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A group G of automorphisms of a group (A,+) is called fixed-point-free, if
g(a) �= a for 1 �= g ∈ G and 0 �= a ∈ A. One says that a group G is n-finite,
if any n elements of G generate a finite subgroup; local finiteness means that
this holds for every positive integer n. We prove the following results.

Theorem 1. Let G be a fixed-point-free group of automorphisms of some abe-
lian group. If G is 2-finite, then G is locally finite. Moreover, G is countable.
In fact G/G′ and G′/G′′ have locally cyclic subgroups of index at most 2, and
G′′ is finite and isomorphic to SL(2, 5) or to the quaternion group Q8 of order
8 or |G′′| ≤ 2.

With the modified assumption that G is 1-finite, i.e., periodic (or even of
finite exponent), G need not be locally finite, as the examples at the end of
this paper show. For groups G as in Theorem 1, the subgroups generated by
all elements of prime order are characterized in Sozutov [9, Theorem 1]. Our
theorem does not readily follow from Theorem 3 in [9], since that Theorem 3
imposes a weak version of 2-finiteness on the whole Frobenius group, and not
just on the Frobenius complement.

Corollary 2. Let N be a nearfield such that the multiplicative group N× of N
is 2-finite. Then N is a locally finite nearfield.
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Corollary 3. Let G be a sharply 2-transitive permutation group, and assume
that G is 2-finite. Then G is locally finite, and if G is infinite, then

G ≤ AΓL(1, F ) := {x �→ a · α(x) + b | a, b ∈ F, a �= 0, α ∈ AutF}
for some locally finite field F .

The locally finite nearfields are known in some detail (see [3] or [11, IV]).
Corollaries 2 and 3 extend the main results of [10]. According to Zassenhaus
[13, Satz 17], there are exactly seven finite sharply 2-transitive groups that are
not subgroups of AΓL(1, F ) for a finite field F ; see also [7, 20.3].

By a result of Jacobson, every skew field with periodic multiplicative group
is locally finite (and commutative); see [1, Theorem 3.9.5]. Thus one might con-
jecture that the two corollaries hold with the weaker assumption of periodicity
instead of 2-finiteness.

Proof of Theorem 1. The group G contains at most one involution g, since
g fixes a + g(a) for every element a of the abelian group acted on, hence
a + g(a) = 0, and g is the inversion and belongs to the center of G. This
implies that the finite 2-subgroups of G are cyclic or generalized quaternion
groups; see [8, 5.3.6] or [12, 5.3.2]. For odd primes p, all finite p-subgroups of
G are cyclic (see [8, 10.5.5] and [4, Lemma 2.6], or [14, Lemma 2]).

Every finite subgroup H of G has a normal subgroup Z such that all Sylow
subgroups of Z are cyclic and
(a) H ′′ is trivial and |H : Z| ≤ 2, or
(b) H ′′ has order 2 and |Z| ≡ 2 mod 4 and H/Z ∼= A4, or
(c) H ′′ ∼= Q8 and |Z| ≡ 2 mod 4 and H/Z ∼= S4, or
(d) H ′′ ∼= SL(2, 5) and |H : H ′′Z| ≤ 2;
see [12, 6.1.9, 6.1.11], [7, 18.2] for the solvable case, and [12, 6.3.1] or [7, 18.6]
for the nonsolvable case (or [13, Sätze 6, 8, 16]).

All subgroups of order 3 are conjugate in G, by 2-finiteness and Sylow’s
theorem. According to Zhurtov [16, Lemma 8], G contains at most one
subgroup isomorphic to SL(2, 5); this follows also from [15, Theorem 1] or
[9, Theorem 1]. Hence the subgroup T generated by all copies of SL(2, 5) and
all involutions in G is finite and normal in G. Below we show that the quotient
Γ := G/T is locally finite (which implies that G is locally finite).

Every finite subgroup ˜H of Γ has a normal subgroup ˜Z such that all Sylow
subgroups of ˜Z are cyclic and ˜H/ ˜Z is isomorphic to a quotient of A4 or S4,
hence a {2, 3}-group. Repeatedly applying [8, 10.1.9] we obtain for n ≥ 5 that
the set ˜Hn = {h ∈ ˜H | no prime divisor of |〈h〉| is smaller than n} ⊆ ˜Z is a
subgroup of ˜H. By 2-finiteness, this property of ˜H carries over to Γ, and the set

Γn = {g ∈ Γ | no prime divisor of |〈g〉| is smaller than n}
is a (normal) subgroup of Γ for every integer n ≥ 5.

We claim that O(Γ), the largest normal subgroup of Γ consisting of ele-
ments of odd order, is locally finite. For every prime p, all p-sections of O(Γ)
are locally cyclic (by 2-finiteness). We have Γ5 ⊆ O(Γ), and O(Γ)/Γ5 is a
locally cyclic 3-group. For n ≥ 5 the quotient Γn/Γn+1 is a p-group (in fact,
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trivial unless n = p is a prime) which is locally cyclic, as well. Since local
finiteness is an extension property (see [8, 14.3.1]), the quotient O(Γ)/Γn is
locally finite for n ≥ 5. All Sylow subgroups of a finite subgroup S of O(Γ)/Γn

are cyclic, hence S′′ = {1} by a result of Hölder, Burnside and Zassenhaus,
see [8, 10.1.10] or [12, 5.4.1] or [13, Satz 5]. Since O(Γ)/Γn is locally finite,
we infer that O(Γ)′′ ⊆ Γn for n ≥ 5, hence O(Γ)′′ is trivial. This implies that
O(Γ) is locally finite (because periodic abelian groups are locally finite and
local finiteness is an extension property).

Now we claim that the {2, 3}-group Γ̄ := Γ/O(Γ) is locally finite. Suppose
x ∈ Γ̄ has order 3k with k ∈ {2, 3}. By definition of O(Γ), the subgroup 〈xk〉
of order 3 is not normal in Γ̄, hence 〈xk〉 �= 〈yk〉 for some conjugate y of x. The
finite group H̄ = 〈x, y〉 has type (b) or (c), since subgroups of Γ̄ of type (a)
have a normal Sylow 3-subgroup by [8, 10.1.9] and therefore only one subgroup
of order 3. The corresponding subgroup Z̄ has odd order, hence Z̄ = O(H̄)
is a 3-group. For k = 3 we obtain 〈x3〉 = Z̄ = 〈y3〉, which is a contradiction.
For k = 2 we have x3 /∈ Z̄, hence x2 ∈ Z̄, and analogously y2 ∈ Z̄; hence
H̄/Z̄ ∼= A4, S4 is generated by two involutions, which is absurd. Thus Γ̄ has
no element of order 6 or 9, and Z̄ = O(H̄) is trivial for finite subgroups H̄ of
Γ̄ of type (b), (c).

By Zhurtov [16, Lemma 8], the elements of order 3 in Γ̄ generate a locally
finite (normal) subgroup; since the quotient is a 2-group which is locally finite
(any two squares commute), this implies that Γ̄ is locally finite. We offer the
following alternative argument. If x, y ∈ Γ̄ are 2-elements and 〈x, y〉 is of type
(a), then x2 and y2 centralize the 3-group O(〈x, y〉) and belong to a cyclic
group of squares of 2-elements. Thus the set Δ := {x2 | x ∈ Γ̄ is a 2-element}
is an abelian (normal, locally finite) subgroup of Γ̄. Every element of Γ̄/Δ has
order 1, 2 or 3, hence Γ̄/Δ is locally finite by a theorem of B. H. Neumann [5]
(in fact, Γ̄/Δ is finite by [4, Lemma 2.4], since its 2-subgroups have order at
most 4). Thus Γ̄ is locally finite.

We conclude that Γ = G/T is locally finite, and so is G, as T is finite. Every
finite subgroup H of the locally finite group G satisfies |H ′′| ≤ 120, hence G′′

is finite and coincides with one of the groups H ′′ listed above.
The finite subgroups of the abelian groups G/G′ and G′/G′′ are cyclic or

have a cyclic subgroup of index 2. Hence G/G′ and G′/G′′ have locally cyclic
subgroups of index at most 2. This implies that G/G′ and G′/G′′ are countable,
and so is G, as G′′ is finite. �
Proof of Corollary 2. The multiplicative group N× acts faithfully on the addi-
tive group (N,+) as a fixed-point-free automorphism group. By Theorem 1,
N× is locally finite. This implies that N is a locally finite nearfield; see Wähling
[10, Satz 2]. �
Proof of Corollary 3. According to the theorem in Collins [2], G contains a
sharply transitive abelian normal subgroup (N,+). Thus G is a semidirect
product NG0 where G0 ≤ Aut(N,+) is fixed-point-free (and transitive on the
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set N\{0}). Therefore G = {x �→ a◦x+b | a, b ∈ N, a �= 0} for a suitable near-
field-multiplication ◦ on (N,+). Since G0

∼= (N\{0}, ◦) is 2-finite, Corollary 2
implies that the nearfield (N,+, ◦) is locally finite.

Every infinite, locally finite nearfield is a ‘regular’ nearfield constructed
from a locally finite field; see [3, Theorem 2.2] and its proof, or [11, IV, 9.5a].
This means that there exists a field multiplication · such that F = (N,+, ·) is
a locally finite field and for a, x ∈ N one has a ◦ x = a · α(x), where α ∈ AutF
depends on a only. �
Monstrous examples. Let p > 2 be a prime number. For every integer t such
that pt is sufficiently large, there exists a finitely generated infinite group G of
exponent pt such that the center C of G has order p and contains all elements
of order p in G; see [6, Theorems 31.2, 31.3, 31.5 and (the proof of) 31.7]. If
t = 2 and if the prime p is sufficiently large, the quotient G/C is a so-called
Tarski monster: it is infinite, simple and all its proper nontrivial subgroups are
cyclic of order p (see [6, Section 28]).

Let C = 〈c〉 and let I be the ideal generated by the central element 1 +
c + · · · + cp−1 in the rational group ring QG. The natural action of G on QG
yields a faithful action of G on QG/I which is fixed-point-free, because every
element a + I ∈ QG/I fixed by a nontrivial element of G is fixed also by c,
hence pa ∈ a + ca + · · · + cp−1a + I ⊆ Ia + I = I and a ∈ I.

This action of G is not transitive on the non-zero elements of QG/I; indeed,
a non-zero element cannot be mapped to its negative (as G contains no invo-
lution), and 1 + I cannot be mapped to 1 − c + I.
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