Arch. Math. 97 (2011), 219–223 © 2011 Springer Basel AG 0003-889X/11/030219-5 published online July 7, 2011 DOI 10.1007/s00013-011-0284-8

Archiv der Mathematik

Fixed-point-free 2-finite automorphism groups

THEO GRUNDHÖFER AND ENRICO JABARA

Abstract. A fixed-point-free group G of automorphisms of an abelian group is shown to be locally finite if any two elements of G generate a finite subgroup.

Mathematics Subject Classification (2010). Primary 20F28; Secondary 20B22, 20F50, 12K05.

Keywords. Fixed-point-free automorphism, Sharply 2-transitive group, Nearfield.

A group G of automorphisms of a group (A, +) is called *fixed-point-free*, if $g(a) \neq a$ for $1 \neq g \in G$ and $0 \neq a \in A$. One says that a group G is n-finite, if any n elements of G generate a finite subgroup; local finiteness means that this holds for every positive integer n. We prove the following results.

Theorem 1. Let G be a fixed-point-free group of automorphisms of some abelian group. If G is 2-finite, then G is locally finite. Moreover, G is countable. In fact G/G' and G'/G'' have locally cyclic subgroups of index at most 2, and G'' is finite and isomorphic to SL(2,5) or to the quaternion group Q_8 of order 8 or |G''| < 2.

With the modified assumption that G is 1-finite, i.e., periodic (or even of finite exponent), G need not be locally finite, as the examples at the end of this paper show. For groups G as in Theorem 1, the subgroups generated by all elements of prime order are characterized in Sozutov [9, Theorem 1]. Our theorem does not readily follow from Theorem 3 in [9], since that Theorem 3 imposes a weak version of 2-finiteness on the whole Frobenius group, and not just on the Frobenius complement.

Corollary 2. Let N be a nearfield such that the multiplicative group N^{\times} of N is 2-finite. Then N is a locally finite nearfield.

Corollary 3. Let G be a sharply 2-transitive permutation group, and assume that G is 2-finite. Then G is locally finite, and if G is infinite, then

$$G \le \mathrm{A}\Gamma\mathrm{L}(1,F) := \{x \mapsto a \cdot \alpha(x) + b \mid a,b \in F, a \ne 0, \alpha \in \mathrm{Aut}F\}$$

for some locally finite field F.

The locally finite nearfields are known in some detail (see [3] or [11, IV]). Corollaries 2 and 3 extend the main results of [10]. According to Zassenhaus [13, Satz 17], there are exactly seven finite sharply 2-transitive groups that are not subgroups of $A\Gamma L(1, F)$ for a finite field F; see also [7, 20.3].

By a result of Jacobson, every skew field with periodic multiplicative group is locally finite (and commutative); see [1, Theorem 3.9.5]. Thus one might conjecture that the two corollaries hold with the weaker assumption of periodicity instead of 2-finiteness.

Proof of Theorem 1. The group G contains at most one involution g, since g fixes a + g(a) for every element a of the abelian group acted on, hence a + g(a) = 0, and g is the inversion and belongs to the center of G. This implies that the finite 2-subgroups of G are cyclic or generalized quaternion groups; see [8, 5.3.6] or [12, 5.3.2]. For odd primes p, all finite p-subgroups of G are cyclic (see [8, 10.5.5] and [4, Lemma 2.6], or [14, Lemma 2]).

Every finite subgroup H of G has a normal subgroup Z such that all Sylow subgroups of Z are cyclic and

- (a) H'' is trivial and $|H:Z| \leq 2$, or
- (b) H'' has order 2 and $|Z| \equiv 2 \mod 4$ and $H/Z \cong A_4$, or
- (c) $H'' \cong Q_8$ and $|Z| \equiv 2 \mod 4$ and $H/Z \cong S_4$, or
- (d) $H'' \cong SL(2,5)$ and $|H:H''Z| \leq 2$;

see [12, 6.1.9, 6.1.11], [7, 18.2] for the solvable case, and [12, 6.3.1] or [7, 18.6] for the nonsolvable case (or [13, Sätze 6, 8, 16]).

All subgroups of order 3 are conjugate in G, by 2-finiteness and Sylow's theorem. According to Zhurtov [16, Lemma 8], G contains at most one subgroup isomorphic to SL(2,5); this follows also from [15, Theorem 1] or [9, Theorem 1]. Hence the subgroup T generated by all copies of SL(2,5) and all involutions in G is finite and normal in G. Below we show that the quotient $\Gamma := G/T$ is locally finite (which implies that G is locally finite).

Every finite subgroup \widetilde{H} of Γ has a normal subgroup \widetilde{Z} such that all Sylow subgroups of \widetilde{Z} are cyclic and $\widetilde{H}/\widetilde{Z}$ is isomorphic to a quotient of A_4 or S_4 , hence a $\{2,3\}$ -group. Repeatedly applying [8, 10.1.9] we obtain for $n \geq 5$ that the set $\widetilde{H}_n = \{h \in \widetilde{H} \mid \text{no prime divisor of } |\langle h \rangle| \text{ is smaller than } n\} \subseteq \widetilde{Z}$ is a subgroup of \widetilde{H} . By 2-finiteness, this property of \widetilde{H} carries over to Γ , and the set

$$\Gamma_n = \{g \in \Gamma \mid \text{no prime divisor of } |\langle g \rangle| \text{ is smaller than } n\}$$

is a (normal) subgroup of Γ for every integer $n \geq 5$.

We claim that $O(\Gamma)$, the largest normal subgroup of Γ consisting of elements of odd order, is locally finite. For every prime p, all p-sections of $O(\Gamma)$ are locally cyclic (by 2-finiteness). We have $\Gamma_5 \subseteq O(\Gamma)$, and $O(\Gamma)/\Gamma_5$ is a locally cyclic 3-group. For $n \geq 5$ the quotient Γ_n/Γ_{n+1} is a p-group (in fact,

trivial unless n=p is a prime) which is locally cyclic, as well. Since local finiteness is an extension property (see [8, 14.3.1]), the quotient $O(\Gamma)/\Gamma_n$ is locally finite for $n \geq 5$. All Sylow subgroups of a finite subgroup S of $O(\Gamma)/\Gamma_n$ are cyclic, hence $S''=\{1\}$ by a result of Hölder, Burnside and Zassenhaus, see [8, 10.1.10] or [12, 5.4.1] or [13, Satz 5]. Since $O(\Gamma)/\Gamma_n$ is locally finite, we infer that $O(\Gamma)'' \subseteq \Gamma_n$ for $n \geq 5$, hence $O(\Gamma)''$ is trivial. This implies that $O(\Gamma)$ is locally finite (because periodic abelian groups are locally finite and local finiteness is an extension property).

Now we claim that the $\{2,3\}$ -group $\bar{\Gamma}:=\Gamma/O(\Gamma)$ is locally finite. Suppose $x\in\bar{\Gamma}$ has order 3k with $k\in\{2,3\}$. By definition of $O(\Gamma)$, the subgroup $\langle x^k\rangle$ of order 3 is not normal in $\bar{\Gamma}$, hence $\langle x^k\rangle\neq\langle y^k\rangle$ for some conjugate y of x. The finite group $\bar{H}=\langle x,y\rangle$ has type (b) or (c), since subgroups of $\bar{\Gamma}$ of type (a) have a normal Sylow 3-subgroup by [8,10.1.9] and therefore only one subgroup of order 3. The corresponding subgroup \bar{Z} has odd order, hence $\bar{Z}=O(\bar{H})$ is a 3-group. For k=3 we obtain $\langle x^3\rangle=\bar{Z}=\langle y^3\rangle$, which is a contradiction. For k=2 we have $x^3\notin\bar{Z}$, hence $x^2\in\bar{Z}$, and analogously $y^2\in\bar{Z}$; hence $\bar{H}/\bar{Z}\cong A_4, S_4$ is generated by two involutions, which is absurd. Thus $\bar{\Gamma}$ has no element of order 6 or 9, and $\bar{Z}=O(\bar{H})$ is trivial for finite subgroups \bar{H} of $\bar{\Gamma}$ of type (b), (c).

By Zhurtov [16, Lemma 8], the elements of order 3 in $\bar{\Gamma}$ generate a locally finite (normal) subgroup; since the quotient is a 2-group which is locally finite (any two squares commute), this implies that $\bar{\Gamma}$ is locally finite. We offer the following alternative argument. If $x,y\in\bar{\Gamma}$ are 2-elements and $\langle x,y\rangle$ is of type (a), then x^2 and y^2 centralize the 3-group $O(\langle x,y\rangle)$ and belong to a cyclic group of squares of 2-elements. Thus the set $\Delta:=\{x^2\mid x\in\bar{\Gamma}\text{ is a 2-element}\}$ is an abelian (normal, locally finite) subgroup of $\bar{\Gamma}$. Every element of $\bar{\Gamma}/\Delta$ has order 1, 2 or 3, hence $\bar{\Gamma}/\Delta$ is locally finite by a theorem of B. H. Neumann [5] (in fact, $\bar{\Gamma}/\Delta$ is finite by [4, Lemma 2.4], since its 2-subgroups have order at most 4). Thus $\bar{\Gamma}$ is locally finite.

We conclude that $\Gamma = G/T$ is locally finite, and so is G, as T is finite. Every finite subgroup H of the locally finite group G satisfies $|H''| \leq 120$, hence G'' is finite and coincides with one of the groups H'' listed above.

The finite subgroups of the abelian groups G/G' and G'/G'' are cyclic or have a cyclic subgroup of index 2. Hence G/G' and G'/G'' have locally cyclic subgroups of index at most 2. This implies that G/G' and G'/G'' are countable, and so is G, as G'' is finite.

Proof of Corollary 2. The multiplicative group N^{\times} acts faithfully on the additive group (N, +) as a fixed-point-free automorphism group. By Theorem 1, N^{\times} is locally finite. This implies that N is a locally finite nearfield; see Wähling [10, Satz 2].

Proof of Corollary 3. According to the theorem in Collins [2], G contains a sharply transitive abelian normal subgroup (N, +). Thus G is a semidirect product NG_0 where $G_0 \leq \operatorname{Aut}(N, +)$ is fixed-point-free (and transitive on the

set $N\setminus\{0\}$). Therefore $G = \{x \mapsto a \circ x + b \mid a, b \in N, a \neq 0\}$ for a suitable near-field-multiplication \circ on (N, +). Since $G_0 \cong (N\setminus\{0\}, \circ)$ is 2-finite, Corollary 2 implies that the nearfield $(N, +, \circ)$ is locally finite.

Every infinite, locally finite nearfield is a 'regular' nearfield constructed from a locally finite field; see [3, Theorem 2.2] and its proof, or [11, IV, 9.5a]. This means that there exists a field multiplication \cdot such that $F = (N, +, \cdot)$ is a locally finite field and for $a, x \in N$ one has $a \circ x = a \cdot \alpha(x)$, where $\alpha \in \operatorname{Aut} F$ depends on a only.

Monstrous examples. Let p > 2 be a prime number. For every integer t such that p^t is sufficiently large, there exists a finitely generated infinite group G of exponent p^t such that the center C of G has order p and contains all elements of order p in G; see [6, Theorems 31.2, 31.3, 31.5 and (the proof of) 31.7]. If t = 2 and if the prime p is sufficiently large, the quotient G/C is a so-called Tarski monster: it is infinite, simple and all its proper nontrivial subgroups are cyclic of order p (see [6, Section 28]).

Let $C = \langle c \rangle$ and let I be the ideal generated by the central element $1 + c + \cdots + c^{p-1}$ in the rational group ring $\mathbb{Q}G$. The natural action of G on $\mathbb{Q}G$ yields a faithful action of G on $\mathbb{Q}G/I$ which is fixed-point-free, because every element $a + I \in \mathbb{Q}G/I$ fixed by a nontrivial element of G is fixed also by c, hence $pa \in a + ca + \cdots + c^{p-1}a + I \subseteq Ia + I = I$ and $a \in I$.

This action of G is not transitive on the non-zero elements of $\mathbb{Q}G/I$; indeed, a non-zero element cannot be mapped to its negative (as G contains no involution), and 1+I cannot be mapped to 1-c+I.

References

- [1] P. M. Cohn, Skew fields, Cambridge University Press 1995.
- [2] M. J. Collins, Some infinite Frobenius groups, J. Algebra 131 (1990), 161–165.
- [3] S. DANCS GROVES, Locally finite nearfields, Abh. Math. Sem. Univ. Hamburg 48 (1977), 89–107.
- [4] E. Jabara and P. Mayr, Frobenius complements of exponent dividing $2^m \cdot 9$, Forum Math. **21** (2009), 217–220.
- [5] B. H. NEUMANN, Groups whose elements have bounded orders, J. London Math. Soc. 12 (1937), 195–198.
- [6] A. Yu. Ol'shanskii, Geometry of defining relations in groups, Translated from the 1989 Russian original. Kluwer, Dordrecht 1991.
- [7] D. Passman, Permutation groups, Benjamin, New York 1968.
- [8] D. J. S. ROBINSON, A course in the theory of groups, Springer-Verlag, Berlin 1982.
- [9] A. I. SOZUTOV, On the structure of the noninvariant factor in some Frobenius groups, Siberian Math. J. **35** (1994), 893–901.
- [10] H. WÄHLING, Lokal endliche, scharf zweifach transitive Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg 56 (1986), 107–113.
- [11] H. Wähling, Theorie der Fastkörper, Thales Verlag, Essen 1987.

- [12] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York 1967.
- [13] H. ZASSENHAUS, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11 (1935), 187–220.
- [14] A. Kh. Zhurtov, Quadratic automorphisms of abelian groups, Algebra and Logic **39** (2000), 184–188.
- [15] A. KH. ZHURTOV, On regular automorphisms of order 3 and Frobenius pairs, Siberian Math. J. 41 (2000), 268–275.
- [16] A. KH. ZHURTOV, On a group acting locally freely on an abelian group, Siberian Math. J. 44 (2003), 275–277.

THEO GRUNDHÖFER
Institut für Mathematik,
Universität Würzburg,
Am Hubland,
97074 Würzburg, Germany
e-mail: grundh@mathematik.uni-wuerzburg.de

ENRICO JABARA Dipartimento di Filosofia e Beni Culturali, Università di Ca' Foscari, Dorsoduro 3484/d, 30123 Venetia, Italy e-mail: jabara@unive.it

Received: 28 March 2011