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Correcting Curvature-Density Effects
in the Hamilton–Jacobi Skeleton

Andrea Torsello and Edwin R. Hancock

Abstract—The Hamilton–Jacobi approach has proven to be a
powerful and elegant method for extracting the skeleton of two-di-
mensional (2-D) shapes. The approach is based on the observation
that the normalized flux associated with the inward evolution of the
object boundary at nonskeletal points tends to zero as the size of
the integration area tends to zero, while the flux is negative at the
locations of skeletal points. Nonetheless, the error in calculating
the flux on the image lattice is both limited by the pixel resolution
and also proportional to the curvature of the boundary evolution
front and, hence, unbounded near endpoints. This makes the exact
location of endpoints difficult and renders the performance of the
skeleton extraction algorithm dependent on a threshold parameter.
This problem can be overcome by using interpolation techniques
to calculate the flux with subpixel precision. However, here, we de-
velop a method for 2-D skeleton extraction that circumvents the
problem by eliminating the curvature contribution to the error.
This is done by taking into account variations of density due to
boundary curvature. This yields a skeletonization algorithm that
gives both better localization and less susceptibility to boundary
noise and parameter choice than the Hamilton–Jacobi method.

Index Terms—Curvature, Hamilton–Jacobi equations,
shape-description, two-dimensional (2-D) skeleton.

I. INTRODUCTION

THE skeletal abstraction of two-dimensional (2-D) and
three-dimensional (3-D) objects has proven to be an

alluring yet highly elusive goal for over 30 years in shape
analysis. The topic is not only important in image analysis,
where it has stimulated a number of important developments
including the medial axis transform and iterative morphological
thinning operators, but is also an important field of investigation
in differential geometry and biometrics where it has lead to the
study of the so-called morphological skeleton [7].

The morphological skeleton of a shape is defined as the set
of singularities in the inward evolution of the boundary with
constant velocity. The dynamics of the boundary motion is
described by the eikonal equation. This is a partial differential
equation that governs the motion of a wave-front through a
medium. In the case of a uniform medium, the equation is

(1)

where is the equation of the front at time
is the equation of the normal to the wave
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front in the direction of motion, and is the propagation speed.
As the wave front evolves, opposing segments collide, gener-
ating a singularity.

Broadly speaking, the representation and recognition of
2-D shapes based on the shock representation is a three stage
process. First, the skeleton must be computed from the available
shape boundary information [1], [2], [8], [9], [12], [18], [19],
[28]. The second issue is how to use the extracted skeleton to
represent the differential structure of the original boundary.
Most of the approaches reported in the literature opt to use a
structural characterization. For instance, Siddiqi and Kimia
[29] labeled points on the skeleton using so-called shock-labels.
According to this taxonomy of local differential structure, there
are different classes associated with behavior of the radius of
the bitangent circle inscribed in the shape. The so-called shocks
distinguish between the cases where the bitangent circle has
locally maximum radius, locally minimum radius, constant
radius, or a radius which is strictly increasing or decreasing. In
[30], Siddiqi et al. use this characterization as the basis for a
shape matching approach. Kimia and Giblin opt for a simpler
representation which is based just on the junctions and termi-
nations of the skeleton [32]. With the skeletal representation
to hand, the final step is the matching and indexation of the
resulting shape representation [17], [21], [23], [26], [32]. There
has also been a consolidated effort at extending these methods
to volumetric imagery [6], [25], [34]. Skeletonization methods
have found important applications medical image processing
including angiography [33] and and bronchoscopy [15].

Given the importance of skeletal representations, the quest
for reliable and efficient ways of computing skeletal shape de-
scriptors has been a topic of sustained activity. The problem is
a complex and elusive one because it is based on the detection
of singularities in the evolution of the boundary. The available
methods for extracting the skeleton can be divided into three
broad categories. The first class of methods are those that in-
volve the use of marching front techniques which simulate the
grassfire transform. These methods are concerned with itera-
tively propagating the boundary front over time. Singularities
in the simulated evolution of the front indicate the locations
of the skeleton. This class of algorithms can be further divided
into a) thinning methods [1], [2], [5], where layers of pixels are
sequentially peeled from the shape like the skin of an onion,
and b) curve evolution methods [16], [31], where curve descrip-
tors such as splines or snakes are transformed according to the
eikonal equation. Thinning algorithms have a clear advantage in
terms of simplicity. However, their performance is not invariant
under Euclidean transformation unless weighted distance func-
tions are used to approximate the Euclidean distance or the Eu-
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clidean distance itself are used [3]. Curve evolution methods,
on the other hand, are invariant under Euclidean transformation,
but require a functional description of the boundary curve. Con-
crete examples include the use of second or higher order curves
and splines [16], or local descriptors such as line segments or
circular arc segments [31]. If, on the other hand, the shape is a
binary silhouette on the image lattice, then curve evolution re-
quires that a fit be performed to the shape-boundary, and this
process both adds to the complexity of the method and it can
also be adversely affected by noise. Furthermore, the quality of
the extracted boundary curve depends strongly on the reliability
of the fitted curve descriptors.

A second class of skeleton extraction algorithms is those
that rely on the relationship between the Voronoi triangula-
tion and the skeleton [18], [19]. This work is based on the
property that as the number of control points on the object
boundary increases, then so the locus of the centers of the
triangles of the corresponding Voronoi triangulation of the
shape converge to the skeleton. The consequence is that as the
triangulation increasingly approximates the shape boundary,
then, correspondingly, the centers of the triangles increasingly
approximate the skeleton. The important advantages of this
approach are that it offers invariance under Euclidean transfor-
mation, robustness to noise, that it is fast, and that it is simple to
implement. However, its major drawback is the relatively slow
convergence speed of the skeleton approximation with respect
to the number of control points on the boundary. Hence, this
class of algorithm is the natural choice either when the shape
is already triangulated (as is often the case with 3-D models)
or when it presents a natural triangulation, like a polygonal
object. Otherwise, the necessity to tessellate the shape with a
large number of triangles negates the advantage of speed.

The third, and final, class of algorithms rely on the analysis
of the differential structure of the boundary. Kimmel et al. di-
vide the shape-boundary into segments that are delineated by
points of maximal curvature [14]. They show that the skeleton
is a subset of the Voronoi diagram of these segments. Although
this is a powerful approach, it requires direct estimates of the
boundary curvature and this is turn relies on curves to be fitted
to the boundary. Another important method that falls into this
classresultsfromtheanalysisof theboundaryevolutiondynamics
using the Hamilton–Jacobi equations from classical mechanics
[20]. This analysis leads to an eikonal equation which governs the
boundary flow. Whenever this flow is nonsingular, the system is
Hamiltonian, and, thus, conservative. However, when the system
ceases to be conservative there are singularities in the flow of
boundary evolution. When the boundary reaches the singularities
a so-called shock forms. In the Hamilton–Jacobi setting, skeletal
points are detected by searching for locations where the system
ceases to be Hamiltonian. The resulting skeleton search method
is algorithmically simple and fast. Furthermore, it works directly
on the image lattice without the need to extract an intermediate
curve description of the boundary. This also makes it relatively
robust with respect to boundary noise.

In the first reported account of the Hamilton–Jacobi method,
the analysis assumed that boundary evolution ceased to be
Hamiltonian at locations where the divergence of the flow was
nonzero [9], [27]. Unfortunately, this is not the case. Hence,

this initial work appears to overlook the fact that the linear
density of the evolving boundary front is not constant where
the front is curved. The result of changes in density is that the
flux is not conservative, and, hence, the premise underpinning
the skeletonization method does not hold. In a subsequent
paper [28], the authors correct this oversight in the analysis by
normalizing the flux by the perimeter of the integration area.
The resulting normalized flux is still nonzero at nonskeletal
locations. However, in the limit as the integration area shrinks
to zero, the normalized flux does tend to zero at nonskeletal
locations, and is negative on the skeleton itself. Unfortunately,
when the integration is performed on the image lattice, the in-
tegration area is bounded from below by the pixel size and this
introduces an error into the calculation of the normalized flux.
Furthermore, there are locations where this error is unbounded.

One way to reduce the effect of this error is to use interpo-
lation techniques to compute the flux with subpixel precision
[11]. In this paper, on the other hand, we circumvent this
problem by eliminating the error. This is achieved by per-
forming a Hamilton–Jacobi analysis of the boundary evolution
under conditions where the flux-density varies due to curvature.
Instead of using the gradient of the distance map, i.e., the ve-
locity field of the eikonal equation, we use the momentum field.
In other words, we multiply the velocity by the linear density
of the boundary-front. The resulting field is conservative and,
hence, zero at nonskeletal locations. Moreover, our analysis
leads to a new skeleton extraction method. While the method
is based on the analysis of a continuous momentum field, its
discretization is straightforward since it does not rely on curve
fitting to the object boundary and the computation is performed
entirely on the image lattice. Hence, discretization requires
only sampling on the pixel lattice. The resulting skeleton
extraction algorithm is a thinning-based method, where the
thinning process is controlled by the value of divergence of the
momentum field integrated over the image lattice. We com-
pare the resulting curvature corrected skeletonization method
with the Hamilton–Jacobi method. The advantages of the new
method are improved localization and stability, and a reduced
sensitivity to the model parameters. On the other hand, basing
the analysis on a continuous interpretation of the pre-image,
that is of the continuous image function that is used to generate
the discretely sampled image, allows for subpixel precision
algorithms [11].

II. HAMILTON–JACOBI SKELETON

We commence by defining a distance-map that assigns to each
point on the interior of an object the closest distance from the
point to the boundary (i.e., the distance to the closest point on
the object boundary). The gradient of this distance-map is a field

whose domain is the interior of the shape. The field is defined
to be

(2)

where is the gradient operator. The trajec-
tory followed by each boundary point under the eikonal equa-
tion is governed by the ordinary differential equation ,
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where is the coordinate vector of the point. Siddiqi et al. as-
sume that this dynamic system is Hamiltonian everywhere ex-
cept on the skeleton [9], [27]. The original interpretation of this
property was that at nonskeletal points the normalized flux field

is conservative, i.e., . However, the total inward
flux through the boundary of the shape is nonzero. In fact, the
flux is proportional to the length of the boundary.

The divergence theorem states that the integral of the diver-
gence of a vector-field over an area is equal to the flux of the
field over the enclosing boundary of that area. In our case, this
implies that

(3)

where is an arbitrary area, is a vector field defined in
is the length differential on the boundary of , and
is the outward flux of through the boundary of the area

. This implies that, where the divergence is well defined, we
have

(4)

We extend the definition to points where the divergence is not
well defined, by redefining the divergence at skeletal points
using (4). Since the flux through the initial boundary is nonzero,
by virtue of the divergence theorem within the interior of the
shape, there are points where the system is not conservative.
The nonconservative points are those where the boundary
trajectory is not well defined, i.e., where there are singularities
in the evolution of the boundary. These points are the so-called
shocks or skeleton of the shape-boundary. Shocks are, thus,
characterized by locations where

or, using the extended definition of the divergence

A. Curvature in the Boundary Front

Unfortunately, in general, the flux of is not conservative.
To illustrate this point, let us consider an instant in time during
the inward boundary evolution. The initial shape boundary has
evolved under the eikonal equation to the front which is at
every location orthogonal to . We would like to select a point

and compute the value of at this point. The
value of this divergence is more easily computed in the Frenet
frame of the front passing over point . The Frenet frame
of a plane curve is the frame provided by the
basis , where

Here, the sign of depends on the chosen orientation
of the curvature. We chose to orient the curvature so that

, that is, so that the curvature

of is positive when the curve bends toward the
interior of the shape. Calculating the Frenet frame for the front

at the point , and selecting the inward orientation of the
boundary curvature, we have . Furthermore, we have

, where dl is the arc length differential of at point
. Since the divergence operator is invariant under rotations,

the divergence of the field calculated in the Frenet frame is

Since everywhere, we have . Moreover,
since is an an arc-length differential for the boundary front

at point , we have , where is
the curvature at of . Hence, we have

(5)

In other words, the divergence is not always zero as pre-
dicted by the original Hamilton–Jacobi approach [27]. Rather,
it is equal to the curvature of the front of the inward evolving
boundary.

As a concrete example, consider a circle of unit radius
centered in . The gradient of the distance map at point

is , and the divergence is
.

B. Normalized Flux

This problem was recognized by Siddiqi et al. who corrected
the analysis in a subsequent publication [28] by introducing
the concept of normalized flux. With this modification to the
analysis, the non-Hamiltonian points are detected by consid-
ering the flux through a circular area of radius normal-
ized by the perimeter length . According to the modifica-
tion, nonskeletal points satisfy the condition

This condition results from the fact that ,
where and is the area of the circle . Hence,
the limit of the normalized flux becomes

Furthermore, in [28], the authors proved that the limit of the nor-
malized flux at skeletal locations is less than a negative constant
, and that this constant depends only on the characteristics of

the boundary of the original shape.
While this analysis is correct, it relies on the ability to calcu-

late the limit of the normalized flux through a vanishingly small
area. Unfortunately, on the image lattice, there is an obvious
lower bound on the size of the integration area due to the pixel
resolution. Hence, assuming a minimum integration radius of
one pixel, the calculated normalized flux is

At most locations, the absolute value of the calculated normal-
ized flux is much smaller than the constant . However, near the
endpoints of the skeleton, the curvature of the boundary front
tends to infinity. Hence, at these locations the exact location of
the skeletal points becomes somewhat elusive.
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Fig. 1. Evolution of a boundary segment.

III. MOMENTUM FIELD

The fact that the divergence of the field is nonzero can
be easily understood by appealing to an analogy from physics.
Let us assume that a fluid of uniform density flows from the
boundary of the shape (which acts as a source) to the skeleton
(which acts as a sink). If the fluid is incompressible, then the
fluid density never changes and the flux of the velocity field
is conservative everywhere except at points on the skeleton. If,
on the other hand, the fluid is compressible, then as soon as a
curved front compresses the fluid, the density changes and the
velocity field is no longer conservative.

To develop this idea one step further, consider a segment
of the boundary front at time . We assume that this seg-
ment has average linear density (see Fig. 1). Under the
eikonal equation, at time the boundary front segment

has evolved to . Since each of the points in
are now contained in , the total mass of the two seg-
ments is the same. However, if is curved then the lengths
of the segments are different, i.e., . Thus,
the average density of is . As a result,
when the front is curved, then the density is not constant and we
have to take into account mass effects. That is, we have to resort
to the more general principle of conservation of mass.

Based on this physical intuition, we state that there is indeed a
conservative field associated with the dynamics of the boundary,
namely the momentum , where is the scalar field that
assigns to each point the linear density of the boundary front. As
a result, we have

Applying the rules of product differentiation, we obtain the par-
tial differential equation (PDE)

By setting , we can write the above PDE as a function
of the log-density

Eliminating from both sides, we obtain

(6)

This is a transport equation that can be reduced to the fol-
lowing set of ordinary differential equations (ODE) along the
paths of the boundary points

(7)

where is the trajectory of a boundary point under the eikonal
equation.

These equations can be derived by analyzing the change of
density of the segment in Fig. 1. To commence, we note that

, where is the length of the boundary
segment at time, is its mass, is its average linear density
and is the curvature at time . After a small interval of time

, the segment length will be

and the curvature

From these equations, and the conservation of momentum, we
have

Hence

Taking the limit for and , we have

(8)

where is the trajectory to which the limit point of the seg-
ment dl tends as under the eikonal equation. Inte-
grating (8), we obtain

From (5), we have , yielding

Hence, integrating , we obtain the vector field which
satisfies the condition at nonskeletal points. Hence,
we have for any region not containing a skeletal
point. The analysis of the flux of regions containing skeletal
points is more complex. The problem we face is that both
and are multivalued on the skeleton, and, hence, is
not defined. Although the divergence is not well defined, we can
calculate the flux through any area containing a skeletal point.
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Fig. 2. Flux through a circular region A containing a skeleton segment is equal to the length of the boundary generating the segment. Left: General case.
Middle: Skeletal junction. Right: Skeletal endpoint.

To pursue this analysis, we turn our attention to Fig. 2. Con-
sider a region containing some skeletal points. Let us assume
that the region contains no endpoints or junctions. Further,
without loss of generality, we can assume that contains a
single connected skeleton segment . In fact, were it not the case,
we could partition the region into several disjointed regions

each containing single connected skeleton seg-
ment . The total flux through will then be .
Let and be the endpoints of . There will be two points

and on the boundary that converge toward under the
eikonal equation. Similarly, there will be two boundary points

and that converge to under the eikonal equation. Let
be the boundary segment connecting and , and be the
boundary segment connecting and . Further, let ,
and be the trajectories of , and , respectively. Let

be the region contained within the segments ,
and . Clearly, the fluxes through and are linked by the
relation

(9)

where is the region obtained by subtracting from the
points that are in . Since the regions and do not con-
tain any skeletal points, we have .
Hence, we have

(10)

The flux through region can easily be computed by sum-
ming the flux over all its defining boundary segments. Since

, and are trajectories of the eikonal equation they
are parallel to at every point, and, hence, there is no flux
passing through them, i.e., . On the other
hand, is perpendicular to , and, hence, the flux through is

. Similarly, the flux through is .
Hence, we have

(11)

We can now extend the proof to cases where contains a
junction or an endpoint. If the region contains a junction from
which different branches originate, we can partition it into

regions in the following manner: Let be the junc-
tion, there will be boundary points that converge to

under the eikonal equation, and let be their trajec-
tories. These branches split into the required regions. Since

is not in the interior of any of the regions, the flux through
each of the regions can be computed using the method described
above. On the other hand, if the region contains an endpoint,
then region would consist of a single boundary segment ,
which wraps around the endpoint together with two trajectories
of the endpoints of that collide at the single intersection of
with the skeleton. The computation of the flux would, otherwise,
be identical yielding the result .

The limit is not well-defined for an
arbitrary sequence of regions of vanishingly small area. How-
ever, assuming that we can construct a sequence of circular re-
gions of radius , containing a skeletal segment , we have

if

Here, is the ratio between boundary length and segment
length, and is a point in the skeletal segment .

When integrating the flux numerically on the pixel lattice,
there will be a lower bound on the radius. Hence, the corre-
sponding limiting value of the normalized flux will not be ,
but it will be negative since . In particular, the flux
will be zero if and only if , that is, on pure lig-
atures. Ligatures are skeletal branches linked with high nega-
tive curvature on the boundary. They are not associated with
boundary features, but serve the purpose of linking skeletal fea-
tures and ensure the skeleton connectivity is preserved. In gen-
eral, the flux through a 1-pixel circle around a skeletal point will
be proportional to the length of the boundary segment gener-
ating the skeletal point. This measure has been used previously
to distinguish between relevant skeletal branches and irrelevant
branches caused by boundary noise [24].

It is worth noting that if we follow Siddiqi et al. [28] and
normalize by the perimeter of the region , we obtain
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Hence, factoring out the curvature effects, we obtain a clear ge-
ometrical interpretation of the value of the normalized flux at a
skeletal point. It is simply proportional to the ratio between the
boundary length and the skeletal length.

IV. BOUNDARY CURVE PARAMETERIZATION

There is another interpretation for the scalar field derived
from the analysis of the evolution of an arc-length parameter-
ization of the boundary curve of the shape [13]. Let be a
solution to the eikonal (1), where is the equa-
tion of the front at time . Furthermore, let the differential of
the parameterization of the curve be, at time , an arc
length differential, i.e., let . Clearly, will
not remain a differential of arc length throughout the evolution
of the curve. However, we can define a metric
that links the length at time of the differential of the param-
eterization , to the arc length differential dl. With this notation,
we have

Further, suppose that is a segment on the initial boundary, and
let be the corresponding segment on the front at time . Since
we assume unit density at time , the total mass of the
segment is equal to its length . Since mass is conserved, the
total mass of the segment will remain . Hence, the average
density is . Taking the limit as , we have

. With this definition of the front density, we can
rewrite the momentum field as . Following [13], the
divergence of the momentum and velocity fields are given by

and

which is simply the result obtained via our analysis of the mo-
mentum field.

V. COMPUTING THE DENSITY

To obtain the momentum field, we need to integrate the den-
sity field over the interior of the shape. Since images have a finite
resolution, we need to discretize the solution onto the image lat-
tice.

One approach is to express the PDE in (6) as a system of
difference equations. The difference equations form a linear
system that can then be solved to obtain the log-density

. The problem with this approach is that the skeleton is
a set of singularities of the momentum field. Hence, the den-
sity can have very different values at opposite sides of a skeletal
branch. The net effect is that the linear system will have no so-
lution. In fact, even seeking an approximate solution using a
residual descent method would result in oscillations near the
skeleton.

A. Integration in Time

In order to overcome this problem, we need to ensure that the
difference operators used in the equations never cross a skeletal
branch. One way to guarantee this is to integrate the equation in
the time domain. This must be done so that the formulae giving
the value of at points on the boundary front at time reference
values of only at points in the fronts at previous times. We can
realize this by integrating the ODE in (7) along the paths of the
boundary points.

To do this, we opt to use the second-order Cranck–Nicolson
method [10]. For each point in the interior of
the shape, we have the equation

Solving for the log-density at time , we obtain

(12)

Using this equation, we can calculate the log-density at a point
on the evolving boundary at time , referencing only values of
the log-density at points that belong to the front at previous
times. Since the evolution never crosses the skeleton, we are
guaranteed not to cross skeletal branches during our calcula-
tions.

B. Integration in Space

Equation (12) allows us to integrate the log-density in the
time domain along the evolution path followed by a boundary
point. However, we have not shown how to calculate the inte-
gration path. Fortunately, we do not need to calculate every pos-
sible path. Let us assume that at time the boundary front passes
through the point . The first-order approxima-
tion of the position of this point at time is

Using this approximation, we can write (12) in the spatial do-
main instead of the time domain. As a result, the density is given
by

(13)

Here, we have used a first-order approximation to compute the
location of the point at time . The reason for doing this is
that it allows us to obtain a closed-form solution. The develop-
ment of a second-order approximation, on the other hand, would
require the solution of a system of two second-order equations.
The solution does not exist in closed form and must be located
numerically. This would have significantly compromised the
speed of the integration step.

As shown in Fig. 3, the point does not
belong to the image lattice. Hence, we need to interpolate it
using the values at the four corners of the square containing the
point. Note that the point is the last of the four points in
the lattice that is visited by the evolving boundary. Hence, the
interpolation is guaranteed to use points on the same side of a
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Fig. 3. Integration along the boundary path.

skeleton. We opt to compute the quantity with
using the bilinear interpolation

With this interpolation, (13) becomes

(14)

where and .
Using (14), we can compute the value of the log-density

using values of at the points spanned by the evolving
boundary front before the point . Hence, to calculate

, all we need do is to iterate (14) through the interior points
according to front arrival time. We commence from the points
reached first by the boundary front and proceed to those reached
last. Since the evolving boundary front is moving with constant
unit velocity, the time taken by the front to reach the point with
position is equal to its distance from the initial shape
boundary.

Once we have the density to hand, we need to calculate the
divergence of the momentum in every point on the image lattice.
We opt to discretize (6) using the second-order approximation

This corresponds to the second-order Cranck–Nicolson method
applied to the integration of the log-density .

VI. SKELETONIZATION

Once the divergence of the momentum field is to hand, we can
extract the skeleton. The extraction process we adopt is similar
to the one adopted by Siddiqi et al. [28]. The extraction is per-
formed by thinning the shape by removing boundary points that

have energy absorption below a certain threshold, and whose
removal would not cause the shape to be split into two disjoint
parts. This is an important element of the thinning algorithm.
In fact, while the method guarantees that the energy absorp-
tion is not negative at skeletal points, it can become arbitrarily
small. In particular, as seen earlier, it becomes zero at pure liga-
ture points. Without enforcing branch connectivity, the method
would split the skeleton whenever the absorption falls below
the threshold. On the other hand, with this check on the thin-
ning process, we are guaranteed to obtain a connected skeleton.
In particular, since the thinning is performed in distance order,
the skeleton branch would, as expected, follow the gradient of
the distance map. The remaining shape is further thinned to a
1-pixel wide skeleton, being careful to maintain the connectivity
of the shape and to avoid shortening of the skeleton by elim-
inating endpoints. Expressed in terms of pseudocode the thin-
ning process of the shape is as follows:

point in distance order

is simple

remaining point in distance order

is simple is endpoint

The predicate is simple determines whether the shape is still
connected after the removal of the point . It does so by checking
only the points in the neighborhood of . The shape is con-
nected if the points in the neighborhood of , excluding , are
connected. Similarly, is endpoint determines whether is an
endpoint. It does so only by inspecting the neighborhood of .
The point is an endpoint if it has at most two neighboring points,
and those points are 4-adjacent to each other.

It is worth noting that the only external input that this thinning
algorithm requires is the detection of endpoints. In fact, if an
algorithm were to return only the set of endpoints, the thinning
process would reconstruct the same skeleton. On the other hand,
the algorithm is highly dependent on the quality of the detection
of the endpoints. Hence, an improvement on the detection and
localization of the endpoints would result in an improvement
on the extraction algorithm. Since the energy absorption is pro-
portional to the length of the boundary-segment generating the
skeletal point, the thinning algorithm is controlled by the branch
relevance measure. By controlling the thinning process using the
energy absorption as a skeleton-localization measure, we ensure
that only endpoints associated with a boundary-segment longer
than a threshold value are retained. As stated earlier, the length
of the generating boundary is a well known branch-relevance
measure often used in skeleton-pruning algorithms to eliminate
branches produced by boundary noise. With our method we dis-
pense of the need for a subsequent pruning process, by incorpo-
rating it into the skeleton-extraction step.

It is important to note that the addition of the momentum-
integration step to the original Hamilton–Jacobi algorithm does
not impact on the computational complexity of the method. In
fact, the complexity of the step is linear in the number of interior
points. This is equivalent to the calculation of the divergence
and the thinning step which are used in the Hamilton–Jacobi
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Fig. 4. Differences in the velocity and momentum fields. Left to right: Shape, (normalized) flux of ~F ; log(�), flux of �~F , and the skeleton extracted with the
proposed approach.

approach too. These linear steps are dominated by the initial
sort of the interior points which is , where is the
number of interior points. Furthermore, in our implementation,
the calculation of the distance map is done in a very naive
way, giving it complexity , where is the number
of boundary points.

VII. EXPERIMENTAL COMPARISON

In this section, we attempt to characterize the differences
between the Hamilton–Jacobi skeletonization method and our
density-corrected approach. We commence by providing a qual-
itative analysis of the difference in the divergence of the velocity
and momentum fields. Second, we provide an analysis of the
noise and thresholding sensitivity of the two methods. Finally,
we provide a more quantitative analysis of the localization prop-
erties of the two skeletonization methods.

Figs. 4 and 5 show, for a few selected shapes from our
database, the values of the flux through a unit circle of
the velocity field , the computed log-density ,
and the flux through a unit circle of . Note that,
having fixed the radius for the calculation of the flux, the
flux and the normalized flux differ only by
a multiplicative constant. In these diagrams white (grayscale
255) corresponds to a large positive value, black (grayscale
value 0) to a large negative value and zero is represented by
the grayscale value 128. To better show the differences, the
contrast of the images is strongly enhanced. This is done by
applying to each point intensity a sigmoidal function with
slope on 0 equal to 10.

It is clear from the diagrams that the divergence of the velocity
field at nonskeletal points is not zero where the boundary evo-
lution front is curved. That is, in correspondence with a curved
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Fig. 5. Differences in the velocity and momentum fields. Left to right: Shape, (normalized) flux of ~F ; log(�), flux of �~F , and the skeleton extracted with the
proposed approach.

boundary. The value of the flux through an area that does not
contain any section of the skeleton is, in general, an order of
magnitude smaller than the value calculated over an area that
contains a skeletal branch. However, near the endpoints of the
skeletal branches the values become comparable. This can be
observed as a blurred dark region around the endpoints. Fur-
thermore, quantization in the localization of the shape causes
the initial boundary to be very jagged. This high-frequency,
low-amplitude noise is transported and amplified throughout the
velocity field creating stripes with high local curvature in the
evolving front. This, in turn, yields a noisy and poorly localized
skeleton. By contrast, the density correction in the momentum
field dampens this noise. As for computation time, the extrac-
tion of the skeleton using our method took, on average, 2.18 s,
versus 1.72 s using the Hamilton–Jacobi method. Here, the di-

Fig. 6. Discretization error on boundary localization.

mension of images was 256 256 pixels and the computations
were performed on a PC with a 1 GHz CPU.
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Fig. 7. Effect of smoothing on skeleton extraction. Left to right: The divergence of the velocity field, the uncorrected Hamilton–Jacobi skeleton, the divergence
of the momentum field, and the skeleton extracted using the density-corrected method.

A. Noise Sensitivity

Our skeletonization method depends on our ability to calculate
the distance map and its gradient. This, in turn, depends on the
correct localization of boundary points. Unfortunately, due to the
truncation effects caused by the finite precision of the image lat-
tice, the extracted boundary presents discretization errors. This
problem is most pronounced for for jagged boundary edges. Fig.
6 illustrates the problem. The dashed line represents the original
boundaryoftheshapeandthegraysquaresrepresent theboundary
pixels in the image lattice. Due to this discretization, the observed
boundary isequal to thesolid line.Clearly, commencing fromthis
observed boundary, the distance map will diverge considerably
from its correct value. The effects of this discretization error will
be even more dramatic on the gradient . To overcome quan-
tization noise from the object boundary, we need to smooth the
observed shape boundary and select an appropriate skeletoniza-
tion threshold. To smooth the shape boundary, we approximate
shape diffusion [13]. In order to approximate the skeletonization
of the diffused shape, it is not necessary to explicitly calculate
the diffused shape and distance map. Instead, it is sufficient to
approximate the gradient of the distance map. Let be the
distance map of the original shape and be the distance map
of the shape after a diffusion with parameter . Furthermore, let

be a Gaussian smoothing of a function with standard
deviation . For small , we have

Hence, we can approximate the diffusion of the image by
smoothing the distance map by convolving it with a Gaussian,
andnormalizingtheresultinggradient.Thisapproachallowsusto
approximate the gradient of the distance map of an ideal diffused
boundary calculated with subpixel precision, without actually
calculating the diffused boundary with subpixel precision.

If either the smoothing radius or the threshold is too large,
then some of the branches of the skeleton will be thinned away.
If, on the other hand, the selected values are too small, then the
detected skeleton will have large numbers of spurious branches
(see Fig. 7). In this section, we characterize the effects of

the smoothing radius and the skeletonization threshold on the
quality of the detected skeleton.

Fig. 7 displays the effects of (top) very low and (bottom)
very high values of the smoothing radius and the skeletonization
threshold on a test shape. The diagram shows, left to right, the
divergence of the velocity field, the uncorrected Hamilton–Ja-
cobi skeleton, the divergence of the momentum field, and the
skeleton extracted using the density-corrected method. The im-
ages in the top row were smoothed with a kernel of width 0.75
pixels and the skeleton was extracted using a threshold of 0.2.
For the images in the bottom row the width of the smoothing
kernel was 1.25 pixels and the threshold was 0.7. In general,
a smoothing radius of the order of one pixel is sufficient to
counter boundary noise caused by discretization error. These
results demonstrate that the density corrected method is much
less sensitive to the amount of smoothing and to the value of the
threshold.

Fig. 8 shows the effect of smoothing on the direction of the
velocity field obtained from two test images. Here, the
smoothing radius is varied from 0 pixels to 8 pixels. It is clear
that without smoothing, then the extracted vector field is very
noisy, especially near the boundaries of the objects. Conversely,
as the smoothing radius increases, then the vector field becomes
smoother. With very high smoothing kernel radii, there is dis-
tortion near the skeletal branches. This is due to the interaction
between the Gaussian kernel and the watershed of the distance
map. However, the spatial extent of the distortion is limited by
the smoothing radius. Moreover, the distortions are symmetric
about the skeletal branches. Hence, they have little effect on the
location of the branch. Furthermore, the interactions with the
watershed, and, hence, the distortions, are reduced as we ap-
proach the endpoints of the skeletal branches.

The improved skeleton extraction and reduced parameter sen-
sitivity have a direct effect on the usability of the method for
later shape recognition based on the skeletal representation. The
reduced parameter sensitivity limits the amount of tuning re-
quired for shape extraction prior to recognition. This allows the
method to be require less user intervention. The improved accu-
racy of the extraction process has obvious implications for the



TORSELLO AND HANCOCK: CORRECTING CURVATURE-DENSITY EFFECTS IN THE HAMILton–JacoBI SKELETON 887

Fig. 8. Effect of smoothing on the direction of the velocity field.

quality of the skeletal representation and, hence, in the perfor-
mance of the recognition process.

Sensitivity to boundary noise is a problem with all skeleton
extraction methods, and is a consequence of the high sensitivity
of the skeletal representation to boundary deformation. In prac-
tice, this sensitivity is compounded with the accumulation of
discretization errors due to high frequency boundary noise. This
means that an algorithm that is correct in the continuous domain,
can be adversely affected by errors in the discrete domain. Our
solution to this problem is to filter to remove the high frequency

components from the shape boundary in order to reduce the ef-
fects of discretization error.

A complementary method described in the literature is to ex-
tract a noisy skeleton and then prune the extraneous branches
[8], [18], [19], [31]. A problem with this approach is that the de-
termination of the endpoints of the unpruned skeletal branches
is still affected by the high-frequency boundary noise. Hence, a
branch that should terminate within the interior of the shape, and
which lies at the center of a large radius (i.e., low curvature) bi-
tangent circle, will be prolonged. In fact it can extend from close
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Fig. 9. Smoothing improves localization of endpoints.

Fig. 10. Controlling the thinning process using the flux of the momentum field eliminates the need for postprocessing to eliminate spurious branches or loops:
(a) momentum-based; (b) path-based; (c) momentum-based; (d) path-based.

to the boundary, to the center of a low radius (i.e., high curva-
ture) bitangent circle created by a high frequency boundary fea-
ture. This effect is illustrated in Fig. 9 and draws on the ideas
presented [31]. Like our method, the algorithm described by Tek
and Kimia in [31] is correct in the continuous domain. How-
ever, they chose to adopt the pruning approach. The result is
that the extracted skeletal branches are, for the most part, the
same. However, their method extends the branches to the center
of circles that are bitangent to boundary features that are poten-
tially the artefacts of discretization noise.

To be fair, though, the smoothing method used in our algo-
rithm has the disadvantage that for certain degenerate cases,
boundary diffusion could generate new skeletal features [4]. In
the airplane in the bottom right-hand panel of Fig. 9, it is in-
teresting to note that the skeleton is not symmetrically placed
along the shape axis. The reason for this is that the skeleton has a
4-junction which is an unstable configuration. Hence, any small
boundary error would cause a break in the symmetry.

Compared to alternative thinning methods [1], [2], [5], the pro-
posed approach is certainly more complex, requiring the integra-
tion of the momentum field before the thinning process is per-
formed. However,by using the fluxof the momentumfield to con-
trol the thinning process, there is no need for postprocessing steps
foreitherpruningspuriousbranchesoreliminatingspuriousloops
from the skeleton. Fig. 10 shows a comparison of the skeleton ex-
tracted with our method and that extracted using the path-based
method described in [5]. Although both algorithms extract sim-
ilar skeletons, from the results shown in Fig. 10(c) and 10(d), it is
clear that the thinning process described in [5] creates a spurious
loop that has to be removed by postprocessing.

Fig. 11 plots the number of detected points on the skeleton
of the test shape as a joint function of the smoothing radius and
the skeletonization threshold. Ideally, as the smoothing radius
increases, then the number of detected points should reach a
plateau very rapidly, and then drop abruptly to a lower plateau
as a new feature of the shape is smoothed away. The amount
of smoothing required to reach a new plateau should be in-
dependent of the value of the threshold. Fig. 11(a) shows the
number of points extracted by the two methods. The results are
superimposed as separate surfaces. It is clear from the plot that
of the two methods, the density-corrected method reaches the
plateau faster as we increase the threshold or the smoothing ra-
dius. Moreover, it maintains the plateau for longer. Fig. 11(b)
and 11(c) show the results separately for the Hamilton–Jacobi
and the density-corrected methods. Here, the location closest to
the viewer direction is the plateau side of the plots. The ridges in
the forefront show the drop in the number of skeletal points due
to the smoothing away of an image feature. In both cases, the
drop is sudden but the ridge in the Hamilton–Jacobi plot shows
a higher dependence on the threshold.

B. Skeleton Localization

In this section, we characterize the localization properties of
the skeleton extracted using the Hamilton–Jacobi method and
the new density corrected method on a wide variety of shapes.
To this end, we investigate how the values of the divergence
of the velocity and of the momentum field are distributed over
the distance to the extracted skeleton. Fig. 12 plots a histogram
of the distribution of nonskeletal points as a function of dis-
tance and divergence value for the test shapes. The figure shows
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Fig. 11. Effect of smoothing and threshold on skeleton extraction: (a) both; (b) Hamilton–Jacobi; (c) density corrected.

Fig. 12. Histogram over value of (negative) divergence of the field and distance to skeleton: (a) Hamilton–Jacobi; (b) density corrected.

that the Hamilton–Jacobi skeleton has a nonnegligible tail for
high divergence values, even at large distance from the extracted
skeleton.

We have also performed an experiment aimed at quantifying
the localization of the skeleton on a database of shapes. We have
used a database of 50 shapes and have histogrammed the distri-
bution of field divergence as a function of the distance to the
skeleton. We have repeated this procedure for both the velocity
field and the momentum field. For each shape, we take the mean
of the relevant divergence-distribution as a measure of diver-
gence-localization.

Fig. 13 shows histograms of this divergence-localization
measure accumulated over all the shapes in our database. We

have divided the histogram contents into eight bins of average
divergence-distance. In Fig. 13(a), we show the localization
histogram for the velocity field. The mean of this distribution is
2.52, while the variance is 0.34. Fig. 13(b) is the corresponding
histogram for the momentum field. The mean of this distribu-
tion is 1.46, while the variance is 0.28. The density correction
clearly leads to a better localization of the skeleton.

VIII. CONCLUSION

In this paper, we present an improvement of the Hamilton–Ja-
cobi method for skeleton extraction that reduces its sensitivity
to high curvature. Our analysis takes into account variations of
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Fig. 13. Histogram of divergence-localization on a database of 50 shapes: (a) Hamilton–Jacobi; (b) density corrected.

density due to boundary curvature. It is based on the momentum
field, rather than velocity field, where the local density is in-
tegrated along the path followed by the boundary points. This
yields a skeletonization algorithm that is both better localized
and less susceptible to boundary noise than the Hamilton–Ja-
cobi method. Our analysis of the effects of boundary noise show
that high noise still affect the extraction algorithm. This in-
trinsic sensitivity is compounded with a higher incidence of dis-
cretization error in correspondence with high frequencies in the
boundary features. To counter this, we smooth the boundary by
approximating a diffusion operator. While this approach reduces
the effect of discretization errors, it might smooth out impor-
tant high-frequencies features and, in some degenerate cases,
create artifacts in the form of new skeletal branches. One way
to counter this problem could be to adopt other techniques to
reduce the effects of discretization noise. For instance, subpixel
precision methods such as the one developed by Dimitrov et al.
in [11] suggest themselves.
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