigation of more realistic interactive learning
tasks.
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