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Abstract In this paper we use the Bayesian network as a tool of explorative
analysis: its theory guarantees that, given the structure and some assumptions, the
Markov blanket of a variable is the minimal conditioning set through which the vari-
able is independent from all the others. We use the Markov blanket of a target variable
to extract the relevant features for constructing a decision tree (DT). Our proposal
reduces the complexity of the DT so it has a simpler visualization and it can be more
easily interpretable. On the other hand, it maintains a good classification performance.

Keywords Bayesian networks · Decision trees · Markov blanket ·
Complexity reduction · Classification

1 Introduction

Most real world domains are complex systems in which the analysis must identify the
aspects of the system and their main interactions; this is a difficult task that involves
great investment of time, effort and expertise. There is a growing interest in knowledge
discovery in database (KDD) which is the process of identification of knowledge from
a database leading to specify intuitive and easily interpretable models (Mitchell 1997).
In this context, supervised machine learning (or, more specifically, classification) is
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an induction procedure typically presented with a set of training instances, where each
instance (or case, example) is described by a vector of feature (or variable, attribute)
values and a class label, or target. The task of the induction algorithm is to induce
a classifier that will be useful in classifying future cases. The classifier is a mapping
from the space of feature values to the set of class values. Several different repre-
sentation formalisms are used to describe the extracted knowledge: in this paper we
focus on the decision tree (DT for short) which is validated through good classifica-
tion performances. DT induction has been extensively studied in the machine learning
and statistics communities as a solution of classification tasks (Breiman et al. 1984;
Quinlan 1986, 1993). Some real domains give us a wealth of features and/or very
large databases to use for learning, and often the tree produced by the induction algo-
rithms are not comprehensible to users due to their size and complexity. Many tree
simplification approaches have been proposed, which can be grouped in five catego-
ries (Breslow and Aha 1997). We focus on the methods of database restriction, by
eliminating certain case features from consideration by the search process. Feature
selection is an effective technique in dealing with dimensionality reduction; in clas-
sification it is used to find a good subset of relevant features such that the overall
accuracy of classification is increased, or not significantly decreased, while the data
size is reduced and the comprehensibility is improved.

There are a number of different approaches to feature subset selection which can
be organized into three methods depending on how the feature selection search is
combined in machine learning with the construction of the classification model: filter,
wrapper and embedded. For a review on this topic we refer to Saeys et al. (2007). The
Bayesian networks (BN) (Pearl 1988; Cowell et al. 1999; Jensen 2001) will be used
for the feature selection problem, by identifying the joint probability distribution of
the features and the class and by selecting the minimal conditioning set through which
the class is independent from the remaining variables. Afterwards, the DT induction
algorithm is applied to the entire training set using only the relevant features discov-
ered by the BN. We compare the results of this approach with those obtained by using
different feature subset selection methods. We consider only discrete variables and all
variables are observed.

The work is organized as follows: Section 2 introduces the BN and presents our
proposal method for selecting the features used in the DT construction; Sect. 3 presents
the databases and the learning algorithms to test the approach, Sect. 4 presents the
experimental results and concludes with the discussion.

2 Bayesian networks

Let be X = {X1, . . . , Xn} a set of random variables, P a joint probability distribution
over X and G a direct acyclic graph (DAG). A Bayesian network, BN for short,
B = (X, G, P) is a graph-based model of P that capture properties of conditional
dependence and independence between variables of X, represented as nodes in G;
all nodes correspond one-to-one to members of X. If there is an edge pointing from
variable Xi to variable X j , it is said that Xi is a parent of X j and X j is a child of Xi .
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The Markov condition is the basic property of a probability distribution modeled
by a BN B and its DAG G. Recall that two variables X and Y are probabilistically
independent if the joint probability distribution factors like P(X, Y ) = P(X)P(Y );
this is written as X⊥Y . Two variables X and Y are conditional independent given a
variable Z if P(X, Y |Z) = P(X |Z)P(Y |Z), denoted as X⊥Y |Z . These concepts can
be generalized for variable sets. In a BN B, the graph G encodes the Markov condition
if each node Xi is probabilistically independent of all non descendants given its par-
ents. From this condition the so called chain rule for BNs follows immediately: a BN
can be factorized as a product, for all variables in the network, of their probabilities
conditionally on their parents only

P(X1, . . . , Xn) =
n∏

i=1

P(Xi |Pa(Xi )).

where Pa(Xi ) denotes the set of Xi parents. The conditional probability distributions
P(Xi |Pa(Xi )) are also called the parameters of the BN.

d-Separation (Pearl 1988) is a graphical criterion which captures all in/dependence
relations implied by the Markov condition on the random variables X represented in
G: with d-separation the structure of P , modeled by B, can be easily investigated.
Two variables Xi and X j are d-separated given a subset of variables S ⊂ X if and
only if there exists no adjacency path between them (i.e. a path ignoring the ordering
of the edges) such that (1) every collider (a collider being a node with two incoming
edges) on the path is in S or has a descendant in S, (2) every non-collider node on the
path is in S (Glymour and Cooper 1999).

It is usually assumed that in addition to Markov condition, which is part of def-
inition of a BN, another condition called faithfulness is also fulfilled. The graph G
of a BN is faithful to a joint probability distribution over a set of variables X if and
only if every dependence entailed by G is also present in P . A distribution P over a
set of variables X is said to be faithful if and only if there exists a DAG G satisfy-
ing the faithfulness condition. We say that a data-generating process K is faithfully
represented by B = (X, G, P) if K in the sample limit produces data with joint
probability distribution P , and B is faithful to P . It follows from Markov condition
that every conditional independence entailed by G is also present in P . Thus together
faithfulness and Markov conditions establish a close relation between a graph G and
a probability distribution P and allows us to associate statistical properties of P with
graph properties of G.

A Markov Blanket of a node Xi , denoted as M B(Xi ), is a minimal set of vari-
ables, such that every other variable is independent of Xi , given M B(Xi ), i.e. ∀X j ∈
X\{M B(Xi ) ∪ {Xi }}, Xi is independent from X j given M B(Xi ), Xi⊥X j |M B(Xi ).
If B1 and B2 are two BNs, both faithful to the same joint probability distribution, then
M BB1(Xi ) = M BB2(Xi ) for any variable Xi . MBs are not unique and may vary in
size, but any given faithful BN has a unique M B(Xi ) for any Xi , which is the set of
parents, children and parents of children of Xi .

In the paper only discrete BNs and faithful probability distributions are considered;
furthermore these distributions are a very large class as proven in Meek (1995). Finally
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we emphasise that we aren’t looking for the BN as a causal model and we don’t require
that the edges represent causal impact.

Learning BN from data consists in finding the BN that best fits the available data.
The algorithms for learning BN must deal with two different but related tasks: learning
the structure (the DAG) and learning the parameters (the conditional probabilities).
Methods for automatic induction of BN model generally fall into two different classes:
methods based on the examination of conditional independence constraints that hold
over the empirical probability distributions on the variables represented in the data
(also called Constraint-methods), and search methods that seek to maximize some
scoring function that describes the ability of the network to explain the observed data
(also called Score-methods). We concentrate in the paper on the latter approach, which
aims to find the highest scoring BN model and may produce more accurate results in
structure learning that Constraint-methods (Cooper and Herskovits 1993; Acid and
de Campos 2003). The Score-methods are typically based on defining (1) a scoring
function for evaluating the quality of a given structure, and (2) a search procedure for
traversing the space of candidate models. The scoring functions are based on differ-
ent principles such as: entropy and information (Chow and Liu 1968; Herskovits and
Cooper 1990), the minimum description length (Lam and Bacchus 1994; Bouckaert
1995; Friedman and Goldszmidt 1996) or Bayesian approaches (Buntine 1991; Cooper
and Herskovits 1992; Heckerman et al. 1995) We focus on Bayesian approaches start-
ing from a prior distribution on the possible networks and computing the posterior
probability distribution conditioned to the data; the best network is the one that max-
imizes the posterior distribution. In the search context, K2 and BDe metrics, are the
most common choices for the scoring function. Additionally a Bayesian score can
prevent the model from over-fitting the data (Hartemink et al. 2002). We consider
heuristic rather than exhaustive search strategies since the identification of the highest
scoring model, for a given data set, is known to be NP-complete (Chickering 1996).
Local heuristic search process is often used, which starts from an initial structure and
repeatedly applies some local transformations (e.g. adding, deleting or reversing an
edge). In the paper we concentrate on hill-climbing search procedure and results gen-
erated through its use. In learning BN no distinction is made between the classification
node and other nodes, since it models and graphically represents the data.

2.1 Using the Bayesian network to reduce the complexity of the decision tree

As mentioned above, when there is a wide number of explanatory variables, the use
of DT to describe a complex system often leads to not easily interpretable results
because the complete tree is very large and may be sensitive to statistical irregular-
ities. We would have a method to identify which variables are the most relevant for
the analysis and then, build the DT only with these variables. We need to adopt a
model representation so that the relevant features can be extracted and studied. For
this task we recall that in a BN, under the faithfulness condition, the Markov blanket
M B(Xi ) completely shields (d-separates) variable Xi from any other variable outside
M B(Xi ) ∪ {Xi }. If we know the states of all the variables in the Markov blanket of
Xi , other information about any other variable which is not in M B(Xi ) ∪ {Xi } can’t
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On using BNs for complexity reduction in DTs 131

modify our knowledge in Xi . We propose to reduce the complexity of the DT using
only the variables which are in the Markov Blanket of the class. Several algorithms
have been developed or proposed for identifying the Markov blanket (Margaritis and
Thrun 1999; Frey et al. 2003; Tsamardinos et al. 2003) and the idea of using Markov
blanket methods for feature selection is not new. For example, see references (Acid
and de Campos 2003; Cowell et al. 1999; Frey et al. 2003) in Aliferis et al. (2003). In
particular, a Markov blanket based variable selection algorithm, named HITON, has
been presented (Aliferis et al. 2003): it has been applied in combination with DTs, but
also with other common classifiers, on several massive databases and it has been com-
pared with some state-of-the-art variable selection methods in terms of classification
accuracy. With respect to Aliferis et al. (2003), this paper deals specifically with clas-
sification trees, focusing on the possibility of reducing tree size without significantly
decreasing prediction accuracy.

Another method which can permit to identify the Markov blanket for the class is to
directly read it from the BN. Recall that any given faithful BN has a unique M B(Xi )

for any Xi , which is the set of parents, children and parents of children of Xi , we
learn the BN from the data and we select the variables which form the MB of the
class. Of course it is very important to find a good BN: if we are confident about
the BN learned from the data, we can assume that the joint probability distribution
underlying by the BN is the real one which has generated the data and we can be
confident that the identified variables in the Markov blanket of the class are really the
most relevant for the classification task (Liu and Motoda 2008, Chap. 4). In Madden
(2003), empirical results for classification are presented comparing BNs constructed
using different learning approaches; it has been proved that BNs constructed by the
Bayesian approach perform well in classification on benchmark databases, so we adopt
this procedure for learning the BN.

With respect to this method, we compare the performance of identifying the MB
for the class by using non-standard MB based variable selection algorithms: usually
they are based on statistical independence tests and they don’t deal with the Bayesian
approach. By reading the MB directly from the BN, one can choose which approach
to use. In this context this paper presents new results about the performance of HITON
and Bayesian learning methods in comparison to standard feature selection algorithms
and focusing in a specific classification task, i.e. the DT induction.

3 Databases and setting

We have learned the BN from data with different Bayesian approaches:

– Hill climbing search procedure, adding deleting and reversing edges. The search
is not restricted by an order of the variables and the BN is chosen by maximising
the BDe scoring function;

– K2 algorithm which is a hill climbing algorithm restricted by an order of the
variables. We fix this order as the variables are shown in the database.

We then identify the Markov blanket for the class which will be consider as our feature
subset.
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We focus on HITON algorithm (Aliferis et al. 2003) as Markov blanket discovery
algorithm. It first identifies the parents and children of the class C , then discov-
ers the parents and children of the parents and children of C . This is a superset of
MB(C). False positive are removed by a statistical independence test. It is proven
that it returns the minimal variable set for predicting C and it exhibits best classifica-
tion performance also when the sample size is limited. We choose HITON algorithm
as it is developed to improve the performance of others Markov blanket discovery
algorithms in literature. In our experiments we apply HITON with a G2 statistical
independence test, also called Likelihood Ratio Statistic, with significance level set
to 0.05.

In order to compare these procedure, several methods for feature subset selection
are used. We adopt a filter approach, which performs as a pre-processing step to
learning and assesses the relevance of features by the properties of the data and by a
relevance score, removing low scoring features. Afterward this subset of features is
presented as input to the classification algorithm. These methods are computationally
simple, fast and independent of the classification algorithm. We focus on Informa-
tion Gain criteria (IG for short) which evaluates variables by measuring their gain
ratio with respect to the data. We choose α = 0.05 as threshold to select the variable
subset.

Following the wrapper approach proposed in John et al. (1994), which implies that
the selection algorithm searches for a good subset of features using induction algo-
rithm itself as a part of the evaluation function, we use forward stepwise selection as
heuristic search through the set of features and C4.5, both pruned and unpruned, as
induction algorithm using 5-fold cross validation to evaluate performance.

Once the feature subsets are identified, we induce the corresponding DTs and we
compare them in terms of their main characteristics and percentage of corrected classi-
fied instances. For DT induction, we focus on C4.5 algorithm (Quinlan 1993) because
it has been shown that it provides a good classification accuracy and it is the fastest
among the compared main-memory algorithms for machine learning and data mining.
It is an heuristic algorithm where the process of tree derivation uses the gain ratio
based on entropy as criterion of variable selection. DT is constructed from the training
sample and potentially unnecessary sub-trees can be removed by pruning, improving
its classification accuracy.

Similar results can be applied to other DT induction algorithms, for example to
the frequently used CART-type. As proven in Schauerhuber et al. (2008), the C4.5
algorithm is superior to CART tree learner in terms of classification performance but
it produces more complex trees. For this reason we decided to highlight the results
of the C4.5 algorithm, nevertheless without ignoring the CART-type induction algo-
rithm: it is more useful to reduce the complexity of a larger tree maintaining a good
classification accuracy rather then the dimension of a not so complex tree which could
also not be sensitive to the benefits of feature selection.

We select seven databases from the UCI repository of machine learning data-
base (http://www.ics.uci.edu/~mlearn/MLRepository.html) and from the Depart-
ment of Statistics, University of Munich (http://www.stat.uni-muenchen.de/service/
datenarchiv/welcome_e.html). We choose only databases with discrete or categorical
variables and with no missing values. The accuracy of each DTs is measured based on
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Table 1 Characteristics of the
databases used in the analysis

Database name Num. of variables Num. of instances
(without T)

Auto 45 793

KRvsKP 36 3,196

Spect ∗ 22 80

Credit 20 1,000

Lympho ∗ 18 148

TicTacToe 9 958

Nursery 8 12,960

10 fold cross validation and this is repeated usually 10 times, except for particularly
small databases for which the number of repetitions increases to 50 in order to reduce
the variability. We compare the results of unpruned C4.5 DTs (U-DT for short) and
C4.5 DTs for which we control the tree size in a pre-pruning way by fixing the mini-
mum number of instances per leaf (U-DT-M for short) and in a post-pruning way by
pruning and sub tree raising (P-DT for short). To complete the experimental study,
we present also the CART-type tree results, for which we fix the minimum number of
instances per node equal to 10.

In Table 1, we report the main characteristics of each database used in the analysis.
The databases for which the number of split repetitions is 50 are marked by ∗.

All the experiments are performed with R (http://www.r-project.org). The open
source implementation J4.8 for C4.5 became available recently in the user-friendly
WEKA machine learning package (Witten and Frank 2005) and is accessible from
within R by means of the RWeka package (Hornik et al. 2007). The implementation
of CART tree learner is available in the R package tree (Ripley 2007).

4 Experimental results and discussion

In Tables 2, 3 and 4, for each database and for each type of C4.5 DT, we report the
number of selected features corresponding to the methods of feature subset selection,
the percentage of correctly classified instances and its standard deviation, the average
number of leaves and tree size of the induced DT.

To reduce the tree size by post-pruning usually produces a significant tree com-
plexity reduction and an increased percentage of correctly classified instances, but
these improvements are not such that sub tree raising performs better of induc-
ing a pre-pruning by relevant features subset selection. When a feature subset
performs well with the unpruned DT, it also performs well with the both pre-and
post-pruned DTs.

When there are a lot of variables, learning the BN and identifying from it the
Markov blanket of the class leads to identify a feature subset which generates a DT with
better performance, also in comparing it with Hiton, which is a specific algorithms for
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Markov blanket discovery. Hiton performs tests of conditional independence, which
can be sensitive to statistical errors.

Otherwise, when the number of variables is small, usually less than 10, the com-
plexity of the BN is not such that the MB(C) is sensitively different from the whole
set of database variables and all of them are used for classification.

Using filter univariate feature selection methods, as Information Gain, leads to
select a small number of relevant variables, and often the performance of the classifier
decreases. A way to enlarge the number of variables could be done by decreasing the
threshold, for instances to 0.01, but with the drawback of missing the variable space
simplification.

In Table 5 we present the CART-type DT results, in order to show how the proposed
method works with CART as well. For each database, we report the percentage of cor-
rectly classified instances and its standard deviation, the average number of leaves
and the tree size of the induced DT corresponding to the methods of feature subset
selection.

Learning DT models from complex systems data is a challenging task. For this
reason, we want to extract the most relevant features and to use them in order to
construct a DT with good classification performances. We use the notion of Markov
blanket and we prove that, under some assumptions, if the BN is a good model (in
terms of score associated to it) and therefore if we are confident in the model, we can
use the Markov Blanket of the target to extract the features. The associated DT is a
good classifier as our results can prove. Our proposal reduces the complexity of the
DT so it has a simpler visualization and it can be more easily interpretable, making
easier further statistical analysis. On the other hand, it maintains the good classification
performance of the complete DT, the one in which all the variables are used.
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