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1 Introduction

In the paper we study a special marketing problem formulated like an optimization model
[5]. In particular we consider the problem of determining advertising efforts for selling a
seasonal good in a heterogeneous market. In order to address such a kind of market it
is important to segment it. The decision on advertising in a segmented market has been
studied by Viscolani [12] and Buratto et al. [1, 2]. Here we consider the advertising in
a segmented market for a firm which sells a seasonal product. In particular the results
presented in this paper complement the analysis done by Favaretto and Viscolani in [4],
in which the effect of advertising on sales was assumed strictly concave: the linear model
of the present study is a limit case with respect to that assumption. Moreover here we
consider the possibility of using several media. Sorato and Viscolani [11] have studied the
possibility of using several media but in a homogeneous market and in a static context.

The general problem is formulated as an optimal control problem. The optimal adver-
tising exposures are characterized under different conditions: the general situation in which
several wide-spectrum media are available, under the assumption of additive advertising
effects on goodwill evolution, the ideal situation in which the advertising process can reach
selectively each segment, and the more realistic one in which a single medium reaches several
segments with different effectiveness.

The paper is organized as follows. In Section 2 we present the model of a segmented
market and describe the motion equation for the goodwill evolution. In Section 3 we
consider the situation in which the firm may use several advertising media to reach different
segments with variable effectiveness and we assume an additive model to represent the total
effective advertising intensity. We formulate the optimal control problem and we determine
the special bang—bang structure of the optimal solution using the Pontryagin Maximum
Principle. In Section 4 we assume that the company has a set of segment—specific media:
one advertising medium for each market segment. We derive some general results and we
propose a special case with two segments and a quadratic production cost function. In
Section 5 we present the situation in which the company has to use a single advertising
medium to reach several segments with variable effectiveness.

2 Market segmentation and goodwill evolution

We consider the optimal control problem of determining advertising efforts for selling a
seasonal good in a heterogeneous market. For example fashion markets are characterized
by heterogeneity: factors such as age, personal disposal income, lifestyle, and culture appear
to influence a specific and increasingly fragmented market context [9]. In order to address
such a kind of market it is important to segment it. As M. Easey says, “Market segmentation
is where the larger market is heterogeneous and can be broken down into smaller units that
are similar in character” [3, p. 253]. Typical finite segmentations are obtained using such
attributes as region, age, gender, occupation, generation, lifestyle, occasions, ...[6, p. 288|.
Bikini is a typical example of a seasonal product in a heterogeneous market.

Let the consumer population be partitioned into n groups (segments), each one specified



by the value i € {1,2, ... n} of a suitable parameter (segmentation attribute). Let G; (t)
represent the stock of goodwill of the product at time ¢, for the (consumers in the) i segment.
We refer to the definition of goodwill given by Nerlove and Arrow [8] to describe the variable
which summarizes the effects of present and past advertising on the demand; the goodwill
needs an advertising effort to increase, while it is subject to a spontaneous decay. Here
we assume that the goodwill evolution satisfies the set of independent ordinary differential
equations

Gl(t) = wi(t)—éiGi(t), i:1,...n, (1)

where §; > 0 represents the goodwill depreciation rate for the members of the consumer
group 7 and wj (t) is the effective advertising intensity at time ¢ directed to that same group.
For each fixed value of the parameter ¢ € {1,... n}, i.e. for each segment, the dynamics of
the goodwill given by (1) is essentially the same as the one proposed in [8]. Here, consistent
with the assumption of distinct goodwill variables for different market segments, we further
assume that both the advertising intensity and the goodwill decay parameter may depend
on the attribute value .
In the following we will write the motion equations (1) in vector notation:

G () = —diag(8) G () +w (t) , (2)

where diag (J) is the diagonal matrix with diagonal entries 1, ... 0.

We consider a firm which produces (or purchases), advertises and sells a seasonal prod-
uct. The feature of the product being seasonal amounts to assume that production and
sales take place in two disjoint and consecutive time intervals: the production and the sales
intervals. We consider the sales interval [0, 1] only and we want to determine the optimal
advertising policy, in order to maximize the net profit. As the season is a short time horizon,
we consider undiscounted costs and revenue.

The value of the goodwill vector at the initial time 0 is a known datum:

G(0) = G"'>0. (3)

The demand intensity in each segment i depends linearly on the goodwill function G; (t),
so that the market sales until time ¢, z(t), satisfies the differential equation

@(t) = (6,G@), (4)

and the initial condition
z(0) = 0. (5)

The component 3; > 0 of the vector parameter § is the marginal demand of goodwill in
segment i: its value depends on the dimension of the segment, i.e. number of potential
consumers in it, and on the interest of those consumers to the product.

We observe that if the manufacturer chooses the simplest advertising policy, with a
constant effort for all the time, w (t) = W > 0, then G;(t) = (G? — 1217;/(51-) e it 4 w; /6,
i=1,...n,and (1) = & (W), where

£ (W) = iﬂfo (1-¢) + iﬁ(;j (di+e—1). (6)
i=1 ' i=1 ¢




The first term in the representation (6) of Z (W) is the quantity of good Z (0), which the
manufacturer can sell without any advertising effort.

3 Several media with additive effect

We assume that the company may use several advertising media which reach different
segments with variable effectiveness. Let u(t) € R™, m > 1, be the advertising effort: its
Jj-th component u;(t) > 0 be the medium j advertising effort, j € {1,... m}. We assume
that the medium j effective advertising intensity at time ¢ € [0, 1] directed to segment i be

wf(t) = viu;(t), i=1,...n, j=1,...m, (7)

for some segment and medium specific parameters ;; > 0, such that > ; v;; = 1, for each
j€{1,... m}. We assume that the total effective advertising intensity at time ¢ directed
to segment i is w;(t) = 371, viju;(t), i = 1,... n, so that, in vector notation, we have

w(t) = Tu(t), (8)

where I' = (v;5) € Mpxm (R). We call medium j segment-spectrum the j-th column ~y; of

matrix I'. Equation (8) represents the additive advertising effects assumption (see [11]).
The goodwill evolution is driven by the advertising efforts (the control functions) u;(t) >

0 with constant marginal costs x; > 0, so that the total advertising cost rate at time ¢ is

(K,u(t)).

Let s : Ry — R be a strictly increasing and concave function, where s(x) represents the
company profit, gross of advertising costs, from selling the quantity x of good. In particular
we assume that s(-) is twice continuously differentiable, with s'(-) > 0 and s”(-) < 0. The
advertising problem of maximizing the overall profit

T = s~ [ )i )
subject to the conditions (2-5), (8), and the control constraints
uj(t) € [0,a,], j=1,...m, (10)
for some #; > 0, is an optimal control problem. The associated Hamiltonian is
H(G,z,u,\, ) = —(k,u) + (\,Tu—diag (9) G) + (5, G) , (11)

which is a linear function of (G, z,u). Using the Pontryagin Maximum Principle (see e.g.
[10, p. 182]) we obtain that the optimal advertising effort with medium j must satisfy

CO G i =

the adjoint function u(t) is constant and has the value



the adjoint function A(t) satisfies the linear differential equation
A(t) = diag () A (1) — B, (14)

and the transversality condition

A1) =0, (15)
so that A; (¢) is the positive and monotonically decreasing function
A(t) = “fi (1 - e‘si(t_l)) . (16)

Therefore, for all j,
e either —x; + (A (0),v;) > 0, and there exists a unique 7; € (0, 1) such that

(A(75)575) = Ky, (17)
e or —r; + (A (0),7;) <0, and we define 7; = 0.

Now, in view of (12), the j-th component of the control is

" Uy, O,Tj ,
uj(t) - {07 iiETj,l]]. (18)

We remark that 7; < 1, for all j, because of (16) and the reasoning which has led us to
define 7;: it is optimal not to advertise just before the end of the sale interval, no matter
which medium is considered.

We notice that if p increases, then by (16) A; (¢) increases for all ¢ < 1 and all 7; hence
by (17) 7; increases for all j; and eventually z(1) increases. It follows that, as y grows from
0 to +o0, s'(z(1)) moves decreasing from s’ (z (0)) > 0 to s’ (z (I'n)), and there exists a
unique solution p* to the transversality condition (13). Such value p* determines a unique
solution to the necessary Pontryagin conditions.

In view of the fact that the Hamiltonian (11) is concave in (G, x,u), and s(x) is concave
in 2, we know that the solution found is in fact optimal (see e.g. [10, p. 182]). We conclude
that the advertising problem has the unique optimal control u*(¢) given by (18).

We have obtained that the total effective advertising intensity directed to any market
segment is a monotonically decreasing, stepwise function, with m positive values at most,
and the value 0 in a neighborhood of the final time 1. This qualitative result is in agreement
with those obtained in [4].

3.1 Optimal solution

In view of equation (18), the unique optimal control has a special bang-bang structure,
characterized by the m switch times 7;, j = 1, ... m; these are advertising stopping times
which we call advertising exposures.

Let us denote by z* the sold product quantity x(1) associated with the optimal solution.
Then, in view of the equations (13) and (16), the characterization of the optimal advertising
exposures reads as follows:
forall j =1, ...m,



e cither 77 € (0,1) and

e or T;‘ =0 and

Z ?;%’j (1 - 6_6i) S g Z*) : (20)

After recalling the definition (6) of Z (w), we observe that s’ (z*) < §'(Z(0)), where
Z (0) is the minimum quantity of good the manufacturer can sell if he does not advertise
towards any segment, and therefore there exists an upper bound ¢; to the optimal exposure
7;, 1.e. 75 <tj, which is characterized as follows:

e cither ¢; € (0,1) and
~ b —6:(1-F;) Kj
—Yii ]_ — 4 = — s 21
250 (1= ) = Shw 2!
e or t; =0 and
— G s, Kj
—7ij |1 — V)< - 22
;&W( ¢ ) s/ (z (0)) (22)

We have, in particular, that
7T=0 & t=0, (23)

where we have denoted by t the vector of upper bounds ¢;. Proposition (23) is obvious for
the part <; as for the implication =, we observe that 7 = 0 requires that equation (22)
holds for all j.

We notice that the upper bound ¢;, for any given j, can be determined independently
of the other components of £, as the conditions (21)—(22) depend only on the medium j
parameters. Moreover, no integration of the motion equations (1) and (2) is needed to
determine t, as the elementary datum Z(0) is sufficient information on the sold product.

Both observations are false for determining the optimal advertising exposure 7;, because
the conditions (19)—(20) involve the knowledge of all components of 7 through the optimal
sales value z*, and we must integrate the equations (1) and (2) to know z*.

Let G (t;7) = G (t; 71, ..., ) be the unique solution to the motion equation (2) with

wt) = Y yujt); (24)
=1

we have that

m min{7;,t
G (t;7) = e~ diag()t G0 Zuje—diag(é)t/ s }6diag(5)(8),yjds‘ (25)

j=1 0



After integrating the motion equation (4), we obtain that the quantity of good sold in the
interval [0, 1] is

z(l;7) = z(0)+ Z % Z Ui (5ﬂj +e % 651'(73'_1)) . (26)
i=1 "1 j=1

4 Advertising timing with total segment—resolution

Here we consider the advertising timing problem with one advertising medium for each
market segment, and so designed as to reach that segment only. In other terms the manu-
facturer has a set of segment-specific media: this situation is expressed by I' being the nth
order identity matrix, I' =1, i.e.

Assuming that I' = I amounts to assuming that the firm may control an advertising
process, with such a high segment-resolution, as to be able to reach each segment with the
desired intensity. This is the total segment-resolution assumption, which, in the extreme, is
characteristic of micromarketing [7, p.380].

From the results of Section 3.1 and, in particular, formulas (19-20) for 7, and (21-22)
for the upper bound vector t, we obtain the following statement.

Let us define, preliminarily, the functions

1 0ikj 0K
Ti(y) = 1+ —In(1- 22 2L j=1,...n. 2
](y) + (5] Il< @y) ) Y > ﬁ] ) J ) n ( 8)
If 7 is an optimal solution, with associated sold product quantity z* = z(1,7), then, for
allj=1,...n,
Ti (s (@(0)), & (@(0) > S
Tj < {] = 0 s (fi’ (0)) < ’ 0jK; . (29)
’ B 1—67%) ’
moreover
e either 7; € (0,1) and
7 o= T;(s' ("), (30)
e or 7; =0 and
ik
"(a* I 31
) S (31)
We notice, in particular, that
T /(= 5]“] .
T=0 & t=0 & §(z(0) < G-’ for all j. (32)
j



EXAMPLE Let us consider a two-segment market and the profit s(z) = = — ¢(z), with
quadratic production cost, i.e.

1
clz) = §wx2, (33)
where w > 0. Let w = 0.01 and
G?:Gg:2, 61 =0.001, 9, =0.002, (1 =2, [2=3, U =1uUy=2

be fixed, whereas we consider different values for the advertising cost parameters k1, k2. We
obtain that the minimum and maximum observable demands for the seasonal good are

Z(0) ~ 9.992,  z(@) ~ 14.989,

and observe that
d(x(0) = wz(0) ~ 0.1 < 1,

so that it may be profitable to produce at a higher level than z (0) and advertise accordingly.
Table 1 provides the essential resuls for a set of choices of the advertising cost parameters
k1, k2. We observe that in all cases the times 1,y are rather good excess approximations

Table 1: Optimal advertising exposures

K1 Ko t1 to m T x*  profit
2.0 3.0 0 0 0 0 9992 9473
2.0 2.0 0 0.259 0 0.248 11.294  9.665

1.5 2.0 0.166 0.259 0.149 0.243 11.825 9.705
1.0 2.0 0.444 0.259 0.428 0.237 12.588  9.993
1.0 1.5 0444 0.444 0.423 0423 13.324 10.322
1.0 1.0 0.444 0.630 0.419 0.613 13.866 10.840
0.5 0.5 0.722 0815 0.707 0.805 14.703 12.111
0.3 03 0833 0889 0.824 0.882 14.886 12.754
0.1 0.1 0944 00963 0.941 0.961 14.978 13.476

of the optimal advertising exposures 71, 0.

5 Using a single medium

Let us consider the situation in which the company has to use a single advertising medium
which reaches several segments with variable effectiveness.

The matrix I" is n x 1: it has a column only. For simplicity we may drop the advertising
medium index j = 1.

If 7 is an optimal solution, with associated sold product quantity z* = z(1,7), then,



e cither 7 € (0,1) and

g Bi —8;(1—7) K
—Y 1 J— g T e y 34
; 5, ( ‘ ) s (z%) (34)
and the upper bound ¢ is characterized by
8 ~5,01-D i
—v |1 — ¢ = S5 35
; 5, ( ‘ ) s (z(0)) (35)

e or 7 =0 (so that z* =z (0)) and
~ f; -5, K
25 (") = sy 39

6 Conclusion

We have brought some market segmentation concepts into the statement of an advertising
problem for a seasonal product.

We have considered three kinds of situations: several wide-spectrum media are avail-
able and they have an additive effects on goodwill evolution; the advertising process can
reach selectively each segment; a single medium reaches several segments with different
effectiveness. In these cases we have formulated the general optimal control problem and
have obtained the unique optimal solution.

For the sake of simplicity we have assumed that the objective is the profit in one season,
without any consideration of any further firm activity. The absence of any constraint on
the state at terminal time is justified by such restrictive assumption. A natural step in this
direction should include some constraints on the goodwill at the final time. The associated
transversality conditions would change the qualitative features of optimal solutions.

Further directions of analysis, with practical implications, are to consider sets of media
with special features in order to represent real life situations and using numerical simula-
tion to analyze the solution sensitivity to characteristic parameters of the model in special
instances.
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