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Abstract

In this paper we aim at carrying out and describing some issues for real eigen-
value computation via iterative methods. More specifically we work out new
techniques for iteratively developing specific tridiagonalizations of a symmet-
ric and indefinite matrix A € R"*™, by means of suitable Krylov subspace
algorithms defined in [16], [26]. These schemes represent extensions of the well
known Conjugate Gradient (CG) method to the indefinite case. We briefly
recall these algorithms and we suggest a comparison with the method in [22],
along with a discussion on the practical application of the proposed results for
eigenvalue computation. Furthermore, we focus on motivating the fruitful use
of these tridiagonalizations for ensuring the convergence to second order points,
within an optimization framework.

Keywords: unconstrained optimization, eigenvalue computation, matrix tridi-
agonalization, Conjugate Gradient, Krylov subspace methods.

1 Introduction and preliminaries

The efficient computation of both eigenvalues and eigenvectors, in a standard sym-
metric eigenproblem, often provides a useful tool in an optimization framework, for
studying several real life problems. The use of eigenelements ranges from the capa-
bility of giving a better insight into the evolution of linear systems (e.g. the structure
resonance), to the assessment of stability under small perturbations. The problem we
consider deals with the solution of the eigenproblem

Az = \x Aec R A€ R,z € R" (1)

! This work was supported by MIUR, National Research Program Algorithms for Complex Systems
Optimization
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where matrix A is symmetric. In the last decades, a wide variety of approaches and
algorithms has been considered for problem (1): this is a direct consequence of the
fact that the order n of matrix A, along with the accuracy in the calculation and the
computational cost for solving (1), jointly determine the method employed. Here we
point out a brief taxonomy of the main approaches, in order to motivate our results
and explain the context of their applicability.

As long as n is modest, direct algorithms appear the methods of choice and need an
O(n?) flops along with an O(n?) storage. In general, at the end of the computation,
they all can provide both eigenvalues and (with an additional cost) eigenvectors of
matrix A; however, now we highlight several distinctions, in order to decide the
best method for the problem in hand. Apart from Rayleigh quotient iteration [31]
and Jacobi’s method [11], which deal with general symmetric matrices, Bisection
[2], Tridiagonal QR iteration [6] and the efficient Divide and Conquer [8] solve a
tridiagonal eigenproblem, i.e. they assume that matrix A in (1) is endowed with a
tridiagonal structure. In case n > 25, Divide and Conquer (LAPACK routine sstevd)
proved to be definitely the fastest one when all the eigenpairs of A are required [10],
since it usually performs O(n??) flops on average. However, in case the eigenvectors
are not sought, the Tridiagonal QR iteration is the algorithm of choice [10] (LAPACK
routines ssyev and sstev). Moreover, both Rayleigh quotient iteration and QR
iteration converge cubically, thus the number of correct digits triples step by step.
On the other hand, Bisection (LAPACK routine sstebz) has the remarkable feature of
detecting the eigenvalues of A in the range [a, b] C R, and it requires only O(hn) flops
for their calculation, as long as h eigenvalues are sought. This implies that Bisection
is faster than QR iteration whenever h < n, since the latter one requires O(n?) for
the eigenvalues computation. Finally Jacobi’s method is significantly slower than
all the others, taking O(n3) flops on the overall, with a large constant. However,
it preserves interesting properties of accuracy in case tiny eigenvalues need to be
computed, i.e. in case A is near singular [11]. Other references for direct methods,
aiming at solving problem (1), are provided by [1],[3],[4],[5],[17],[23],[27],[33], where
finer techniques are reported along with more recent results and further references. In
addition, a significant numerical comparison among the cited approaches is available
in [10], where some real life examples, involving the solution of differential equations,
are figured out.

Another standpoint for the computation of eigenelements in (1) is “via optimiza-
tion”. This approach namely applies when either n is very large [27], or the com-
putational cost involved in accurately solving problem (1) becomes prohibitive [14].
The rationale behind this approach relies on the possibility of minimizing suitable
functions, whose global minima coincide with eigenvectors of A. For instance, when
matrix A is positive definite, the Rayleigh quotient

T
plr) == A

xTx
could be minimized by means of suitable iterative methods, in order to detect the
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eigenvector associated to the least eigenvalue. This idea was originally introduced by
Bradbury and Fletcher in [7]; in [27] a set of these functions is proposed and some
variants of Newton method, for detecting the critical points of these functions, are
compared. Finally in [12] a real application from chemistry is detailed.

There is a further approach in iteratively solving the symmetric eigenproblem (1):
namely it is advisable in case n is large and only an approximation of the extreme
eigenvalues of matrix A is required [10].

In this paper we shall focus on the latter approach, since in large scale optimization
frames it is quite worthwhile. In particular we shall approximately solve (1) by means
of a suitable class of iterative methods, which retain both a satisfactory effectiveness
and a competitive computational burden.

At iteration k-th (K < n) these methods provide a set of k& orthogonal vectors
{r1,...,rr} (see [10] chapter 7), such that the following representation for matrix
A can be generated:

AR, = RyTp + mTrir6r (2)

where Ry, = (ry---r;) € R™* with {ry,...,r,;1} orthonormal set, T, € RF** sym-
metric and tridiagonal, ny € R, e = (0,...,0,1) € R*. We remark that since the set
{ry,...,rk41} is orthogonal, relation (2) can alternatively be written in the following
form (7T}, factorization):

RZ:ARk = Tk + nkRZ’I‘]H_leZ = Tk. (3)

Relation (2) will be addressed as current representation of the symmetric matrix A,
since it is not properly a matrix factorization. In the remainder of this introductory
section and in Section 2 we shall point out the importance of iteratively calculating
relations (2) and (3), within optimization frameworks. Moreover, we can see how
relations (2) and (3) definitely become a useful tool, in case we aim at determining
information on the extreme eigenvalues of matrix A (see also [14], [33] and [13]).
Indeed, suppose matrix T}, in (2) is irreducible 2, then it can be proved that the real
eigenvalues A\ (T%), ..., \e(Tk) of matrix Ty are all distinct [18],[30]. In addition, in
case k = n we have the following relation between the eigenvalues of A and 7T,,:

Now, if without lost of generality we order the eigenvalues of T} as A\{(T}) < -+ <

Ak (Ty), then the following interlacing rule between the spectra of tridiagonal irre-
ducible matrices Ty_; and T}, holds (Sturm sequence) [34]:

)\1(Tk) < )\1(Tk_1) < )\Q(Tk) < )\Q(Tk_l) < e K )\k—l(Tk—l) < )‘k(Tk) (5)

The properties summarized above, about symmetric tridiagonal irreducible matrices,
provide a clue for investigating the spectrum of matrix A in case representation (2)

2L.e. all the entries on the first subdiagonal (superdiagonal) of tridiagonal matrix T}, are not zero.
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is available. Indeed, from the properties just outlined we deduce that the sequence
{M(Tk)} [{\e(Ty)}] represents a monotonically decreasing [increasing] sequence of
estimates for the smallest [greatest] eigenvalue of A. Hence, in case n is large and
only an approximation of either \;(A) or \,,(A) are sought, a suitable iterative method
might be employed for estimating them from (3), (4) and (5) 3.

To this aim, this paper will point out the key role of some CG-based methods,
which match the latter requirement. In addition, by means of the same algorithms,
it will be possible to evaluate the error |A;(A) — A (T})| at step k-th on the smallest
eigenvalue of A. More precisely, if (A, (7}), ugk)) is the eigenpair of T}, with ||u§k) | =1,
then the so called Ritz pair (A (Tk), Rkugk)) may be considered an approximation of
the eigenpair (A1(A),u;) of matrix A, inasmuch as [18]:

| ARl = X (@) R = AR — BT | < (6)
and this bound is available without explicitly calculating the eigenpair (A (T%), Rkugk))

at iteration k-th. When tridiagonal matrix T in (2) becomes reducible or near so,
i.e. mp ~ 0, the results above are, to a large extent, a powerful tool for partially
investigating the structural properties of matrix A.

The remainder of this section sets the terminology and the notation used. Through-

out the paper the symbol || - || denotes the Euclidean norm of a real vector. More-
over, we shall use the notation 27y for the Euclidean inner product between vectors
x,y € R™, and x L y for their orthogonality. Finally the symbol “=" stands for “...by
definition...”, and the quantities generated at step k-th of an iterative scheme will be
denoted with the same subscript k.
A brief outline of the paper is the following: Section 2 introduces the optimization
framework we deal with. Section 3 is devoted to recall and describe the potentialities
of the Lanczos method, which proved to be effective for our purposes, while Section
4 includes a similar description regarding the CG method. In Sections 5 and 5.1 we
work out a new approach where the same results of Sections 3 and 4 are obtained by
means of some CG-based methods. The results of Section 5.1 will provide suitable
generalizations of Section 4. Finally Section 6 will summarize the conclusions along
with the forthcoming work.

2 The optimization framework

Suppose we deal with the solution of the optimization problem:

min f(z) (7)

zeR"™

3We recall that the calculation of the spectrum of a tridiagonal matrix, can be straightforwardly
obtained by means of direct algorithms.
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where f : R" — R is twice continuously differentiable and n is large. A truncated
Newton method (see [9]) for the solution of (7) may be a successful choice, because
of its good Newton-like convergence property for large n. Now suppose function f(z)
is nonconvex over large regions and we aim at detecting a stationary point z* of
f(z), which verifies second order optimality conditions. The most efficient truncated
Newton schemes based on a linesearch approach [25], [20], [28] deeply explore the
local behaviour of f(x), by means of generating a pair of suitable directions. In
particular, these methods consider the second order local expansion of function f(z)
at current point xz. Then they determine both a Newton-type direction s;, which
approximately solves the linear system (Newton equation)

V2f(zr)s +Vf(zr) = 0, (8)
and a direction d; such that
iV fap)dy < adm (V7 f(x1) (9)

where a > 0, \,, (V2f(x)) is the smallest eigenvalue of the Hessian V2 f () at x,
and V f(xy) is the gradient at z;. Finally, a suitable steplength a4 is computed and
the subsequent point ;. results from the relation

2
Tht1 = Tk + Sk + opdg.

By roughly speaking vector s, preserves the performances of the method, while di-
rection dj, both resembles the least eigenvector u,, of V?f(z;) and under suitable
assumptions, ensures the convergence towards a region where the Hessian V2 f(x},) is
positive semidefinite (convergence to a second order stationary point). Anyway, since
n is large, these truncated Newton schemes are effective as long as both s, and dj
are efficiently computed. In other words s; and dj have to be computed by means of
the same iterative method, which has to provide an estimate of A, (V?f(z;)) as well.
On this purpose, firstly we shall survey some Krylov subspace methods, which are
widely used inside truncated Newton schemes: it will be shown how they accomplish
the latter requirement by means of calculating relation (2) (see [10] [18]). Then we
will recall and rearrange suitable inexpensive CG-based algorithms introduced in [16]
[26], for obtaining some improved results: this will be the original contribution of this

paper.

3 Matrix tridiagonalization and Current Repre-
sentation with the Lanczos algorithm

Consider the solution of the symmetric linear system

Ax =1b (10)
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where matrix A is indefinite and nonsingular; among the Krylov iterative meth-
ods for solving (10), the Lanczos algorithm [22] was one of the first to be pro-
posed. The underpinning idea of this method is the following: given a symmetric
indefinite matrix A € R™™ and a non null vector ¢ € R" such that ||¢|| = 1,
the method generates a set of mutually orthogonal directions (the Lanczos vectors)
starting from ¢;. In particular at step k-th of the iterative procedure, the Lanczos
algorithm (Alg L) provides an orthonormal basis {¢,...,q.} for Krylov subspace
Ki(qr, A) = spanf{q, Aqy, ..., A¥ ¢}, then the method attempts to determine the
solution of linear system (10) over this subspace. Here below is the method, in its
original formulation (see [18]):

Alg_L

step O:

k=0, vo=0€ R"
@ =0, d=10b]|l#0
step k:
if 0x #0 then:
_ %
Qk+1 = 5
k< k+1
Qp = qi{ACIk
Vg = (A - Oék[)CJk — Ok 1GK—1
Ok = |lvkl
repeat step k
else STOP.
A

An interesting aspect of this method, which deserves to be considered in the sequel,
is that the application of Alg_L up to step k-th can be summarized by the following
relation [18] [30], which resembles (2):

AQr = Q1Ti + Spqrrref (11)

where Qr = (q1,...,q) € R™* and whose columns (the Lanczos vectors) form a
k-dimensional orthonormal basis of Ky (q1, A); 6, > 0 while T}, € R*** is a tridiagonal
matrixz such that:

(5] (Sl 0

T, = O
Ok—1
0 Op—1 Qi

There are other remarkable properties of the Lanczos method that we should consider,
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when it is used to solve system (10): among these features, the following results claim
for a precise analogy with similar conclusions, related to some CG-based algorithms
we are going to describe in Section 5:

(1) it solves linear system (10) in at most n steps and the computational burden is
almost entirely devoted to perform the matrix-vector products;

(2) as in relation (3) matrix T} verifies the important equality:
T, = QpAQy (12)

where the column rank of matrix )y is increased step by step. In case algorithm
Alg_L performs n steps the square matrix ), turns to be orthogonal and its
columns span R";

(3) the iterative procedure can untimely stop after m < n steps; as a consequence
a reduced subset of orthogonal directions will be generated. This occurs when
the following equality is fulfilled at step m-th

’Cm(QIa A) = /Cm+1(Q1, A);

(4) at step (k + 1)-th the matrix Ty, can be drawn by simply “bordering” the
matrix 7}, that is adding a new row and a new column to 7j. Furthermore all
the necessary information for constructing matrix 7}, may be recovered from
the sequences {a,..., a1} and {dy,...,0,} (see Alg L);

(5) since matrix A is symmetric, an n-dimensional basis of orthogonal eigenvectors
exists for A. Now, suppose the vector ¢; = b/||b|| has a non null projection onto
the subspace spanned by k eigenvectors of A. In case only kE<k eigenvectors
among these are associated to distinct non null eigenvalues, then the Lanczos
algorithm terminates at step k-th 2.

On the other hand, from the viewpoint of optimization, problem (10) is equivalent °
to determine the stationary point of the quadratic functional

q(r) = %ITAJJ — bz, (13)

Thus, the Lanczos method seems a natural candidate for solving a wide variety of
optimization problems too. Indeed if Q,,, = (¢, ..., ¢n) is generated by Lanczos when
it stops at m-th iteration (i.e. d,, = 0), then by means of the substitution z = @Q,,z2,

4We remark the complete analogy with CG algorithm properties (see [32]).
SProvided that matrix A is nonsingular.
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z € R™ into relation (13) and recalling that ¢; = b/|b||, we obtain:

Va(2) = QnAQumz — Qb = Tz — [[blles.

Consequently, whenever the solution z* of the tridiagonal system
Tz —|bller = 0, z € R™ (14)

is available, point 2* = @,,,2* is a solution of the original system (10), or equivalently
the stationary point of (13) over the Krylov subspace KC,, (b, A) = span{q,...,qm} C
R". Furthermore we highlight that in case the Lanczos algorithm stops at step m-th,
relation (11) yields:

AQm = QuTy (15)

inasmuch as ¢, = 0, i.e. the set {q1,..., ¢y} is an invariant subspace of the range of
matrix A (under A transformation) (see [30]).

We conclude this section with the following two considerations about the Lanczos
algorithm; we shall see that they play a key role within an optimization framework:

e it actually does not solve linear system (10); it rather transforms (10) into the
simpler one (14): this means that some further calculations are necessary in
order to provide the explicit solution of (14) for backtracking to (10). The CG-
based methods proposed in Sections 5 and 5.1 do not suffer for such a drawback;

e it seems we need to store matriz (Q,, in order to calculate the solution z* of
(10), according to relation:

= Qumz". (16)

This could be a serious disadvantage whenever n becomes large; however, in case
we are only interested about the solution x*, the storage can be avoided (see
algorithm SYMMLQ in [29]) by means of a suitable recursive calculation. On
the other hand, as recalled in Section 1, we are dealing with proper optimization
frameworks where the Lanczos method is also asked to provide a negative cur-
vature direction dj, which verifies (9). In case we use the Lanczos method and
it stops at step m-th, the calculation of dj inevitably requires the storage of full
rank matrix @y, [25],[24]. In alternative, we could avoid the direct calculation of
the Lanczos vectors ¢y, ..., ¢mn, by simply recovering them from the Conjugate
Gradient iteration (see [20], [19]). However this implies that when matrix A is
indefinite, the CG procedure might fail or be unstable. The CG-based schemes
proposed in Section 5 and 5.1 do not suffer from this drawback, since they cope
with the indefinite case too.
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4 Matrix tridiagonalization and Current Repre-
sentation with CG

Provided that matrix A in (10) is positive definite, in this section we recall how the
use of Conjugate Gradient (CG) algorithm provides a tridiagonalization of matrix A.
In addition, an expression of the form (12), as well as a current representation (11),
will be straightforwardly derived (see [25], [10]). As well known, a general description
of CG method [21] for solving (10), can be figured out by the following instructions:

(O€:

step 1:
kzl, .CUIERn
rn=b—Ar,, p=n

step k:
if 7, =0 then STOP else
Tpy1 = Tp + Okpy O = p%lz‘:;k
Thr1r = Tk — O Apy
Prsr = Tist + Bebi G = Tt = e

k < k+ 1 repeat step k.

where 11 = b — Azg,; and the sequences {r;} and {p;} are such that:
rir; =0 i#Fj<k+1
0 j<i<k+1
pFAp; = 0 i#j<k+1.

Now suppose the CG stops at m-th step and r,,,; = 0, then introducing matrices

1 T'm
R, = e RV™, (17)
(||7“1|| ||rm||>
b Pm
P, = |—/ ...} e R™™, (18)
(||7“1|| ||rm||>
1 0

L, = _\/E . ERme, (19)
0 _Vﬁmfl 1

246



D,, = o e R™™, (20)

1

Om

e}

the iterative relations which calculate rp,; and pgy; can equivalently be recasted
resorting to the following matriz equalities [10]:

P,L" = R, (21)
AP, = RyLyDp. (22)

Now post-multiplying both the sides of equality (22) for the invertible matrix L and
substituting P, L’ from (21) we obtain:

AP,L} = R,L,.D,LY = AR, = R,T, (23)
where T, € R™*™ is a symmetric tridiagonal matrix defined by:

VA 0

% 01
- ()
T = e R™™. (24)
- (9m1—1 %) _%
0 - 0517_1171 (ﬁ + %)

Relations (23) and (24) prove that as long as matrix A is positive definite, the CG
provides for matrix A the iterative tridiagonalization (3). Now, likewise algorithm
Alg_L, we would like to obtain a current representation for matrix A, by means of
algorithm CG. In other words, suppose 7.1 # 0 (i.e. algorithm CG was not arrested
at step k-th) then we ought to derive an expression which resembles (2).

On this purpose consider matrix Ly defined as in (19) and introduce the new matrix:

= Ly k
L. — ER( +1)xk
k (0...0_,/5k>

that allows to rearrange equalities (21) and (22) which become:

P.L; = Ry (25)
AP, = Ryi1LiDy. (26)

Finally a combination of (25) and (26) yields:
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k+1)xk

where the unsymmetric tridiagonal matrix T, € R( assumes the expression:

N T
T, =
k ()...()__ngk

with T), defined in (24). Eventually we can readily show that relation (27) recovers
relation (2), since it can be rearranged as follows:

1,
~ r k
i (o), )

frenl Y.
T
Tht1 k VB Tky1 7
Rk ) / = Rka - € (28)
< Ies| (— gfkef) Ok Nrisll "

which is evidently the current representation for matrix A we were looking for.

We complete the section with an utmost intuitive consideration about the relationship
between algorithm Alg_L and algorithm CG. Formulas (15) and (23) formally coincide
when we swap the sequences {¢;} and {r;/||r;||}, thus a simple question seems to arise
spontaneously: why the Lanczos algorithm and CG look so different in practice ? For
our purposes the difference is “apparent” since at iteration k-th, they both provide a
k-dimensional orthonormal basis. However, this is accomplished in a unique phase by
the Lanczos algorithm (which requires the storage of the last two vectors generated),
while CG algorithm needs an intermediate step (see (21) and (22)).

5 The introduction of Planar-CG algorithms

In this section some tridiagonalizations and current representations will be derived for
the matrix A in problem (10); however, despite the previous section, here we assume
more generally A indefinite. We will recall the guidelines provided by the application
of the Lanczos and CG methods in Sections 3 and 4, however, for our purposes, a
CG-based class of methods will be used.

More precisely we consider the category of Planar Methods [26], [21] [15], [16] for both
iteratively solving linear system (10), and generating a negative curvature direction dy,
for matrix A. The general approach of these CG-based schemes (the Planar methods
in [16] and [26] are sketched in Section 5.1) may be roughly summarized as follows.
Consider algorithm CG in Section 4 with A indefinite, and suppose that at step k-th
the quantity p! Ap, approaches zero. Then, instead of stopping untimely (as CG
does), a second direction g is generated and the search of the stationary point on
the line x; + ap, « € R (CG-step), is replaced by the search on the 2-dimensional
linear manifold (Planar-step)

T, + span{pk, qx}- (29)
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The algorithm in [15] (namely Alg FLR) accomplishes such a result in a more general
way in respect to both the methods in [16] (Alg-F) and [26] (Alg_-ML). Consequently
algorithm Alg FLR usually provides more precise solutions; on the other hand Alg_F
and Alg ML are computationally cheaper.

The substantial difference between Alg FLR and both Alg F and Alg_ML, relies on
a test for quantity pf Apy calculated at step k-th (see Section 5.1). Indeed, Alg F
and Alg ML perform a Planar-step if and only if relation pl Apy = 0 holds; thus,
they might cope inaccurately with the situation 0 < [pl Api| < ¢, & “small”. On
the contrary, Alg_ FLR is more flexible and does not suffer from the latter drawback.
Furthermore, it was proved [15] that both Alg_F and Alg ML are particular cases of
the more general scheme Alg FLR. Nevertheless, in this context we consider that the
use of the former algorithms is still meaningful. Indeed, we recall that we are dealing
with linesearch-based truncated Newton schemes, introduced in Section 1. Therefore
at step k-th these planar methods are expected to provide only an approximation of
both a Newton-type direction s; (which solves (8)) and a negative curvature direction
dy (which verifies (9)). Hence, the low computational burden associated to Alg_F and
Alg_ML might be a winning feature®. In addition, since Planar-CG algorithms are
Krylov subspace methods, they show exactly the same features (1)-(5) described in
Section 3 for the Lanczos scheme. We avoid the verbatim report of those properties,
however we highlight that this parallelism has remarkable implications inside an op-
timization framework. Moreover all Planar schemes are far cheaper than the Lanczos
method, inasmuch as they skip the solution of the tridiagonal system (14) and do not
require any matriz storage (see Section 3).

5.1 Matrix Tridiagonalization and Current Representation
with algorithms Alg_F and Alg_ML

As reported at the outset of the previous section, here relations (2) and (3) will be
obtained by means of Planar-CG algorithms in [16] and [26], which are respectively
addressed as Alg_F and Alg_ ML (the similitude of behaviour between these algorithms
justifies a common treatment of the subject). Here we outline these methods:

Alg F

step 1:
k=1, r € R"
rn=b—Azr,, pp=n

step k:

6n a forthcoming paper we shall determine a matrix tridiagonalization with algorithm Alg_FLR,
too.
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if r, =0 then STOP else
if pJ'Apr #0 go to step k4 else go to step kp
step k4 (CG-step):

Pk rTpk
Tpp1 = Tp + @ ap = kP 1
k+1 kT QkPk k= T ap, — plpn
Tht1 = Tk — Qi Apy
T
_ — T AP flreg|?
Pk+1 = Tk41 + ﬁkpk ﬁk - = p{Apk = rel?
k <k + 1 repeat step k
step kp (Planar-step):
P _ Apg
b+l = T
A )
_ Y TR s
Thy2 = Tp + QpPr + Qg 1Pkt 1 ar = — o7 (Pry1 APrr1)
iy
Tho = Tk — APy — g1 Apra k1 = Tl
_ _ Ty QApIC+1
Prt2 = Tht2 + OkDk Ok = ==l

k < k + 2 repeat step k

Alg_ ML

step 1:
k=1, 1€ R"
r=b—Ar,, pr=n
step k:
if r, =0 then STOP else
if pfApy #0 go to step k4 else go to step kp
step k4 (CG-step):

o ok
T ==z o ap = —Ff— = 3
k+1 kT QP k= T aApy — plApn
Thy1 = Tk — Qi Apy,
T

_ — T APk e
Pe+1 = T+ + ﬁkpk ﬂk - = PZAPk = Irell?
k< k+1 repeat step k

step kp (Planar-step):
T

— A (Apk) A(Apk)

Dk+1 = APk — 2 N Ap. 2 Dk
A )

— _ Tp Pk+1

T2 = Tk + Pk + Qpp1Pk41 ap = _pifflpw
Pk

Thyo2 = Tk — AP — Q1 Apr Ot = e,

_ _ Tt APk+1
Pk+2 = Tk+2 + OkPk Ok = = ipers
k < k+ 2 repeat step k

JAN
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We remark that at step k-th, algorithm Alg_F performs exactly a CG step (see scheme
at page 246), provided that quantity dy = p} Apy is not zero. The latter analytical
condition allows the iterative generation of a new residual r1 = ry — ap Apg. Conse-
quently algorithm Alg F is able to extend the search for the solution of system (10),
on the Krylov subspace Kyy1(r1, A).

On the other hand whenever dy = p} Apy = 0, step kp-th of algorithm Alg F “must”
be performed: by roughly speaking this step is substantially equivalent to a double
k a-th step, where the algorithm does not generate an intermediate residual r;,q, but
“jumps” directly from the generation of residual 7 to the generation of residual rj5.
Now suppose pt Apy = 0 at step k-th of Alg F; we set aside the nature of “residuals”

attributed to vectors ry, ..., 7, of algorithm Alg_F, and define a new vector r;,; which
verifies:
rkTHrj = 0 j=1,...,k
rhnresr = 0 h > 2.
In this way, as well as for the Lanczos algorithm, an orthogonal basis {ry,...,r¢1}

of R*! will be available.
With a slight deeper insight in algorithm Alg_F we can prove the following result,
which defines the nature of the vectors generated by Alg_F [16]:

Theorem 5.1 Let matriz A € R™™" be symmetric and nonsingular, if at step h-th
of algorithm Alg_F we have r, # 0, then the following relations hold (1 < j < k <

h<n):
(1) hp; =0
(2) rir; = 0
(3) PRAp; #0 < plAp;=0and k=j+1.

O
Now, the condition pf Ap;, = 0 implies Ap; L py, therefore the conjugacy of direction
pr. with the manifold span{p,...,pr_1} along with the choice:

rer1 = Ape = || Apk||pes1 (30)

at step k-th, guarantee the following relations to hold (respectively for steps js-th
and jp-th):

; i — Bicwpio1) = (Ap)T(pj — Bjmpj1) = 0 j<k
Te1Ty =

Thoi(Dj — 0j—2pj—2) = (Api)"(pj —o0j_apj2) = 0 j<k.
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Moreover, relations (see Theorem 5.1)
7"1{+h7"k+1 = TkT+h(||Apk||pk+1) = ||Aplc||7"kT+th+1 =0 h>2

will be straightforwardly fulfilled. Thus, the set {ry,..., 7k, 711, .., ksn} is orthog-
onal. Now suppose 7,11 = 0; with the position 8; = ||r;+1]|?/|7;]/?, 7 > 1 and since
at step k-th rry 1 # 0 (see (30)), we could derive the equalities (compare with (21)
and (22)):

P,LT = R, (31)
AP, = RpLnDy, (32)

where matrices P, and R, have been defined in (18) and (17). The entries of matrices
Lum, L, and D,, respectively coincide with the entries of L,,, L,, and D,,, as long as
pLAp, #0, k < m. On the contrary if at step k-th p! Ap, = 0 holds, then matrices
L, Lm and D,, will respectively assume the expression in Figures 1, 2 and 3. As
a consequence, if algorithm Alg F stops at step m-th and condition r,,; = 0 occurs,
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then combining relations (31) and (32) we obtain:
AP,LY = R,LnD,LT — AR, = R,Tn (33)

which is definitely similar to (15) and (23). Furthermore, by means of the definitions
for ay, apy, and oy in Alg_F, matrix T}, is symmetric © and explicitly depicted in
Figure 4. We remark, in accordance with theory, that matrix 7}, in (24) and matrix
T, in Figure 4 coincide if step kp-th of algorithm Alg_F is not performed.

So far, we have iteratively determined tridiagonalization formula (33) for Alg F like-
wise relation (23) for algorithm CG. However these formulas hold as long as condition

'm+1 — 0

"In order to justify the symmetry of matrix T),, it suffices to say that for coefficient oy the
following equivalence holds:
T e —Thi2—0p Apr
_Tg+2Apk+1 Tr+2 g1 ]

ol — pn] = Prribi

where the last equality is due to Theorem 5.1 and relation (30).

O =
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holds; on the contrary we aim at generalizing (33) when the residual r,,; is not
null. In few words we would like to get a current representation for matrix A, in the
same way we obtained relations (11) for algorithm Alg L and (28) for CG. On this
purpose we introduce the matrix L, € R¥** which denotes the sub-matrix of L,,,
corresponding to the first k rows and k& columns. Then likewise to relation (25), at
step k-th of algorithm Alg F we can summarize the relation between directions p;,
1 < k and residuals r;, by means of the following matrix equivalence:

P.LT = Ry. (34)

Moreover, we introduce another new matrix L; such that:

s Ly, k1) xck
Ly = . € R*+x
¥ (0"'Olk+1,k>

where L, € RF** is the sub-matrix of L,, corresponding to the first k£ rows and
k columns, and Zk+1,k denotes entry (k + 1,k) of L,,. Finally with D; € R*** we
indicate the sub matrix corresponding to the first & rows and & columns of D,,.
Likewise (26) the intermediate relation

AP, = Ry LiDy (35)
holds. Now, post multiplying (35) by LT and substituting (34) we obtain:
Apkig = Rk+ll/\-1kal-J£ — ARk = Rk+1Tk (36)

where the unsymmetric matrix 7T} is given by:

T Tk k+1)xk
T, = e R+
b (0"'0 tk+1,k>

and, as usual, T}, is the sub-matrix of 7}, in Figure 4, corresponding to the first &k
rows and & columns, while ¢, is entry (k + 1, k) of T,,. Finally, relation (36) may
be alternatively recasted in the following expression:

_ r T
AR, = RpTy = (Rk ﬁ) (0 k ) _

Trecall) L 000t
Tkl Ty "k+1 T
Rk T = Rka + tk k € 37
(7 o) (e ) a7

which provides a current representation of the form (2) for the symmetric indefinite
matrix A.

We end up this section with deriving the same kind of results (tridiagonalization and
current representation) for matrix A, by using algorithm Alg ML in place of Alg F.
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We could simply apply algorithm Alg ML to replicate exactly the same procedure
leading to (33) (tridiagonalization of matrix A) and (37) (current representation for
matrix A), following the guidelines of algorithm Alg F. It can be readily seen that
position (30) can be assumed as well ®; consequently relations (31) and (32) still hold.
In particular, equality (32) remains formally the same (i.e. matrices L,, and D,,
have the same expression); however the reader should pay attention to the different
definition of coefficient ay, of Alg_ML in L,,. Finally in relation (31) matrix L, should
be replaced by the expression in Figure 5, so that a tridiagonal matrix 7, for matrix
A follows straightforwardly. As a consequence, relations (33) and (37) can be still
derived by compounding and rearranging equalities (31) and (32): this completes the
likeness between algorithm Alg_F and algorithm Alg_ML.

6 Conclusions

In this paper we have proposed the iterative tridiagonalization of a symmetric indefi-
nite matrix, by means of proper CG-based algorithms. We have suitably applied this
result inside large scale unconstrained optimization frameworks, within a truncated
Newton scheme. Our approach is computationally cheaper in respect to the usual use
of the Lanczos method [20], [25]; however, some unresolved questions still deserve to
be considered.

Firstly, we did not deal with stability issues related to the new algorithms. On this
stream, observe that at step k-th of Planar methods, either a CG-step or a Planar-step
can be performed [15],[16]. Nevertheless some numerical shortcomings could arise in
case the quantity |pf Apg| is small; as a consequence, the careless application of the
test on pl Apy, at step k-th, may provide misleading results.

In addition, the user’s application in hand requires a careful evaluation of the accuracy
of Alg_F and Alg_ML in solving linear system (10). In fact, in our experience there

8We remark that for algorithm Alg ML we have a result similar to Theorem 5.1 [26].
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is the following trade-off in evaluating the behaviour of Planar methods. Algorithm
Alg FLR is a more accurate solver of (10) in respect to both Alg F and Alg ML,
however it is computationally more expensive than the latter algorithms. On one
hand, this consideration justifies the use of tridiagonalizations through algorithms
Alg F and Alg_-ML; on the other hand, it remarks our initial interest for iterative
tridiagonalizations through Alg FLR. In a future work we shall explicitly point out
that the results contained in this paper are just a particularization of analogous re-
sults, obtained by means of applying Alg FLR.
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