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This paper extends previous results by Peccati [7] and Beccacece [1] on the decomposition of the 
discounted cash flow for deterministic financial operations to the stochastic case. Modelling financial 
operations as processes whose cumulant is a semimartingale, we obtain a very general decomposition 
formula which allows one to consider even random discount factors. 

1. Introduction 

Recently, a more general methodology for the evaluation of  financial operations has 

been proposed by Peccati [7]. In essence, its aim is to integrate the traditional criterion 

based on the discounted cash flow with the kind of  information provided by an analysis 

based on the internal rate of  return. Due to the ensuing synergy of  information, the new 

methodology has proved quite effective both as a general approach to the evaluation of  

financial operations and as a more refined tool for practical analysis. 

As developed by Peccati and his collaborators (see [9] and the bibliography therein 

contained), such methodology centers on the existence of  a decomposition formula for 

the discounted cash flow, which makes the period contributions explicit by referring 

them to a generalized notion of  internal rate of  return. With the partial exception of  

[6], however, the literature has so far dealt only with deterministic cash flows. At least 

in part, such lack of  attention to the more realistic case of  stochastic cash flows can be 

imputed to the absence of  a corresponding decomposition formula. The purpose of  this 

paper is to provide such a formula in a very general setting, which may be used to unify 

the approach to deterministic and stochastic cases. 

(*) This work has been partially supported by C.N.R. and M.U.R.S.T. One of the authors wishes 
to thank M. Armott for drawing (and keeping) us into this project. 
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The setting we use centers on the notion of a (random) standard financial operation. 

We introduce such concept to generalize the definition of a deterministic financial op- 

eration given in [2] so that most ot the recent literature on the modelling of stochastic 

cash flows can be easily taken into account. Despite the extent of the resulting class of  

standard financial operations, we find that a simple unified treatment is made possible 

by relying on the theory of stochastic calculus. 

The paper is organized as follows. After recalling a few definitions from the theory 

of stochastic calculus in Section 1.1, in Section 2 we introduce the definition of standard 

financial operation and accordingly generalize the concepts of internal financial law and 

outstanding, which are crucial to the decomposition method. Building on these notions, 

we obtain a general decomposition formula for standard financial operations for the case 

of deterministic discount factors in Section 3.1. The whole approach is then extended in 

Section 3.2 to the case where the discount factors involved are random. To illustrate the 

applicability of the concepts introduced, we carry on an example drawn by the literature 

on risk theory. 

1.1. Preliminaries form stochastic calculus 

We recall a few definitions form the theory of stochastic calculus. For a more com- 

plete treatment see Protter [10], whose notation is followed here. Let ( ~ ,  ~ ,  P, {.T't ) ) 

be a filtered complete probability space satisfying the usual conditions (see [10]). Given 

a stochastic process X on (KI,.T' ,P) we write X t instead of X ( t , t u )  and Xt_ for 

l i m s t t X ( t , w )  . Moreover, we define AX, = X t - X t_ to be the jump at t .  Finally, 

we set X o_ = 0 by convention; remark however that we do not require X 0 = 0 .  

A stochastic process X is adapted if X, is 9c't-measurable for all t _> 0 and it is 

ckdIkg if it a.s. has right continuous sample paths with left limits. An adapted c~dl~g 

process M is a locM mam'ngale if there exists a sequence of increasing stopping times 

{T~} such that lim,~...+oo T . = oo a.s. and XtAr l(r,>0} is a uniformly integrable 

martingale for each n. An adapted chdlhg process V is a finite variation process if 

almost all of its paths are of finite variation on each compact interval of IR § . 

An adapted c~dl~g process X is a semimartingMe if it can be written X = M + V,  

where M is a local martingale with bounded jumps and V is a finite variation process. 

Examples of semimartingales include Brownian motions, LEvy processes, square inte- 

grable martingales with chdl~g paths, supermartingales and finite variation processes. 

Given a semimartingale X and an adapted left continuous process H with right lim- 

its, it is possible to consistently define another stochastic process J x ( H )  = f H,  d X~ 

which is called the stochastic integral of H with respect to the integrator X .  When 

evaluated at t ,  we denote this process by 

[f H.d X~ fo'H~ X.= io,,]H.d X. " 
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Whenever 0 is to be excluded from the integral, we use the notation 

s L H~ d Xo = H ,  d Xo . 
§ ,t] 

The stochastic integral process preserves most of  the crucial properties of  the standard 

Lebesgue integral. Skipping the details of  its construction (for which see [10]), we will 

only say that given two semimartingales X and Y the integral of  I"_ with respect to 

X always exists and it is also a semimartingale. 

Given two semimartingales X and Y ,  we define the quadratic covariation of  X,  Y 

as the stochastic process given by 

[x,Yl=xY- f x dY- f r_dX; 
and denote by [X,  y ] c  its path by path continuous part. Then, we say that a semi- 

martingale X is quadratic pure j ump  if I X , X ]  c = 0 .  A simple sufficient condition 

for a semimartingale X to be quadratic pure jump is that X has paths of  finite variation 

on compacts. Thus, for instance, any Poisson process is quadratic pure jump. 

An important result that we will need later links the theory of stochastic differential 

equations to semimartingales. We present it an a less general form more suited to our 

purposes. A function f : IR § x R ~ --* R is said to be Lipsctfftz if there exists a (finite) 

constant k such that I f ( t ,  x)  - f ( t ,  Y) I < kl]z - Nil, for all t E R + ; and it is said to 
be regular i f i t  is right-continuous with left limits in t for all z E R "  

THEOREM 1. Let  A = ( A1, . . . , A")  and Z = ( Z t  , . . . , Z " )  be two vectors o f  semi- 

martingales, with Z o = 0 .  Assume that f j  are all regular Lipschitz  functions, for  

i = 1 , . . . ,  n and j = 1 , . . . ,  m .  Then, the system ofequations 

X :  = A I+ ~ ( a , X , _ )  d Z{ i =  1 , . . . , n  
1= 1 0 

has a unique solution X in the space o f  the vectors o f  adapted chdlhg processes and 

such solution is a semimartingale. 

2. The  basic model 

2.1. Standard 17nancial operations 

Given a generic financial operation, we can describe the temporal evolution of  its 

cash flow by a function A : R § • fl  ~ R which gives at any time t E IR § the 

current (undiscounted) cumulative net flow from the operation. We call such function 

the cumulant of the operation. In the sequel, we will often identify a financial operation 

with its cumulant. Throughout this paper, moreover, we will restrict attention to the 

subclass of  stochastic financial operations whose cumulants are semimartingales. 
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DEFINITION 1. A financial operation in R + is sam to be standard i f  its cumulan t  is a 

semirnartingale. 

This definition has a fairly intuitive interpretation. Indeed, recall that every semi- 

martingale can be decomposed into a finite variation process M and a local martingale 

with bounded jumps V.  Thus, a standard financial operation is the sum of the two ran- 

dom cumulants M and V.  The finite variation process M extends to the stochastic 

case the assumption of finite variation which has been long recognized as the minimal 

regularity condition to be required from a deterministic financial operation (see [2]). 

The local martingale V represents instead unpredictable stochastic fluctuations in the 

cumulative net flow. 

In general, both M and V are random processes and thus they are undistinguishable 

in practice. However, if we make the further assumption that M is deterministic, the 

intuitive interpretation of V as an unpredictable fluctuation of the cumulant becomes 

even more natural. In fact, suppose that there is a given deterministic cumulative net flow 

M additively affected by some underlying source of uncertainty V .  The agent may 

receive information over time about V ,  and such arrival of information is modelled as a 

filtration. Apart from minor technicalities, the assumption that V is a local martingale 

implies that, given the available information at time s ,  the best guess as to what will be 

the net cumulative cash flow at some time t > s is given by M t + V , ,  i.e. by the sum 

of the deterministic cumulant and the current value of V.  

For instance, consider the following classical example drawn from risk theory (see 

[3]). An insurance company with initial capital u intakes premia at a rate of c perunit of  

time; in exchange for this, it must be ready to pay a stochastic amount of money each time 

that a claim is received. Claims arrive according to a point process N = {N( t )  ; t > 0 } 

with unit increments and are modelled as a sequence of independent and identically 

distributed random variables {Zk}. The risk process p faced by the company is defined 

by 
N(t) 

= u+ c t -  ~ Z ~  (1) p(t)  
/c= 1 

and it is immediately seen that p is a standard financial operation where M t = u + 

N(t) 
ct is the deterministic cumulant and V t = - ~ Z~ is the unpredictable stochastic 

k= l  

disturbance. 

It is important to remark that the plausibility of the interpretation just provided is 

not crucial. The main importance of the class of standard financial operations is that 

it encompasses almost all the models of financial operations usually encountered in the 

current literature. As of the deterministic cumulants considered by the traditional math- 

ematics of finance, they all enjoy the finite variation property and thus the definition of a 
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standard financial operation subsumes them for V = 0 .  As of  the stochastic cumulants 

considered in the modem mathematics of  finance, they are usually obtained as solutions 

of  stochastic differential equations which, under assumptions even milder than those of  

Theorem 1, are nothing but semimartingales. 

Finally, we mention that it can be shown that the set of  standard financial operations is 

an algebra. In particular, therefore, we can take linear combinations of  standard financial 

operations to obtain other financial operations which are still standard. Hence, such class 

is closed with respect to the usual composition operators for financial cash flows. 

2.2. DCF and outstanding 

Continuing with our example, we notice that traditional risk theory is interested in 

determining the probability of  ruin faced by the insurance company for a given risk pro- 

cess. We wish to consider a different viewpoint and look at risk processes as altemative 

investment opportunities open to an insurance company. In fact, when starting a new 

policy, the company may vary deductibles or other conditions so as to generate different 

risk processes. If we regard each risk process as a standard financial operation generat- 

ing a random cash flow, the company faces the problem of  choosing the best insurance 

policy according to some criterion. We provide in the following the mathematics neces- 

sary to apply the methodology of the decomposition of  discounted cash flows when the 

financial operations under exam are stochastic. 

To this purpose, we need to introduce the notions of  discounted cash flow (for short, 

DCF) and outstanding for a standard financial operation. Unless explicitly noted, it is 

assumed throughout the rest of  this work that all the financial operations are standard 

and take place in the time interval [ 0 ,  T] ,  T < + c~.  While the choice o f  0 as left 

boundary point is only a convenient normalization, the assumption of  a bounded time 

interval is a crucial simplification. Relaxing such assumption to allow for an unbounded 

time horizon can be done only at the price of  some heavy-duty technical assumptions 

that do not seem to add any special insight. 

We recall first a few definitions. A function /~ : IR + ~ [0 ,  1] is said to be a discount 

factor i f  it is nonincreasing and #0 = 1.  For the moment, we will restrict attention to 

the class A of (deterministic) discount factors which are continuously differentiable and 

strictly positive. The first assumption is technical and will be weakened to finite variation 

in Section 3.2. The second one, instead, is merely simplifying in that it allows for the 

discount factors in the class A the elegant representation /~ = e -'~ : IR + ~ [ 0 , 1 ] ,  

where ra : ]R § ~ IR § is a nondecreasing continuously differentiable function such 

that ra 0 = 0 .  

DEFINITION 2. Let  A be a standard financial operation and 1~ = e-'n a discount factor 
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in the class A . The discounted cash flow G ( # )  o f  A is given by 

// // G(t~) = Ao + # ,  d A ,  = A o + e - ' "  d A , .  (2) 

This definition is a straightforward generalization of the traditional one for determin- 

istic financial operations. According to it, the process defining the DCF evolves as a 

semimartingale whose value at T determines the discounted cash flow of the operation. 

For instance, if we define r k = inf {t : N ( t )  = k} to be the waiting time for the k-th 
claim in our example, (2) provides the following natural expression for the (random) 

discounted cash flow of the risk process (1): 

r N(T) 

G ( # )  = u + e fo e - ~ , d  s - E Z~e- ' ,  . 
k=l  

(3) 

In general, the DCF of a standard financial operation is a random variable which need 

not to be square integrable. Since it is not necessary to our development, however, we 

will not discuss any condition ensuring the square integrability of the DCF except to 

mention that it essentially requires a particular norm of A to be finite and that this will 

happen in most cases of practical relevance. 

We now move to consider the outstanding of a stochastic financial operation. First, 

we recall a few definitions from the theory of deterministic financial operations. The no- 

tion of internal financial law generalizes that one of internal rate of retum by removing 

the restriction that the discount law armihilating the DCF be exponential. Given a deter- 

ministic financial operation A ,  we say that the discount factor # is an internal financial 

law (for short, IFL) if G(#)  = 0 .  For a stochastic financial operation, the DCF is a 

random variable and thus the definition of an IFL has to be generalized accordingly. A 

natural proposal, first advanced in Luciano and Peccati [6], is the following. 

DEFINITION 3. For a standard financial operation A ,  we say that ~ 6 A is an intemal 

financial law in mean i f  E[ G(v )  ] exists and it is 0 .  

As it is the case for a deterministic financial operation, a standard financial operation 

A may admit in general several IFL's in mean. In the following we assume that all 

the standard financial operations considered admit at least one IFL in mean, denoted by 

~ = e - " E A .  
Another important concept is that one of outstanding, which generalizes to a generic 

financial operation the notions of outstanding debt for a financing operation and of expo- 

sure for an investment (see [8]). Its origin can be traced back to the depreciation formula 

derived by Hotelling in 1925 (see [4]). We provide its definition for the general case of 
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a standard financial operation; under the further assumption that the operation is deter- 

ministic, one can easily recover the traditional definition (see [1] for a derivation of  this 

latter one). 

DEFINITION 4. Let A be a standard financial operation. I f  u = e -n E A is an 1FL in 

mean for A ,  we define the outstanding W o f  A with respect to ~ to be the unique 

adapted chdlhg process which solves the equation 

fo t fo t t W t = A  t -  W_sdlogu  s = - A  t+  n,W,_d s .  

Remark that since u = e - "  and thus n are continuously differentiable, r/ is 

bounded on the compact interval [ 0 , T ] .  Therefore, f ( t ,  z) = n~z is regular Lips- 

chitz. Hence, by Theorem 1, such equation has a unique solution in the space of  adpted 

chdl~tg processes which is also a semimartingale. In other words, if v is an IFL in mean 

for the standard financial operation A ,  the construction of  the outstanding yields another 

uniquely defined standard financial operation. Finally, we notice that W 0 = - A  0 . 

The definition just given obtains the outstanding as the solution of  a stochastic ex- 

ponential equation with an exogeneous driving term. Exploiting this simple observation 

and that part of  the regularity assumption stating that ~, is continuous, we can apply 

Theorem 5.52 from [10] to conclude that the following closed form expression for the 

outstanding W of A holds: 

{ /o' } 1 A 0+  vodAo ; (4) 
W t  = 11 t § 

Rewritten as 

vtW t = -  A o+ . v ~ d A ~  , 

such expression provides immediately a natural interpretation of  the outstanding at time 

t as the backward evaluation (see [5]) of  the cash flow of  a financial operation. 

If  we assume for notational simplicity the exponential internal financial law u t = 

e - ~  , (4) and a bit of  algebra applied to our example give, conforming to our intuition, 

t N(t) 
W t = - u e  n t - c f O  e ~t-s) d s+  EZke~Ct-r~) " 

k=l  

(5) 
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3. Decomposition formulas 

In this section we state some general de ,composition formulas for the DCF o f  a stan- 

dard financial operation. We discuss first an intermediate case where the discount factors. 

are assumed to he deterministic, and then generalize the result obtained to the case of  

random discount factors. 

3.1. Deterministic discount factors 

Before giving the intermediate decomposition formula for the case of deterministic 

discount factors, we need to state a useful iesult whose proof is omitted because it can 

be easily obtained as a particular case of Lemma 4. 

LEMMA 2. Let  ~ E A and W a standard financiM operation. Then the proccss # W  

is Mso a standard financiM operation. Moreqver, 

i' i' u t W t - U o W o  = W~ #~ + #~ Wo. 

Using such lemma, the decomposition formula for deterministic discount factors is 

established as follows. 

PROPOSITION 3. Lct A be a standard financial operation and lz = e - "  E A .  f f  

= e-"  E A is an IFL in mean for A ,  let W be the outstanding o f  A with respect to 

~,. Then 

G(#)  = - # T W r  + (n'o - ra;)/~,Wo d s .  (6) 

Proof. By definition of outstanding, 

f0 /0 / /  #,  d IV, = - /a~ A, + no/z,Wo_ d s .  

On the other hand, recall from the discussion at the end of Section 2.2 that the outstanding 

W is also a standard financial operation. Thus, interpreting Lemma 2 as an integration 

by parts formula, we have 

/0 f0 / / ,  U, d W~ = / ~ r W r  - U0 W0 - W~ d U, = u r W r  + Ao + m , # , W o _  d s .  

Equating the right-hand sides, we obtain 

fo r fo r Ao + ~,, d A,  - a t  Wr + (n', ' = - rn , )a ,W,  d s 
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and (6) is established, o 

Continuing with our example, let us obtain directly the decomposition of the dis- 
counted cash flow given by (6). For simplicity, we assume that both the internal financial 

law u t = e -'~ and the discount factor /Jr = e-rat are exponential. Starting from (3), 
we have: 

N(T) 
o T e -ra~ d G ( ~ )  = u + c s -  ~ Z~e -ran 

k=l 

1 - -  - - r a  = U + C -- -- Zk e-rnrk 
D 

k=l 

Considering separately the three components of the sum, we find respectively 

I f: ] u = u e ( n - m ) r  - ( n -  m )  e ( ~ - m ) '  d s 

c = c e ('*--m)~ - e - ' ~  d s 

N(T) N(T) T I N(s) ] 
E z : - - ,  : e,- -,T ~2 Z+-=. - ( . - , ~ ) f 0  e'"-" E Z:-~' d s 
k=l k=l 4=1 

Substituting back these expressions, we obtain 

] N(r) 
G(/~) =ue ("-~}r + c [ e("-~) - e - ~ r  - e(n-m}T E Zke-"% 

k=l 
u N( s) ] 

fo  g" C e(n"-m) s - (~ -  ~) e~"-~'+- (g "-~),-e- '` ' )-  ~-'~ Z:-"~ d~ 
n k=l 

fo  T = _ e - ' r W r +  ( n _ m ) e - ' ~ W o d s  

which is nothing but the decomposition given in (6). The amount of calculations in- 

volved in the direct derivation of the decomposition shows the practical importance of 
Proposition 3. 

3.2. R a n d o m  d iscount  factors  

The decomposition formula just obtained may be generalized to the case where one 

allows for stochastic discount factors. Before discussing such version of the decompo- 

sition formula, however, we need to introduce the notion of a random discount factor. 
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Since a deterministic discount factor /a is characterized by the property of  be ing  non- 

negative, nonincreasing and normalized so that #0 = 1 ,  it appears natural to mainta in  at 

least some of  these properties for its stochastic counterpart. This motivates the fo l l ow ing .  

definition. 

DEFINITION 5. A finite variation process  p : R + x f~ ---) [ O, 1 ] such that Po = 1 is  

said to be a random discount factor. 

Such definition requires a random discount factor to a.s. satisfy pathwise proper t ies  

weaker than those characterizing a deterministic discount factor. In particular, w e  allow 

a random discount factor not to be nonincreasing with respect to t .  There are two rea- 

sons for this: first, there is no difficult in making the stronger assumption that a random 

discount factor is a.s. nonincreasing. Second, it seems preferable not to impose such re- 

striction when the discount factor arises in a stochastic environment. We remark,  on the 

other hand, that it remains necessary that the pathwise variation of  the random discount  

factor be not too irregular. 

It is worth mentioning that the choice of  the range [0 ,  1] for the random discount  

factor is to some extent a rb i t r a l :  in fact, it is possible to define it to be [ 0 ,  + cx3) without 

affecting any of  the conclusions below. As above, we will also make the addit ional  

simplifying assumption that the random discount factors we consider are always posit ive.  

We denote the class of  positive random discount factors by A .  If p E A ,  we can  write 

p = e -r  where r " IR § • f2 ---, IR* is a finite variation process such that r 0 = 0 .  

Having defined random discount factors, it becomes necessary to reexamine the no- 

tions of  IFL and outstanding. In fact, while the definition of  the discounted cash  flow 

is formally identical to (2) after replacing A by A and the integrand ~ by ,os_,  the 

possibility of  randomness in the discount factor allows for an alternative defini t ion of  

the IFL and thus a different notion of  outstanding. 

DEFINITION 6. For a standard t~nancial operation A ,  we say that u E A is an internal 

financial law in mean i f  E[ G( v) ] exists and it is 0 .  We say instead that ~ E A is a.s. 

an internal l~nancial law i f  G(c~) = 0 with probabil i ty  one. 

The two notions coincide for deterministic financial operations. However, whi le  the 

definition of  IFL in mean leads to a deterministic discount factor, an a.s. IFL is in general 

random. It would be possible to extend the definition of  IFL in mean to the class A and 

therefore allow for a random IFL in mean, but this is beyond the scope of  this  work. 

We remark that in general a standard financial operation may have several IFL ' s  both 

in mean and a.s.; moreover, it does not follow neither that an IFL in mean is an a.s. 

IFL nor viceversa. In the following we assume that all the standard financial operat ions 

considered admit at least one IFL in mean and one a.s. IFL, respectively denoted  by 
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m 

L,= e - "  GA and c r = e - ' E A .  

DEFINITION 7. Let  A be a standard l~nancial operation. I f / 3  = e -b is an IFL (in mean 

or a.s.) for A ,  we del~ne the outstanding W o f  A with respect to /3 to be the unique 

adapted chdlhg process which solves the equation 

/o' fo' Wt = - A  t - W a_ d log/3. = - A  t + % _  d b . . (7) 

Since /3 E A ,  it is a finite variation process and therefore a semimartingale. More- 

over, b o = 0 and f ( t ,  z) = z is regular Lipschitz. Thus, by Theorem 1, Equation (7) 

has a unique solution in the space of  adapted c~dl~g processes which is also a semimartin- 

gale. Therefore, this definition generalizes Definition 4 and the observations following 

this latter one hold here as well. In particular, if /3 is also continuous, Theorem 5.52 

from [10} applies again and a few simple computations give a closed form expression 

for W which mirrors (4): 

'{ /o' } W t = - -  S- A 0 +  /3, d A ,  , 
Pt . 

so that the natural interpretation of  the outstanding as a backward evaluation is main- 

tained. 

The following lemma is the analog of Lemma 2 for random discount factors. 

LEMMA 4. Lct  p G A and W a standard financial operadon. Then the process p W  is 

also a standard financial operation. Moreover, 

fo' fo p t W , - p o W o  = W,_dp~+ ps_dW~+ ~ Ap,AW s. (8) 
0<s_<t 

Proof. The complete proof is standard but long. A quick way to give it is to collate 

a few results from Prottcr [10]. Since p is a random discount factor, it is a finite vari- 

ation process and thus by its Theorem 2.26 it is a quadratic pure jump sernimartingale. 

Thercfore, by its Theorem 2.28, the quadratic covariation is 

[p ,w] ,  = p0W0 + Ap, W  
0 <s~t  

and the result follows by Corollary 2 to Theorem 2.22. [] 

Remark that if p is continuous the summation term is zero. This establishes Lemma 

2. 

With respect to the decomposition of  the DCF, the most important analytical property 

of  the outstanding associated to an a.s. IFL or to an IFL in mean is the following. 
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PROPOSITION 5. Let A be a standard linancial operation. I[ W is its outstanding with 

respect to the a~s. IFL a E A ,  then 

-orw~. + ~ ~ ~.A w,  = o a.s. 
0 <8<_T 

Similarly. it" W is its outstanding with respect to the IFL in mean v E A . then 

E [ - v r W T +  E Av,  A W , ] = 0 .  (9) 
0 < , < T  J 

Proof: By the definition of a.s. IFL, it holds almost surely that 

fo T A o + a , _  d A s = 0 . 

By definition of outstanding, 

s At= - W t  + W._d  s 5 . 

Substituting in (10), we obtain 

/o fo A o -  cr s _ d W * +  a , _ W , _ d s  s = 0 ,  

which by Lemma 4 can be rewritten as 

A o - c r r W r + c r o W o +  Wo_ d or, + 

(~o) 

fo T E A o ' A W +  cr~ W~ d s . = O .  
0<$<_T 

Thus, given the initial conditions cr o = 1 and W o = - A  o , it suffices to remark that 

or W~_ d cr~ = - cr~_W._ d s~ 

and the result is established. 

The proof of the second part of the proposition is analogous, r~ 

Remark that in particular Equation (9) holds if W is the outstanding of A with 

respect to the a.s. IFL cr. 
We are now ready to give the general decomposition formula for random discount 

factors. 
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PROPOSITION 6. Let A be a standard financial operation and p = e-" E -A . I f  ~ = e -~ 

is an IFL (either in mean or a.s.) for A ,  let W be the outstanding o f  A with respect to 

~ .  Then 

G ( p ) = - p r W r +  po_Wo_d(b,-ro)+ E Ap~ (11) 
o <e<_T 

In particular, i f  ~ = a is an a.s. IFL, this reduces to 

i" G(p) = pe_W~ d ( s~ - r e) . (12) 

Moreover, in both cases it follows that 

[fo" ] E [ a ( p ) l  = E  p a W e _ d ( b . - r ~  . (13) 

Proof. By the definition of outstanding in (7), 

/o fo" /0" p e _ d W , = -  p ,_dA,+  p, W,_db e. 

On the other hand, Lemma 4 and the initial conditions W o = - A  o and Po = 1 give 

ff ff p,_d We= PTWT + A o -  W~ p , -  A poA Wo . 
0<s_<T 

Equating the right-hand sides, we obtain 

fo [ Ao + p._ d Ae = - p r W r  + Pe- W._ d (b~ - r e) + 
0 <~<T 

and (11) is established. Equations (12) and (13) follow from (11) and Proposition 5. o 

4. Conclusions 

This work has applied to a decomposition method for discounted cash flows firstly 
proposed by Peccati [7] the simple observation that the theory of semimartingales can 
be conveniently used to unify the modelization of deterministic and stochastic financial 
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operations. In fact, by grouping all the financial operations whose cumulant is a semi- 

martingale in the class of  the standard financial operations, we have been able to provide 

a natural extension of  the definitions of  discounted cash flow and outstanding, which are 

crucial for the decomposition method. 

Building on these, we have discussed both the construction of  the intemal financial 

law for a standard financial operation and the decomposition o f  its discounted cash flow 

under the assumption of  deterministic discount factors. Successively, we have consid- 

ered the possibility of  random discount factors and we have proposed two alternative 

ways to define the internal financial law of  a standard financial operation, providing de- 

composition formulas for both of  them. 

REFERENCES 

[1] E BECCACECE (1990), ~Sulla scomposizione del DCF~, in Alti ) (IV Convegno AMASES, 
forthcoming. 

[2] E. CASTAGNOLI, L. PECCATI (1973), ~Alcune considerazioni in tema di classificazione degli 
investimenti,,, Giornale degli Economisti ed Annali di Economia 32; 235-252. 

[3] J. GRANDELL (1991), ~Aspects of Risk Theory,s, Springer-Verlag, New York. 

[4] H. HOTELLING (1925), ~A general mathematical theory of depreciatiom~, Journal of  the Amer- 
ican Statistical Association 20, 340-353. 

[5] E. LEVI (1964), Corso dirnatematica Bnanziaria edattuariale, Giuffr6, Milano. 

[6] E. LUClANO, L. PECCATI (1990), ~The decomposition of random discounted cash flows~, pre- 
sented at the 7 th meeting of the EURO Working Group on Financial Modelling, Sirmione, 
April 5-7. 

[7] L. PECCATI (1987), ~,DCF e risultati di periodo~, in Atti XI  Convegno AMASES, Bologna, 
Pitagora Edit.rice, 483-493. 

[8] L. PECCATI (1989), ~La valutazione di attivith finanziarie singole ed in portafoglio,~, presented 
at the Congress lmctodiquantitativipcrleapplicazionit~nanziat4e, Siena, Novermbcr I2-14. 

[9] L. PECCATI (1991), ~,Valutazione analitica e sintetica di attivit~ finanziarie,~, Quademi della 
Rivista Milancse di Economia, forthcoming. 

[10] R PRO'Iq'ER (1990), Stochastic integration and differential equations, Springer-Verlag, Berlin. 

Sulla scomposizione di risultati 

economici attualizzati stocastici 

RIASSUNTO 

I1 lavoro propone un'estensione al caso aleatorio dei risultati presentati in Peccati [7] 

e Beccacece [ 1 ] sulla scomposizione del risultato economico attualizzato per operazioni 

finanziarie certe. Considerando la classe di operazioni finanziarie la cui funzione cumu- 

lativa dei margini ~ una semimartingala, si perviene ad una formula di decomposizione 
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del risultato economico attua]izzato molto genera]e, valida anche nel caso di fattori di 

sconto aleatori. 
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